कूरेंट बीजगणित: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:


==परिभाषा==
==परिभाषा==
कूरेंट बीजगणित में डेटा का वेक्टर बंडल होता है <math>E\to M</math> ब्रैकेट के साथ <math>[.,.]:\Gamma E \times \Gamma E \to \Gamma E</math>, गैर विकृत फाइबर-वार आंतरिक उत्पाद <math>\langle.,.\rangle: E\times E\to M\times\R</math>, और बंडल मानचित्र <math>\rho:E\to TM </math> निम्नलिखित सिद्धांतों के अधीन होता है,
कूरेंट बीजगणित में डेटा का वेक्टर बंडल होता है <math>E\to M</math> ब्रैकेट के साथ <math>[.,.]:\Gamma E \times \Gamma E \to \Gamma E</math>, गैर विकृत फाइबर-वार आंतरिक उत्पाद <math>\langle.,.\rangle: E\times E\to M\times\R</math>, और बंडल मानचित्र <math>\rho:E\to TM </math> निम्नलिखित सिद्धांतों के माधयम से अधीन होता है,


:<math>[\phi, [\chi, \psi]] = [[\phi, \chi], \psi] + [\chi, [\phi, \psi]]</math>
:<math>[\phi, [\chi, \psi]] = [[\phi, \chi], \psi] + [\chi, [\phi, \psi]]</math>
Line 8: Line 8:
:<math>[\phi,\phi]= \tfrac12 D\langle \phi,\phi\rangle</math>
:<math>[\phi,\phi]= \tfrac12 D\langle \phi,\phi\rangle</math>
:<math>\rho(\phi)\langle \psi,\psi\rangle= 2\langle [\phi,\psi],\psi\rangle </math>
:<math>\rho(\phi)\langle \psi,\psi\rangle= 2\langle [\phi,\psi],\psi\rangle </math>
यहाँ <math>\phi, \chi, \psi</math> ई के खंड हैं और एफ बेस मैनिफोल्ड एम पर सुचारू कार्य है। डी संयोजन है <math>\kappa^{-1}\rho^T d</math> डी डी राम अंतर के साथ, <math>\rho^T</math> का दोहरा मानचित्र <math>\rho</math>, और κ E से मानचित्र <math>E^*</math> आंतरिक उत्पाद से प्रेरित किया गया है
यहाँ <math>\phi, \chi, \psi</math> ई के खंड हैं और एफ बेस मैनिफोल्ड एम पर सुचारू कार्य है। डी संयोजन है <math>\kappa^{-1}\rho^T d</math> डी डी राम अंतर के साथ, <math>\rho^T</math> का दोहरा मानचित्र <math>\rho</math>, और κ E से मानचित्र <math>E^*</math> आंतरिक उत्पाद के माधयम से प्रेरित किया गया है


===तिरछा-सममित परिभाषा===
===तिरछा-सममित परिभाषा===
Line 45: Line 45:


== डिराक संरचनाएं ==
== डिराक संरचनाएं ==
आंतरिक उत्पाद के साथ कूरेंट बीजगणित दिया गया है <math>\langle.,.\rangle</math> विभाजित हस्ताक्षर का (उदाहरण के लिए मानक वाला)। <math>TM\oplus T^*M</math>), तो डायराक संरचना अधिकतम आइसोट्रोपिक इंटीग्रेबल वेक्टर सबबंडल एल → एम है, अर्थात।
इसके आंतरिक उत्पाद के साथ कूरेंट बीजगणित दिया गया है <math>\langle.,.\rangle</math> विभाजित हस्ताक्षर का (उदाहरण के लिए मानक वाला)। <math>TM\oplus T^*M</math>), तो डायराक संरचना अधिकतम आइसोट्रोपिक इंटीग्रेबल वेक्टर सबबंडल एल → एम है, अर्थात।
:<math> \langle L,L\rangle \equiv 0</math>,
:<math> \langle L,L\rangle \equiv 0</math>,


Line 53: Line 53:


=== उदाहरण ===
=== उदाहरण ===
जैसा कि कूरेंट के लिए खोजा गया और डॉर्फमैन के लिए समानांतर, 2-फॉर्म ω ∈ Ω का ग्राफ<sup>2</sup>(M) अधिकतम रूप से आइसोट्रोपिक है और इसके अतिरिक्त पूर्णांकीय है यदि dω = 0, अर्थात 2-फॉर्म डी राम अंतर के अनुसार बंद है, अर्थात प्रीसिम्पलेक्टिक संरचना होता है।
इसके आंतरिक जैसा कि कूरेंट के लिए खोजा गया है और डॉर्फमैन के लिए समानांतर, 2-फॉर्म ω ∈ Ω का ग्राफ<sup>2</sup>(M) अधिकतम रूप से आइसोट्रोपिक है और इसके अतिरिक्त पूर्णांकीय है यदि dω = 0, अर्थात 2-फॉर्म डी राम अंतर के अनुसार बंद है, अर्थात प्रीसिम्पलेक्टिक संरचना होता है।


