भागों द्वारा योग: Difference between revisions
No edit summary |
No edit summary |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Theorem to simplify sums of products of sequences}}गणित में, '''भागों द्वारा [[योग]]''' अनुक्रमों के उत्पादों के योग को अन्य योगों में बदल देता है, जिससे अधिकांशतः गणना या (विशेष रूप से) कुछ प्रकार के योगों का अनुमान सरल हो जाता है। इस प्रकार इसे '''एबेल लेम्मा या एबेल ट्रांसफॉर्मेशन''' भी कहा जाता है, जिसका नाम [[नील्स हेनरिक एबेल]] के नाम पर रखा गया है जिन्होंने इसे साल 1826 में प्रस्तुत किया था।<ref>{{cite journal |journal=Advances in Applied Mathematics |volume=39 |issue=4 |year=2007 |pages=490-514 |title= भागों और बुनियादी हाइपरजियोमेट्रिक श्रृंखला द्वारा योग पर एबेल की लेम्मा|first=Wenchang |last=Chu |doi=10.1016/j.aam.2007.02.001|doi-access=free }}</ref> | {{Short description|Theorem to simplify sums of products of sequences}}गणित में, '''भागों द्वारा [[योग]]''' अनुक्रमों के उत्पादों के योग को अन्य योगों में बदल देता है, जिससे अधिकांशतः गणना या (विशेष रूप से) कुछ प्रकार के योगों का अनुमान सरल हो जाता है। इस प्रकार इसे '''एबेल लेम्मा या एबेल ट्रांसफॉर्मेशन''' भी कहा जाता है, जिसका नाम [[नील्स हेनरिक एबेल]] के नाम पर रखा गया है जिन्होंने इसे साल 1826 में प्रस्तुत किया था।<ref>{{cite journal |journal=Advances in Applied Mathematics |volume=39 |issue=4 |year=2007 |pages=490-514 |title= भागों और बुनियादी हाइपरजियोमेट्रिक श्रृंखला द्वारा योग पर एबेल की लेम्मा|first=Wenchang |last=Chu |doi=10.1016/j.aam.2007.02.001|doi-access=free }}</ref> | ||
==विवरण== | ==विवरण== | ||
इस प्रकार कल्पना करना <math>\{f_k\}</math> और <math>\{g_k\}</math> दो अनुक्रम हैं. तब, | इस प्रकार कल्पना करना <math>\{f_k\}</math> और <math>\{g_k\}</math> दो अनुक्रम हैं. तब, | ||
Line 50: | Line 50: | ||
सीमा शर्तों के अतिरिक्त, हम देखते हैं कि पहले अभिन्न में दो गुणा कार्य सम्मिलित हैं, एक जो अंतिम अभिन्न में एकीकृत है (<math>g' </math> बन जाता है <math>g </math>) और एक जो विभेदित है (<math>f </math> बन जाता है <math>f' </math>). | सीमा शर्तों के अतिरिक्त, हम देखते हैं कि पहले अभिन्न में दो गुणा कार्य सम्मिलित हैं, एक जो अंतिम अभिन्न में एकीकृत है (<math>g' </math> बन जाता है <math>g </math>) और एक जो विभेदित है (<math>f </math> बन जाता है <math>f' </math>). | ||
एबेल परिवर्तन की प्रक्रिया समान है, क्योंकि दो प्रारंभिक अनुक्रमों में से एक को संक्षेप में प्रस्तुत किया गया है (<math>b_n </math> बन जाता है <math>B_n </math>) और दूसरा भिन्न है (<math>a_n </math> बन जाता है <math>a_{n+1} - a_n </math>). | एबेल परिवर्तन की प्रक्रिया समान है, इस प्रकार क्योंकि दो प्रारंभिक अनुक्रमों में से एक को संक्षेप में प्रस्तुत किया गया है (<math>b_n </math> बन जाता है <math>B_n </math>) और दूसरा भिन्न है (<math>a_n </math> बन जाता है <math>a_{n+1} - a_n </math>). | ||
==अनुप्रयोग== | ==अनुप्रयोग== | ||
* इसका उपयोग क्रोनकर के लेम्मा को सिद्ध करने के लिए किया जाता है, जो बदले में, विचरण बाधाओं के अनुसार बड़ी संख्या के मजबूत कानून के एक संस्करण को सिद्ध करने के लिए उपयोग किया जाता है। | * इसका उपयोग क्रोनकर के लेम्मा को सिद्ध करने के लिए किया जाता है, इस प्रकार जो बदले में, विचरण बाधाओं के अनुसार बड़ी संख्या के मजबूत कानून के एक संस्करण को सिद्ध करने के लिए उपयोग किया जाता है। | ||
