लेजर डायोड दर समीकरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
'''लेजर डायोड दर समीकरण''' लेजर डायोड के विद्युत और ऑप्टिकल प्रदर्शन को मॉडल करते हैं। साधारण अंतर समीकरणों की यह प्रणाली उपकरण में फोटॉन और चार्ज वाहक (इलेक्ट्रॉनों) की संख्या या घनत्व से संबंधित है, जो कि अन्तःक्षेपण धारा और उपकरण और पदार्थ मापदंडों जैसे वाहक जीवनकाल, फोटॉन जीवनकाल और ऑप्टिकल लाभ से संबंधित है।
'''लेजर डायोड दर समीकरण''' लेजर डायोड के विद्युत और ऑप्टिकल प्रदर्शन को मॉडल करते हैं। साधारण अंतर समीकरणों की यह प्रणाली उपकरण में फोटॉन और चार्ज वाहक (इलेक्ट्रॉनों) की संख्या या घनत्व से संबंधित है, जो कि अन्तःक्षेपण धारा और उपकरण और पदार्थ मापदंडों जैसे वाहक जीवनकाल, फोटॉन जीवनकाल और ऑप्टिकल लाभ से संबंधित है।


एक समय-डोमेन समाधान प्राप्त करने के लिए दर समीकरणों को संख्यात्मक एकीकरण द्वारा हल किया जा सकता है, या इस प्रकार अर्धचालक लेजर की स्थिर और गतिशील विशेषताओं को समझने में सहायता करने के लिए स्थिर अवस्था या छोटे संकेत समीकरणों के समुच्चय को प्राप्त करने के लिए उपयोग किया जा सकता है।
एक समय-डोमेन समाधान प्राप्त करने के लिए दर समीकरणों को संख्यात्मक एकीकरण द्वारा हल किया जा सकता है, या इस प्रकार अर्धचालक लेजर की स्थिर और गतिशील विशेषताओं को समझने में सहायता करने के लिए स्थिर अवस्था या छोटे संकेत समीकरणों के समुच्चय को प्राप्त करने के लिए उपयोग किया जा सकता है।


लेजर डायोड दर समीकरणों को अलग-अलग स्पष्टता के साथ लेजर डायोड व्यवहार के विभिन्न पक्ष को मॉडल करने के लिए अधिक या कम जटिलता के साथ तैयार किया जा सकता है।
लेजर डायोड दर समीकरणों को अलग-अलग स्पष्टता के साथ लेजर डायोड व्यवहार के विभिन्न पक्ष को मॉडल करने के लिए अधिक या कम जटिलता के साथ तैयार किया जा सकता है।


== बहुपद्वतिदर समीकरण                                                                                                                                                ==
== बहुपद्वतिदर समीकरण                                                                                                                                                ==
बहुपद्वतिसूत्रीकरण में, दर समीकरण <ref>G. P. Agrawal, "Fiber-Optic Communication Systems", Wiley Interscience, Chap. 3</ref> कई ऑप्टिकल मोड के साथ लेजर मॉडल का उपयोग किया जाता हैं। इस सूत्रीकरण के लिए वाहक घनत्व के लिए समीकरण की आवश्यकता होती है, और प्रत्येक ऑप्टिकल कैविटी मोड में फोटॉन घनत्व के लिए समीकरण का प्रयोग किया जाता है:
बहुपद्वतिसूत्रीकरण में, दर समीकरण <ref>G. P. Agrawal, "Fiber-Optic Communication Systems", Wiley Interscience, Chap. 3</ref> कई ऑप्टिकल मोड के साथ लेजर मॉडल का उपयोग किया जाता हैं। इस सूत्रीकरण के लिए वाहक घनत्व के लिए समीकरण की आवश्यकता होती है, और प्रत्येक ऑप्टिकल कैविटी मोड में फोटॉन घनत्व के लिए समीकरण का प्रयोग किया जाता है:


:<math>\frac{dN}{dt} = \frac{I}{eV} - \frac{N}{\tau_n} - \sum_{\mu=1}^{\mu=M}\Gamma_\mu G_\mu P_\mu</math>
:<math>\frac{dN}{dt} = \frac{I}{eV} - \frac{N}{\tau_n} - \sum_{\mu=1}^{\mu=M}\Gamma_\mu G_\mu P_\mu</math>
:<math>\frac{dP_\mu}{dt} = (\Gamma_\mu G_\mu - \frac{1}{\tau_p})P_\mu + \beta_\mu \frac{N}{\tau_r}</math>
:<math>\frac{dP_\mu}{dt} = (\Gamma_\mu G_\mu - \frac{1}{\tau_p})P_\mu + \beta_\mu \frac{N}{\tau_r}</math>
जहाँ पर N वाहक घनत्व है, P फोटॉन घनत्व है, I प्रयुक्त धारा है, e प्राथमिक चार्ज है, v सक्रिय क्षेत्र की मात्रा है, <math>{\tau_n}</math> वाहक जीवनकाल है, G लाभ गुणांक है (S<sup>−1 </sup>), <math>\Gamma</math> सीमाबद्ध कारक है, <math>{\tau_p}</math> फोटॉन जीवनकाल है, <math>{\beta}</math> सहज उत्सर्जन कारक है, <math>{\tau_r}</math> विकिरण पुनर्संयोजन समय स्थिर है, m मॉडल किए गए मोड की संख्या है, μ मोड संख्या है, और सबस्क्रिप्ट μ को g, γ, और μ में जोड़ा गया है, यह इंगित करने के लिए कि ये गुण विभिन्न मोड के लिए भिन्न हो सकते हैं।
जहाँ पर N वाहक घनत्व है, P फोटॉन घनत्व है, I प्रयुक्त धारा है, e प्राथमिक चार्ज है, v सक्रिय क्षेत्र की मात्रा है, <math>{\tau_n}</math> वाहक जीवनकाल है, G लाभ गुणांक है (S<sup>−1 </sup>), <math>\Gamma</math> सीमाबद्ध कारक है, <math>{\tau_p}</math> फोटॉन जीवनकाल है, <math>{\beta}</math> सहज उत्सर्जन कारक है, <math>{\tau_r}</math> विकिरण पुनर्संयोजन समय स्थिर है, m मॉडल किए गए मोड की संख्या है, μ मोड संख्या है, और सबस्क्रिप्ट μ को g, γ, और μ में जोड़ा गया है, यह इंगित करने के लिए कि ये गुण विभिन्न मोड के लिए भिन्न हो सकते हैं।


वाहक दर समीकरण के दाईं ओर पहला शब्द इंजेक्टेड इलेक्ट्रॉनों दर (I/EV) है, दूसरा शब्द सभी पुनर्संयोजन प्रक्रियाओं के कारण वाहक की कमी दर है (क्षय समय द्वारा वर्णित <math>{\tau_n}</math>) और तीसरा शब्द उत्तेजित पुनर्संयोजन के कारण वाहक की कमी है, जो फोटॉन घनत्व और मध्यम लाभ के लिए आनुपातिक है।
वाहक दर समीकरण के दाईं ओर पहला शब्द इंजेक्टेड इलेक्ट्रॉनों दर (I/EV) है, दूसरा शब्द सभी पुनर्संयोजन प्रक्रियाओं के कारण वाहक की कमी दर है (क्षय समय द्वारा वर्णित <math>{\tau_n}</math>) और तीसरा शब्द उत्तेजित पुनर्संयोजन के कारण वाहक की कमी है, जो फोटॉन घनत्व और मध्यम लाभ के लिए आनुपातिक है।


