बॉट आवधिकता प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 141: Line 141:
*{{cite book |first=J. |last=Milnor |title=Morse Theory |publisher=Princeton University Press |year=1969 |isbn=0-691-08008-9 }}
*{{cite book |first=J. |last=Milnor |title=Morse Theory |publisher=Princeton University Press |year=1969 |isbn=0-691-08008-9 }}
*{{cite web |first=John |last=Baez |title=Week 105 |date=21 June 1997 |work=This Week's Finds in Mathematical Physics |url=http://math.ucr.edu/home/baez/week105.html}}
*{{cite web |first=John |last=Baez |title=Week 105 |date=21 June 1997 |work=This Week's Finds in Mathematical Physics |url=http://math.ucr.edu/home/baez/week105.html}}
[[Category: झूठ समूहों की टोपोलॉजी]] [[Category: समरूपता सिद्धांत में प्रमेय]]


[[Category: Machine Translated Page]]
[[Category:Created On 01/07/2023]]
[[Category:Created On 01/07/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:झूठ समूहों की टोपोलॉजी]]
[[Category:समरूपता सिद्धांत में प्रमेय]]

Latest revision as of 11:48, 14 July 2023

गणित में बॉट आवधिकता प्रमेय राउल बॉट (1957, 1959) द्वारा खोजे गए मौलिक समूहों के समरूप समूहों में एक आवधिकता का वर्णन करता है, जो विशेष रूप से स्थिर जटिल सदिश के के-सिद्धांत में, आगे के शोध के लिए मूलभूत महत्व सिद्ध हुआ। बंडल के साथ ही गोले के स्थिर समरूप समूह के बॉटल आवधिकता को कई विधि से तैयार किया जा सकता है, एकात्मक समूह से जुड़े सिद्धांत के लिए, आयाम के संबंध में, प्रश्न में आवधिकता सदैव अवधि -2 घटना के रूप में दिखाई देती है। उदाहरण के लिए टोपोलॉजिकल के-सिद्धांत देखें।

मिलान सिद्धांतों, (वास्तविक) केओ-सिद्धांत और (चतुर्धातुक) केएसपी-सिद्धांत के लिए संबंधित अवधि -8 घटनाएं हैं, जो क्रमशः वास्तविक ऑर्थोगोनल समूह और चतुष्कोणीय सहानुभूति समूह से जुड़ी हैं। जे-होमोमोर्फिज्म ऑर्थोगोनल समूहों के होमोटॉपी समूहों से लेकर गोले के स्थिर होमोटॉपी समूहों तक का एक होमोमोर्फिज्म है, जिसके कारण गोले के स्थिर होमोटॉपी समूहों में अवधि 8 बोतल की आवधिकता दिखाई देती है।

परिणाम का विवरण

बॉट ने दिखाया कि यदि ऑर्थोगोनल समूह के समूहों की प्रत्यक्ष सीमा के रूप में परिभाषित किया गया है, तो इसके समरूप समूह आवधिक हैं:[1]

और पहले 8 समरूप समूह इस प्रकार हैं:


संदर्भ और महत्व

बॉट आवधिकता का संदर्भ यह है कि गोले के समरूप समूह, जिनसे समरूपता सिद्धांत के अनुरूप बीजगणितीय टोपोलॉजी में मूल भूमिका निभाने की उम्मीद की जाएगी, मायावी सिद्ध हुए हैं (और सिद्धांत जटिल है)। स्थिर होमोटॉपी सिद्धांत के विषय की कल्पना एक सरलीकरण के रूप में की गई थी, जिसमें निलंबन (गणित) (एक घेरा के साथ उत्पाद को तोड़ना) ऑपरेशन प्रारंभ किया गया था, और यह देखा गया था कि समीकरण के दोनों पक्षों को निलंबित करने की अनुमति देने के बाद होमोटॉपी सिद्धांत का क्या (समान्य रूप से बोलना) रह गया था। जैसे कई कई बार जैसी इच्छा होती है। व्यवहार में स्थिर सिद्धांत की गणना करना अभी भी कठिन था।