* इसका उपयोग निकोमैचस का प्रमेय को सिद्ध करने के लिए किया जा सकता है कि पहले <math>n</math> घनों का योग पहले <math>n</math> धनात्मक पूर्णांकों के योग के वर्ग के सामान्तर होता है।<ref>{{cite journal | last = Edmonds | first = Sheila M. | author-link = Sheila May Edmonds | doi = 10.2307/3609189 | journal = The Mathematical Gazette | jstor = 3609189 | mr = 96615 | pages = 187–188 | title = प्राकृतिक संख्याओं की घातों का योग| volume = 41 | year = 1957 | issue = 337 }}</ref> | * इसका उपयोग निकोमैचस का प्रमेय को सिद्ध करने के लिए किया जा सकता है कि पहले <math>n</math> घनों का योग पहले <math>n</math> धनात्मक पूर्णांकों के योग के वर्ग के सामान्तर होता है।<ref>{{cite journal | last = Edmonds | first = Sheila M. | author-link = Sheila May Edmonds | doi = 10.2307/3609189 | journal = The Mathematical Gazette | jstor = 3609189 | mr = 96615 | pages = 187–188 | title = प्राकृतिक संख्याओं की घातों का योग| volume = 41 | year = 1957 | issue = 337 }}</ref> | ||
* एबेल के प्रमेय और डिरिचलेट के परीक्षण को सिद्ध करने के लिए भागों द्वारा योग का अधिकांशतः उपयोग किया जाता है। | * एबेल के प्रमेय और डिरिचलेट के परीक्षण को सिद्ध करने के लिए भागों द्वारा योग का अधिकांशतः उपयोग किया जाता है। | ||
Line 62: | Line 62: | ||
S_M - S_N &= a_M B_M - a_N B_N - \sum_{n=N}^{M-1} B_n (a_{n+1} - a_n)\\ | S_M - S_N &= a_M B_M - a_N B_N - \sum_{n=N}^{M-1} B_n (a_{n+1} - a_n)\\ | ||
&= (a_M-a) B_M - (a_N-a) B_N + a(B_M - B_N) - \sum_{n=N}^{M-1} B_n (a_{n+1} - a_n), | &= (a_M-a) B_M - (a_N-a) B_N + a(B_M - B_N) - \sum_{n=N}^{M-1} B_n (a_{n+1} - a_n), | ||
\end{align}</math>जहां a की सीमा है <math>a_n</math>. जैसा <math display="inline">\sum_n b_n</math> अभिसरण है, <math>B_N</math> से स्वतंत्र रूप से घिरा हुआ है <math>N</math>, द्वारा कहो <math>B</math>. जैसा <math>a_n-a</math> शून्य पर जाएं, इसलिए पहले दो पदों पर जाएं। [[कॉची मानदंड]] के अनुसार तीसरा पद शून्य हो जाता है <math display="inline">\sum_n b_n</math>. शेष राशि परिबद्ध है<math display="block">\sum_{n=N}^{M-1} |B_n| |a_{n+1}-a_n| \le B \sum_{n=N}^{M-1} |a_{n+1}-a_n| = B|a_N - a_M|</math>की एकरसता से <math>a_n</math>, और शून्य पर भी चला जाता है <math>N \to \infty</math>. | \end{align}</math>जहां a की सीमा है <math>a_n</math>. जैसा <math display="inline">\sum_n b_n</math> अभिसरण है, <math>B_N</math> से स्वतंत्र रूप से घिरा हुआ है <math>N</math>, द्वारा कहो <math>B</math>. जैसा <math>a_n-a</math> शून्य पर जाएं, इसलिए पहले दो पदों पर जाएं। इस प्रकार [[कॉची मानदंड]] के अनुसार तीसरा पद शून्य हो जाता है <math display="inline">\sum_n b_n</math>. शेष राशि परिबद्ध है<math display="block">\sum_{n=N}^{M-1} |B_n| |a_{n+1}-a_n| \le B \sum_{n=N}^{M-1} |a_{n+1}-a_n| = B|a_N - a_M|</math>की एकरसता से <math>a_n</math>, और शून्य पर भी चला जाता है <math>N \to \infty</math>. | ||