फोटॉन घनत्व दर समीकरण में, पहला शब्द ओ.एफ.जी.पी वह दर है जिस पर उत्तेजित उत्सर्जन के कारण फोटॉन घनत्व बढ़ता है (वाहक दर समीकरण में एक ही शब्द, सकारात्मक संकेत के साथ और सीमाबद्ध कारक γ के लिए गुणा किया जाता है), दूसरा शब्द दर है जिस पर फोटॉन कैविटी को छोड़ते हैं, आंतरिक अवशोषण के लिए या दर्पणों से बाहर निकलने के लिए, क्षय समय स्थिर <math>{\tau_p}</math> के माध्यम से व्यक्त किया जाता है और तीसरा शब्द वाहक विकिरण पुनर्संयोजन से लेजर मोड में सहज उत्सर्जन का योगदान है।
फोटॉन घनत्व दर समीकरण में, पहला शब्द ओ.एफ.जी.पी वह दर है जिस पर उत्तेजित उत्सर्जन के कारण फोटॉन घनत्व बढ़ता है (वाहक दर समीकरण में एक ही शब्द, सकारात्मक संकेत के साथ और सीमाबद्ध कारक γ के लिए गुणा किया जाता है), दूसरा शब्द दर है जिस पर फोटॉन कैविटी को छोड़ते हैं, आंतरिक अवशोषण के लिए या दर्पणों से बाहर निकलने के लिए, क्षय समय स्थिर <math>{\tau_p}</math> के माध्यम से व्यक्त किया जाता है और तीसरा शब्द वाहक विकिरण पुनर्संयोजन से लेजर मोड में सहज उत्सर्जन का योगदान है।


== मोडल लाभ                                                                                                                                                          ==
== मोडल लाभ                                                                                                                                                          ==
Line 23: Line 23:


:<math>\lambda(t)=\lambda_0 + \frac{k(N_{th} - N(t))}{N_{th}}</math>
:<math>\lambda(t)=\lambda_0 + \frac{k(N_{th} - N(t))}{N_{th}}</math>
जहां λ<sub>0</sub> N = N<sub>th</sub> के लिए केंद्र तरंग दैर्ध्य है और k वर्णक्रमीय शिफ्ट स्थिरांक है (नीचे देखें)। N<sub>th</sub> सीमा पर वाहक घनत्व द्वारा दिया गया है
जहां λ<sub>0</sub> N = N<sub>th</sub> के लिए केंद्र तरंग दैर्ध्य है और k वर्णक्रमीय शिफ्ट स्थिरांक है (नीचे देखें)। N<sub>th</sub> सीमा पर वाहक घनत्व द्वारा दिया गया है


:<math>N_{th}=N_{tr} + \frac{1}{\alpha\tau_p\Gamma}</math>
:<math>N_{th}=N_{tr} + \frac{1}{\alpha\tau_p\Gamma}</math>
Line 37: Line 37:
== लाभ संपीड़न                                                                                                                                                                                  ==
== लाभ संपीड़न                                                                                                                                                                                  ==


लाभ शब्द G अर्धचालक लेजर डायोड में पाए जाने वाले उच्च शक्ति घनत्व से स्वतंत्र नहीं हो सकता है। ऐसी कई घटनाएं हैं जो लाभ को 'संपीड़ित' करने का कारण बनती हैं जो ऑप्टिकल शक्ति पर निर्भर होती हैं। दो मुख्य घटनाएं स्थानिक छिद्र जलना और वर्णक्रमीय छिद्र जलना हैं।
लाभ शब्द G अर्धचालक लेजर डायोड में पाए जाने वाले उच्च शक्ति घनत्व से स्वतंत्र नहीं हो सकता है। ऐसी कई घटनाएं हैं जो लाभ को 'संपीड़ित' करने का कारण बनती हैं जो ऑप्टिकल शक्ति पर निर्भर होती हैं। दो मुख्य घटनाएं स्थानिक छिद्र जलना और वर्णक्रमीय छिद्र जलना हैं।


स्पेक्ट्रल होल बर्निंग गेन ऑप्टिकल मोड की स्थायी तरंग प्रकृति के परिणामस्वरूप होता है। इस प्रकार बढ़ी हुई लेज़िंग शक्ति के परिणामस्वरूप वाहक प्रसार दक्षता में कमी आती है जिसका अर्थ है कि उत्तेजित पुनर्संयोजन समय वाहक प्रसार समय के सापेक्ष कम हो जाता है। इसलिए तरंग के शिखर पर वाहक तेजी से समाप्त हो जाते हैं जिससे मोडल लाभ में कमी आती है।
स्पेक्ट्रल होल बर्निंग गेन ऑप्टिकल मोड की स्थायी तरंग प्रकृति के परिणामस्वरूप होता है। इस प्रकार बढ़ी हुई लेज़िंग शक्ति के परिणामस्वरूप वाहक प्रसार दक्षता में कमी आती है जिसका अर्थ है कि उत्तेजित पुनर्संयोजन समय वाहक प्रसार समय के सापेक्ष कम हो जाता है। इसलिए तरंग के शिखर पर वाहक तेजी से समाप्त हो जाते हैं जिससे मोडल लाभ में कमी आती है।
Line 46: Line 46:


:<math>1 + \epsilon \sum_{\mu=1}^{\mu=M}P_\mu</math>
:<math>1 + \epsilon \sum_{\mu=1}^{\mu=M}P_\mu</math>
== स्पेक्ट्रल शिफ्ट                                                                                                                                                                            ==
== स्पेक्ट्रल शिफ्ट                                                                                                                                                                            ==


अर्धचालक लेजर में डायनेमिक वेवलेंथ शिफ्ट परिवर्तन के परिणामस्वरूप होता है इस प्रकार तीव्रता मॉडुलन के समय सक्रिय क्षेत्र में अपवर्तक सूचकांक में ऐसा संभव है सक्रिय के अपवर्तक सूचकांक परिवर्तन का निर्धारण करके तरंग दैर्ध्य में शिफ्ट का मूल्यांकन करते है वाहक अन्तःक्षेपण के परिणामस्वरूप क्षेत्र या प्रत्यक्ष के समय वर्णक्रमीय शिफ्ट का पूर्ण विश्लेषण मॉड्यूलेशन में पाया गया कि सक्रिय क्षेत्र का अपवर्तक सूचकांक वाहक घनत्व के लिए आनुपातिक रूप से भिन्न होता है और इसलिए तरंग दैर्ध्य आनुपातिक रूप से इंजेक्ट किए गए वर्तमान में भिन्न होता है।
अर्धचालक लेजर में डायनेमिक वेवलेंथ शिफ्ट परिवर्तन के परिणामस्वरूप होता है इस प्रकार तीव्रता मॉडुलन के समय सक्रिय क्षेत्र में अपवर्तक सूचकांक में ऐसा संभव है सक्रिय के अपवर्तक सूचकांक परिवर्तन का निर्धारण करके तरंग दैर्ध्य में शिफ्ट का मूल्यांकन करते है वाहक अन्तःक्षेपण के परिणामस्वरूप क्षेत्र या प्रत्यक्ष के समय वर्णक्रमीय शिफ्ट का पूर्ण विश्लेषण मॉड्यूलेशन में पाया गया कि सक्रिय क्षेत्र का अपवर्तक सूचकांक वाहक घनत्व के लिए आनुपातिक रूप से भिन्न होता है और इसलिए तरंग दैर्ध्य आनुपातिक रूप से इंजेक्ट किए गए वर्तमान में भिन्न होता है।


प्रयोगात्मक रूप से, तरंग दैर्ध्य में शिफ्ट के लिए अच्छा फिट द्वारा दिया गया है:
प्रयोगात्मक रूप से, तरंग दैर्ध्य में शिफ्ट के लिए अच्छा फिट द्वारा दिया गया है:


:<math>\delta\lambda=k\left(\sqrt{\frac{I_0}{I_{th}}}-1\right)</math>
:<math>\delta\lambda=k\left(\sqrt{\frac{I_0}{I_{th}}}-1\right)</math>
Line 59: Line 57:
==संदर्भ                                                                                                                                                          ==
==संदर्भ                                                                                                                                                          ==
{{Reflist}}
{{Reflist}}
[[Category: साधारण अंतर समीकरण]]
[[Category: अर्धचालक लेजर]]


[[Category: Machine Translated Page]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:अर्धचालक लेजर]]
[[Category:साधारण अंतर समीकरण]]