बॉट आवधिकता ने जो प्रस्तुति की वह कुछ अत्यधिक गैर-तुच्छ स्थानों में एक अंतर्दृष्टि थी, जिसमें टोपोलॉजी में केंद्रीय स्थिति थी क्योंकि उनके सह-समरूपता को विशिष्ट वर्गों के साथ जोड़ा गया था, जिसके लिए सभी (अस्थिर) होमोटोपी समूहों की गणना की जा सकती थी। ये स्थान (अनंत, या स्थिर) एकात्मक ऑर्थोगोनल और सिंपलेक्टिक समूह U, O और Sp हैं। इस संदर्भ में, स्थिरीकरण का तात्पर्य समावेशन के अनुक्रम के संघ यू (जिसे प्रत्यक्ष सीमा के रूप में भी जाना जाता है) को लेने से है

और इसी तरह ओ और Sp के लिए ध्यान दें कि बॉट द्वारा अपने मौलिक पेपर के शीर्षक में स्थिर शब्द का उपयोग इन स्थिर मौलिक समूह को संदर्भित करता है, न कि स्थिर समरूपता सिद्धांत समूहों को संदर्भित करता है।

गोले के स्थिर समरूप समूहों के साथ बॉट आवधिकता का महत्वपूर्ण संबंध (स्थिर) मौलिक समूहों के (अस्थिर) समरूप समूहों से इन स्थिर समरूप समूहों तक तथाकथित स्थिर जे-समरूपता के माध्यम से आता है। मूल रूप से जॉर्ज डब्ल्यू व्हाइटहेड द्वारा वर्णित, यह प्रसिद्ध एडम्स अनुमान (1963) का विषय बन गया जिसे अंततः डैनियल क्विलेन (1971) द्वारा सकारात्मक रूप से हल किया गया।

बॉट के मूल परिणामों को संक्षेप में संक्षेप में प्रस्तुत किया जा सकता है:

परिणाम: (अनंत) मौलिक समूहों के (अस्थिर) समरूप समूह आवधिक हैं:

ध्यान दें: इनमें से दूसरा और तीसरा समरूपता 8-गुना आवधिकता परिणाम देने के लिए आपस में जुड़ते हैं:


लूप रिक्त स्थान और वर्गीकरण स्थान

अनंत एकात्मक समूह, U से जुड़े सिद्धांत के लिए, अंतरिक्ष BU स्थिर जटिल सदिश बंडलों (अनंत आयामों में एक ग्रासमैनियन) के लिए वर्गीकृत स्थान है। बॉट आवधिकता का एक सूत्रीकरण BU के दोहरे लूप स्पेस, का वर्णन करता है। यहां लूप स्पेस कारक है, सस्पेंशन के लिए दायां जोड़ है और वर्गीकृत स्थान निर्माण के लिए बायां जोड़ है। बॉट आवधिकता बताती है कि यह डबल लूप स्पेस अनिवार्य रूप से फिर से बीयू है; अधिक ठीक है,

अनिवार्य रूप से बीयू की प्रतियों की गणनीय संख्या का संघ है (अर्थात, होमोटॉपी तुल्यता)। एक समतुल्य सूत्रीकरण है
इनमें से किसी का भी यह दिखाने का तत्काल प्रभाव है कि क्यों (जटिल) टोपोलॉजिकल के-सिद्धांत एक 2 गुना आवधिक सिद्धांत है।

अनंत ऑर्थोगोनल समूह, O के लिए संबंधित सिद्धांत में, अंतरिक्ष BO स्थिर वास्तविक सदिश बंडलों के लिए वर्गीकृत स्थान है। इस स्थिति में, बॉट आवधिकता बताती है कि, 8-गुना लूप स्पेस के लिए वर्गीकृत स्थान है