ऊपर बताए गए प्रमाण का उपयोग करके, कोई यह दिखा सकता है कि यदि | ऊपर बताए गए प्रमाण का उपयोग करके, कोई यह दिखा सकता है कि यदि | ||
Line 73: | Line 73: | ||
== उच्च क्रम परिमित अंतर विधियों के लिए योग-दर-भाग ऑपरेटर == | == उच्च क्रम परिमित अंतर विधियों के लिए योग-दर-भाग ऑपरेटर == | ||
एक सारांश-दर-भाग (एसबीपी) परिमित अंतर ऑपरेटर पारंपरिक रूप से एक केंद्रित अंतर आंतरिक योजना और विशिष्ट सीमा स्टेंसिल से बना होता है जो संबंधित एकीकरण-दर-भाग सूत्रीकरण के व्यवहार की नकल करता है।<ref>{{Cite journal| last=Strand|first=Bo|date=January 1994|title=Summation by Parts for Finite Difference Approximations for d/dx|journal=Journal of Computational Physics|volume=110|issue=1|pages=47–67|doi=10.1006/jcph.1994.1005}}</ref><ref>{{Cite journal|last=Mattsson| first=Ken| last2=Nordström|first2=Jan|date=September 2004|title=दूसरे डेरिवेटिव के परिमित अंतर सन्निकटन के लिए भाग संचालकों द्वारा योग|journal=Journal of Computational Physics|volume=199|issue=2|pages=503–540|doi=10.1016/j.jcp.2004.03.001}}</ref> सीमा शर्तें सामान्यतः एक साथ-सन्निकटन-अवधि (एसएटी) तकनीक द्वारा लागू की जाती हैं।<ref>{{Cite journal| last=Carpenter|first=Mark H.|last2=Gottlieb|first2=David|last3=Abarbanel|first3=Saul|date=April 1994|title=Time-Stable Boundary Conditions for Finite-Difference Schemes Solving Hyperbolic Systems: Methodology and Application to High-Order Compact Schemes|journal=Journal of Computational Physics|volume=111|issue=2| pages=220–236|doi=10.1006/jcph.1994.1057| citeseerx=10.1.1.465.603}}</ref> एसबीपी-एसएटी का संयोजन सीमा उपचार के लिए एक शक्तिशाली ढांचा है। इस प्रकार लंबे समय तक सिमुलेशन के लिए अच्छी तरह से सिद्ध स्थिरता और त्रुटिहीनता के उच्च क्रम के लिए विधि को प्राथमिकता दी जाती है। | एक सारांश-दर-भाग (एसबीपी) परिमित अंतर ऑपरेटर पारंपरिक रूप से एक केंद्रित अंतर आंतरिक योजना और विशिष्ट सीमा स्टेंसिल से बना होता है जो संबंधित एकीकरण-दर-भाग सूत्रीकरण के व्यवहार की नकल करता है।<ref>{{Cite journal| last=Strand|first=Bo|date=January 1994|title=Summation by Parts for Finite Difference Approximations for d/dx|journal=Journal of Computational Physics|volume=110|issue=1|pages=47–67|doi=10.1006/jcph.1994.1005}}</ref><ref>{{Cite journal|last=Mattsson| first=Ken| last2=Nordström|first2=Jan|date=September 2004|title=दूसरे डेरिवेटिव के परिमित अंतर सन्निकटन के लिए भाग संचालकों द्वारा योग|journal=Journal of Computational Physics|volume=199|issue=2|pages=503–540|doi=10.1016/j.jcp.2004.03.001}}</ref> इस प्रकार सीमा शर्तें सामान्यतः एक साथ-सन्निकटन-अवधि (एसएटी) तकनीक द्वारा लागू की जाती हैं।<ref>{{Cite journal| last=Carpenter|first=Mark H.|last2=Gottlieb|first2=David|last3=Abarbanel|first3=Saul|date=April 1994|title=Time-Stable Boundary Conditions for Finite-Difference Schemes Solving Hyperbolic Systems: Methodology and Application to High-Order Compact Schemes|journal=Journal of Computational Physics|volume=111|issue=2| pages=220–236|doi=10.1006/jcph.1994.1057| citeseerx=10.1.1.465.603}}</ref> एसबीपी-एसएटी का संयोजन सीमा उपचार के लिए एक शक्तिशाली ढांचा है। इस प्रकार लंबे समय तक सिमुलेशन के लिए अच्छी तरह से सिद्ध स्थिरता और त्रुटिहीनता के उच्च क्रम के लिए विधि को प्राथमिकता दी जाती है। | ||