Latest revision as of 07:50, 15 July 2023

लेजर डायोड दर समीकरण लेजर डायोड के विद्युत और ऑप्टिकल प्रदर्शन को मॉडल करते हैं। साधारण अंतर समीकरणों की यह प्रणाली उपकरण में फोटॉन और चार्ज वाहक (इलेक्ट्रॉनों) की संख्या या घनत्व से संबंधित है, जो कि अन्तःक्षेपण धारा और उपकरण और पदार्थ मापदंडों जैसे वाहक जीवनकाल, फोटॉन जीवनकाल और ऑप्टिकल लाभ से संबंधित है।

एक समय-डोमेन समाधान प्राप्त करने के लिए दर समीकरणों को संख्यात्मक एकीकरण द्वारा हल किया जा सकता है, या इस प्रकार अर्धचालक लेजर की स्थिर और गतिशील विशेषताओं को समझने में सहायता करने के लिए स्थिर अवस्था या छोटे संकेत समीकरणों के समुच्चय को प्राप्त करने के लिए उपयोग किया जा सकता है।

लेजर डायोड दर समीकरणों को अलग-अलग स्पष्टता के साथ लेजर डायोड व्यवहार के विभिन्न पक्ष को मॉडल करने के लिए अधिक या कम जटिलता के साथ तैयार किया जा सकता है।

बहुपद्वतिदर समीकरण

बहुपद्वतिसूत्रीकरण में, दर समीकरण [1] कई ऑप्टिकल मोड के साथ लेजर मॉडल का उपयोग किया जाता हैं। इस सूत्रीकरण के लिए वाहक घनत्व के लिए समीकरण की आवश्यकता होती है, और प्रत्येक ऑप्टिकल कैविटी मोड में फोटॉन घनत्व के लिए समीकरण का प्रयोग किया जाता है:

जहाँ पर N वाहक घनत्व है, P फोटॉन घनत्व है, I प्रयुक्त धारा है, e प्राथमिक चार्ज है, v सक्रिय क्षेत्र की मात्रा है, वाहक जीवनकाल है, G लाभ गुणांक है (S−1 ), सीमाबद्ध कारक है, फोटॉन जीवनकाल है, सहज उत्सर्जन कारक है, विकिरण पुनर्संयोजन समय स्थिर है, m मॉडल किए गए मोड की संख्या है, μ मोड संख्या है, और सबस्क्रिप्ट μ को g, γ, और μ में जोड़ा गया है, यह इंगित करने के लिए कि ये गुण विभिन्न मोड के लिए भिन्न हो सकते हैं।

वाहक दर समीकरण के दाईं ओर पहला शब्द इंजेक्टेड इलेक्ट्रॉनों दर (I/EV) है, दूसरा शब्द सभी पुनर्संयोजन प्रक्रियाओं के कारण वाहक की कमी दर है (क्षय समय द्वारा वर्णित ) और तीसरा शब्द उत्तेजित पुनर्संयोजन के कारण वाहक की कमी है, जो फोटॉन घनत्व और मध्यम लाभ के लिए आनुपातिक है।

फोटॉन घनत्व दर समीकरण में, पहला शब्द ओ.एफ.जी.पी वह दर है जिस पर उत्तेजित उत्सर्जन के कारण फोटॉन घनत्व बढ़ता है (वाहक दर समीकरण में एक ही शब्द, सकारात्मक संकेत के साथ और सीमाबद्ध कारक γ के लिए गुणा किया जाता है), दूसरा शब्द दर है जिस पर फोटॉन कैविटी को छोड़ते हैं, आंतरिक अवशोषण के लिए या दर्पणों से बाहर निकलने के लिए, क्षय समय स्थिर के माध्यम से व्यक्त किया जाता है और तीसरा शब्द वाहक विकिरण पुनर्संयोजन से लेजर मोड में सहज उत्सर्जन का योगदान है।

मोडल लाभ

Gμ, μTh मोड के लाभ को तरंग दैर्ध्य पर लाभ की परवलयिक निर्भरता द्वारा निम्नानुसार मॉडलिंग किया जा सकता है:

जहां: α लाभ गुणांक है और ε लाभ संपीड़न कारक है (नीचे देखें)। λμ μTh मोड की तरंग दैर्ध्य है ΔLg लाभ वक्र के आधे अधिकतम (एफडब्ल्यूएचएम) पर पूरी चौड़ाई है जिसका केंद्र दिया गया है