या समकक्ष,
जिससे यह परिणाम निकलता है कि KO-सिद्धांत एक 8 गुना आवधिक सिद्धांत है। इसके अतिरिक्त, अनंत सहानुभूति समूह, Sp के लिए, अंतरिक्ष बीएसपी स्थिर चतुर्धातुक सदिश बंडलों के लिए वर्गीकृत स्थान है, और बोतल आवधिकता बताती है कि
या समकक्ष
इस प्रकार टोपोलॉजिकल वास्तविक के-सिद्धांत (केओ-सिद्धांत के रूप में भी जाना जाता है) और टोपोलॉजिकल क्वाटरनियोनिक के-सिद्धांत (केएसपी-सिद्धांत के रूप में भी जाना जाता है) दोनों 8 गुना आवधिक सिद्धांत हैं।

लूप स्पेस का ज्यामितीय मॉडल

बॉट आवधिकता का एक सुंदर सूत्रीकरण इस अवलोकन का उपयोग करता है कि मौलिक समूहों के बीच प्राकृतिक एम्बेडिंग (बंद उपसमूहों के रूप में) हैं। बोतल आवधिकता में लूप रिक्त स्थान Z के अतिरिक्त असतत कारकों के साथ, क्रमिक भागफल के सममित स्थानों के समतुल्य समरूप होते हैं।

सम्मिश्र संख्याओं पर:

वास्तविक संख्याओं और चतुर्भुजों पर:

ये अनुक्रम क्लिफ़ोर्ड बीजगणित के अनुक्रमों से मेल खाते हैं - क्लिफ़ोर्ड बीजगणित का वर्गीकरण देखें; सम्मिश्र संख्याओं पर:

वास्तविक संख्याओं और चतुर्भुजों पर:

जहां विभाजन बीजगणित उस बीजगणित पर आव्यूहों को दर्शाता है।

चूंकि वे 2-आवधिक/8-आवधिक हैं, उन्हें एक सर्कल में व्यवस्थित किया जा सकता है, जहां उन्हें बॉटल आवधिकता घड़ी और क्लिफोर्ड बीजगणित घड़ी कहा जाता है।

बॉट आवधिकता परिणाम तब समरूप समकक्षों के अनुक्रम में परिष्कृत होते हैं:

जटिल K-सिद्धांत के लिए:

वास्तविक और चतुर्धातुक KO- और KSp-सिद्धांतों के लिए:

परिणामी रिक्त स्थान मौलिक रिडक्टिव सममित रिक्त स्थान के समतुल्य समरूप हैं, और बोतल आवधिकता घड़ी की नियम के क्रमिक भागफल हैं। ये तुल्यताएं तुरंत बोतल आवधिकता प्रमेय उत्पन्न करती हैं।

विशिष्ट स्थान हैं,[note 1] (समूहों के लिए, प्रमुख सजातीय स्थान भी सूचीबद्ध है):

लूप स्पेस भागफल कार्टन का लेबल विवरण
BDI रियल ग्रासमैनियन
ऑर्थोगोनल समूह (असली स्टिफ़ेल मैनिफ़ोल्ड)
DIII किसी दिए गए ऑर्थोगोनल संरचना के साथ संगत जटिल संरचनाओं का स्थान
AII किसी दी गई जटिल संरचना के साथ संगत चतुर्धातुक संरचनाओं का स्थान
CII क्वाटरनियोनिक ग्रासमैनियन
क्वाटरनियोनिक ग्रासमैनियन सिम्पलेक्टिक समूह (क्वाटरनियोनिक स्टिफ़ेल मैनिफोल्ड)
CI जटिल लैग्रेंजियन ग्रासमैनियन
AI लैग्रेंजियन ग्रासमैनियन


प्रमाण

बोतल का मूल प्रमाण (Bott 1959) मोर्स सिद्धांत का प्रयोग किया, जो Bott (1956) ने पहले लाई समूहों की समरूपता का अध्ययन करने के लिए उपयोग किया था। कई अलग-अलग प्रमाण दिए गए हैं.

टिप्पणियाँ

  1. The interpretation and labeling is slightly incorrect, and refers to irreducible symmetric spaces, while these are the more general reductive spaces. For example, SU/Sp is irreducible, while U/Sp is reductive. As these show, the difference can be interpreted as whether or not one includes orientation.


संदर्भ

  1. "Introduction".