==यह भी देखें== | ==यह भी देखें== | ||
Line 88: | Line 88: | ||
ग्रन्थसूची | ग्रन्थसूची | ||
* {{cite journal |first=Niels Henrik |last=Abel |authorlink= Niels Henrik Abel |title=Untersuchungen über die Reihe <math>1+ \frac{m}{x} + \frac{m\cdot (m-1)}{2\cdot 1} x^2 + \frac{m\cdot (m-1)\cdot (m-2)}{3\cdot 2\cdot 1} x^3 + \ldots</math> u.s.w. |journal=[[J. Reine Angew. Math.]] |volume=1 |year=1826 |pages=311–339}} | * {{cite journal |first=Niels Henrik |last=Abel |authorlink= Niels Henrik Abel |title=Untersuchungen über die Reihe <math>1+ \frac{m}{x} + \frac{m\cdot (m-1)}{2\cdot 1} x^2 + \frac{m\cdot (m-1)\cdot (m-2)}{3\cdot 2\cdot 1} x^3 + \ldots</math> u.s.w. |journal=[[J. Reine Angew. Math.]] |volume=1 |year=1826 |pages=311–339}} | ||
[[Category:Created On 04/07/2023]] | [[Category:Created On 04/07/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with maths render errors]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:बीजगणित में लेम्मास]] | |||
[[Category:वास्तविक विश्लेषण]] | |||
[[Category:संक्षेपण विधियाँ]] |
Latest revision as of 11:53, 14 July 2023
गणित में, भागों द्वारा योग अनुक्रमों के उत्पादों के योग को अन्य योगों में बदल देता है, जिससे अधिकांशतः गणना या (विशेष रूप से) कुछ प्रकार के योगों का अनुमान सरल हो जाता है। इस प्रकार इसे एबेल लेम्मा या एबेल ट्रांसफॉर्मेशन भी कहा जाता है, जिसका नाम नील्स हेनरिक एबेल के नाम पर रखा गया है जिन्होंने इसे साल 1826 में प्रस्तुत किया था।[1]
विवरण
इस प्रकार कल्पना करना और दो अनुक्रम हैं. तब,
फॉरवर्ड डिफरेंस ऑपरेटर का उपयोग करना , इसे और अधिक संक्षेप में कहा जा सकता है
भागों द्वारा योग, भागों द्वारा एकीकरण के समान है:
या हाबिल के सारांश सूत्र के लिए:
एक वैकल्पिक कथन है
इस प्रकार जो सेमीमार्टिंगेल्स के लिए भागों द्वारा एकीकरण के फार्मूले के अनुरूप है।
चूँकि अनुप्रयोग लगभग सदैव अनुक्रमों के अभिसरण से निपटते हैं, कथन पूरी तरह से बीजगणितीय है और किसी भी क्षेत्र में काम करेगा। इस प्रकार यह तब भी काम करेगा जब एक अनुक्रम सदिश समष्टि में हो और दूसरा अदिश के संबंधित क्षेत्र में हो।
न्यूटन श्रृंखला
सूत्र कभी-कभी इनमें से किसी एक - थोड़े भिन्न - रूप में दिया जाता है
जो एक विशेष स्थितियोंका प्रतिनिधित्व करता है () अधिक सामान्य नियम का
दोनों प्रारंभिक सूत्र के पुनरावृत्त अनुप्रयोग का परिणाम हैं। सहायक मात्राएँ न्यूटन श्रृंखला हैं:
और
एक विशेष ()परिणाम ही पहचान है
यहाँ, द्विपद गुणांक है.
विधि
इस प्रकार दो दिए गए अनुक्रमों के लिए और , साथ , कोई निम्नलिखित श्रृंखला के योग का अध्ययन करना चाहता है:
भागों द्वारा एकीकरण के साथ समानता
भागों द्वारा एकीकरण का सूत्र है .
सीमा शर्तों के अतिरिक्त, हम देखते हैं कि पहले अभिन्न में दो गुणा कार्य सम्मिलित हैं, एक जो अंतिम अभिन्न में एकीकृत है ( बन जाता है ) और एक जो विभेदित है ( बन जाता है ).
एबेल परिवर्तन की प्रक्रिया समान है, इस प्रकार क्योंकि दो प्रारंभिक अनुक्रमों में से एक को संक्षेप में प्रस्तुत किया गया है ( बन जाता है ) और दूसरा भिन्न है ( बन जाता है ).