जहां λ0 N = Nth के लिए केंद्र तरंग दैर्ध्य है और k वर्णक्रमीय शिफ्ट स्थिरांक है (नीचे देखें)। Nth सीमा पर वाहक घनत्व द्वारा दिया गया है

जहां ntr पारदर्शिता पर वाहक घनत्व है।

βμ द्वारा दिया गया है

β0 सहज उत्सर्जन कारक है λs सहज उत्सर्जन के लिए केंद्र तरंग दैर्ध्य है और δλs सहज उत्सर्जन एफडब्ल्यूएचएम है। अंत में λμ, μTh मोड की तरंग दैर्ध्य है और इसके द्वारा दिया जाता है

जहां Δλ मोड रिक्ति है।

लाभ संपीड़न

लाभ शब्द G अर्धचालक लेजर डायोड में पाए जाने वाले उच्च शक्ति घनत्व से स्वतंत्र नहीं हो सकता है। ऐसी कई घटनाएं हैं जो लाभ को 'संपीड़ित' करने का कारण बनती हैं जो ऑप्टिकल शक्ति पर निर्भर होती हैं। दो मुख्य घटनाएं स्थानिक छिद्र जलना और वर्णक्रमीय छिद्र जलना हैं।

स्पेक्ट्रल होल बर्निंग गेन ऑप्टिकल मोड की स्थायी तरंग प्रकृति के परिणामस्वरूप होता है। इस प्रकार बढ़ी हुई लेज़िंग शक्ति के परिणामस्वरूप वाहक प्रसार दक्षता में कमी आती है जिसका अर्थ है कि उत्तेजित पुनर्संयोजन समय वाहक प्रसार समय के सापेक्ष कम हो जाता है। इसलिए तरंग के शिखर पर वाहक तेजी से समाप्त हो जाते हैं जिससे मोडल लाभ में कमी आती है।

स्पेक्ट्रल होल बर्निंग गेन प्रोफाइल ब्रॉडिंग मैकेनिज्म से संबंधित है इस प्रकार कम इंट्राबैंड के बिखरने के रूप में जो शक्ति घनत्व से संबंधित है।

अर्धचालक लेज़रों में उच्च शक्ति घनत्व के कारण लाभ संपीड़न के लिए, लाभ समीकरण को इस तरह संशोधित किया जाता है कि यह ऑप्टिकल शक्ति के व्युत्क्रम से संबंधित हो जाता है। इसलिए, लाभ समीकरण के भाजक में निम्नलिखित शब्द:

स्पेक्ट्रल शिफ्ट

अर्धचालक लेजर में डायनेमिक वेवलेंथ शिफ्ट परिवर्तन के परिणामस्वरूप होता है इस प्रकार तीव्रता मॉडुलन के समय सक्रिय क्षेत्र में अपवर्तक सूचकांक में ऐसा संभव है सक्रिय के अपवर्तक सूचकांक परिवर्तन का निर्धारण करके तरंग दैर्ध्य में शिफ्ट का मूल्यांकन करते है वाहक अन्तःक्षेपण के परिणामस्वरूप क्षेत्र या प्रत्यक्ष के समय वर्णक्रमीय शिफ्ट का पूर्ण विश्लेषण मॉड्यूलेशन में पाया गया कि सक्रिय क्षेत्र का अपवर्तक सूचकांक वाहक घनत्व के लिए आनुपातिक रूप से भिन्न होता है और इसलिए तरंग दैर्ध्य आनुपातिक रूप से इंजेक्ट किए गए वर्तमान में भिन्न होता है।

प्रयोगात्मक रूप से, तरंग दैर्ध्य में शिफ्ट के लिए अच्छा फिट द्वारा दिया गया है:

जहां I0 इंजेक्ट किया गया धारा है और Ith लेसिंग थ्रेसहोल्ड धारा है।

संदर्भ

  1. G. P. Agrawal, "Fiber-Optic Communication Systems", Wiley Interscience, Chap. 3