अनुप्रयोग
- इसका उपयोग क्रोनकर के लेम्मा को सिद्ध करने के लिए किया जाता है, इस प्रकार जो बदले में, विचरण बाधाओं के अनुसार बड़ी संख्या के मजबूत कानून के एक संस्करण को सिद्ध करने के लिए उपयोग किया जाता है।
- इसका उपयोग निकोमैचस का प्रमेय को सिद्ध करने के लिए किया जा सकता है कि पहले घनों का योग पहले धनात्मक पूर्णांकों के योग के वर्ग के सामान्तर होता है।[2]
- एबेल के प्रमेय और डिरिचलेट के परीक्षण को सिद्ध करने के लिए भागों द्वारा योग का अधिकांशतः उपयोग किया जाता है।
- हाबिल के परीक्षण को सिद्ध करने के लिए कोई इस तकनीक का उपयोग भी कर सकता है: यदि एक अभिसरण श्रृंखला है, और फिर, एक बंधा हुआ मोनोटोन अनुक्रम जुटता है.
हाबिल के परीक्षण का प्रमाण भागों द्वारा योग प्राप्त होता है
ऊपर बताए गए प्रमाण का उपयोग करके, कोई यह दिखा सकता है कि यदि
- आंशिक रकम स्वतंत्र रूप से एक बंधा हुआ अनुक्रम बनाएं ;
- (जिससे कि योग के रूप में शून्य हो जाता है अनंत तक जाता है)
तब जुटता है.
दोनों ही स्थितियोंमें, श्रृंखला का योग संतुष्ट करता है:
उच्च क्रम परिमित अंतर विधियों के लिए योग-दर-भाग ऑपरेटर
एक सारांश-दर-भाग (एसबीपी) परिमित अंतर ऑपरेटर पारंपरिक रूप से एक केंद्रित अंतर आंतरिक योजना और विशिष्ट सीमा स्टेंसिल से बना होता है जो संबंधित एकीकरण-दर-भाग सूत्रीकरण के व्यवहार की नकल करता है।[3][4] इस प्रकार सीमा शर्तें सामान्यतः एक साथ-सन्निकटन-अवधि (एसएटी) तकनीक द्वारा लागू की जाती हैं।[5] एसबीपी-एसएटी का संयोजन सीमा उपचार के लिए एक शक्तिशाली ढांचा है। इस प्रकार लंबे समय तक सिमुलेशन के लिए अच्छी तरह से सिद्ध स्थिरता और त्रुटिहीनता के उच्च क्रम के लिए विधि को प्राथमिकता दी जाती है।
यह भी देखें
- अभिसारी श्रृंखला
- अपसारी श्रृंखला
- भागों द्वारा एकीकरण
- सिजेरो सारांश
- हाबिल का प्रमेय
- हाबिल का योग सूत्र
संदर्भ
- ↑ Chu, Wenchang (2007). "भागों और बुनियादी हाइपरजियोमेट्रिक श्रृंखला द्वारा योग पर एबेल की लेम्मा". Advances in Applied Mathematics. 39 (4): 490–514. doi:10.1016/j.aam.2007.02.001.
- ↑ Edmonds, Sheila M. (1957). "प्राकृतिक संख्याओं की घातों का योग". The Mathematical Gazette. 41 (337): 187–188. doi:10.2307/3609189. JSTOR 3609189. MR 0096615.
- ↑ Strand, Bo (January 1994). "Summation by Parts for Finite Difference Approximations for d/dx". Journal of Computational Physics. 110 (1): 47–67. doi:10.1006/jcph.1994.1005.
- ↑ Mattsson, Ken; Nordström, Jan (September 2004). "दूसरे डेरिवेटिव के परिमित अंतर सन्निकटन के लिए भाग संचालकों द्वारा योग". Journal of Computational Physics. 199 (2): 503–540. doi:10.1016/j.jcp.2004.03.001.
- ↑ Carpenter, Mark H.; Gottlieb, David; Abarbanel, Saul (April 1994). "Time-Stable Boundary Conditions for Finite-Difference Schemes Solving Hyperbolic Systems: Methodology and Application to High-Order Compact Schemes". Journal of Computational Physics. 111 (2): 220–236. CiteSeerX 10.1.1.465.603. doi:10.1006/jcph.1994.1057.
ग्रन्थसूची
- Abel, Niels Henrik (1826). "Untersuchungen über die Reihe u.s.w.". J. Reine Angew. Math. 1: 311–339.