उदाहरणों का दूसरा वर्ग बायवेक्टर्स से उत्पन्न होता है <math>\Pi\in\Gamma(\wedge^2 TM)</math> जिसका ग्राफ अधिकतम रूप से आइसोट्रोपिक और पूर्णांक है यदि [Π,Π] = 0, अर्थात Π एम पर [[पॉइसन मैनिफ़ोल्ड]] है।
उदाहरणों का दूसरा वर्ग बायवेक्टर्स से उत्पन्न होता है <math>\Pi\in\Gamma(\wedge^2 TM)</math> जिसका ग्राफ अधिकतम रूप से आइसोट्रोपिक और पूर्णांक है यदि [Π,Π] = 0, अर्थात Π एम पर [[पॉइसन मैनिफ़ोल्ड]] है।


== सामान्यीकृत जटिल संरचनाएँ ==
== सामान्यीकृत जटिल संरचनाएँ ==
(मुख्य लेख सामान्यीकृत जटिल ज्यामिति भी देखें)
इसके आंतरिक(मुख्य लेख सामान्यीकृत जटिल ज्यामिति भी देखें) गए है|


विभाजित हस्ताक्षर के आंतरिक उत्पाद के साथ कूरेंट बीजगणित दिया गया है। सामान्यीकृत जटिल संरचना एल → एम अतिरिक्त संपत्ति के साथ जटिलीकरण कूरेंट बीजगणित में डायराक संरचना है
इसके विभाजित हस्ताक्षर के आंतरिक उत्पाद के साथ कूरेंट बीजगणित दिया गया है। सामान्यीकृत जटिल संरचना एल → एम अतिरिक्त संपत्ति के साथ जटिलीकरण कूरेंट बीजगणित में डायराक संरचना है
:<math> L \cap \bar{L} = 0</math>
:<math> L \cap \bar{L} = 0</math>
कहाँ <math>\bar{\ }</math> जटिलता पर मानक जटिल संरचना के संबंध में जटिल संयुग्मन का तात्पर्य है।
जहाँ <math>\bar{\ }</math> जटिलता पर मानक जटिल संरचना के संबंध में जटिल संयुग्मन का तात्पर्य है।


जैसा कि गुआल्टिएरी के लिए विस्तार से अध्ययन किया गया है<ref>M. Gualtieri: ''Generalized complex geometry'', Ph.D. thesis, Oxford university, (2004)</ref> सामान्यीकृत जटिल संरचनाएं जटिल मैनिफोल्ड के अनुरूप ज्यामिति के अध्ययन की अनुमति देती हैं।
जैसा कि गुआल्टिएरी के लिए विस्तार से अध्ययन किया गया है<ref>M. Gualtieri: ''Generalized complex geometry'', Ph.D. thesis, Oxford university, (2004)</ref> सामान्यीकृत जटिल संरचनाएं जटिल मैनिफोल्ड के अनुरूप ज्यामिति के अध्ययन की अनुमति देती हैं।

Revision as of 22:35, 7 July 2023

गणित के क्षेत्र में जिसे विभेदक ज्यामिति के रूप में जाना जाता है, सामान्यीकृत जटिल संरचना मूल रूप से 1997 में झांग-जू लियू, एलन वेनस्टीन और पिंग जू के लिए ली बायलगेब्रॉइड्स के युगल की जांच में प्रस्तुत की गई थी।[1] लियू, वीनस्टीन और जू ने इसका नाम थियोडोर जेम्स कूरेंट के नाम पर रखा है, जिन्होंने 1990 में इसकी योजना बनाई थी।[2] तिरछा सममित ब्रैकेट की खोज के माध्यम से कूरेंट बीजगणित का मानक प्रोटोटाइप , जिसे आज कूरेंट ब्रैकेट कहा जाता है, जो जैकोबी पहचान को संतुष्ट करने में विफल रहता है। यह मानक उदाहरण और ली बायलजेब्रा का डबल दोनों कूरेंट बीजगणित के विशेष उदाहरण हैं।

परिभाषा

कूरेंट बीजगणित में डेटा का वेक्टर बंडल होता है ब्रैकेट के साथ , गैर विकृत फाइबर-वार आंतरिक उत्पाद , और बंडल मानचित्र निम्नलिखित सिद्धांतों के माधयम से अधीन होता है,

यहाँ ई के खंड हैं और एफ बेस मैनिफोल्ड एम पर सुचारू कार्य है। डी संयोजन है डी डी राम अंतर के साथ, का दोहरा मानचित्र , और κ E से मानचित्र आंतरिक उत्पाद के माधयम से प्रेरित किया गया है

तिरछा-सममित परिभाषा

ब्रैकेट को द्विरेखीय रूप#सममित, तिरछा-सममित और वैकल्पिक रूप|तिरछा-सममित बनाने के लिए वैकल्पिक परिभाषा दी जा सकती है

यह अब उपरोक्त जैकोबी-पहचान सिद्धांत को संतुष्ट नहीं करता है। इसके अतिरिक्त यह समस्थानिक जैकोबी-पहचान को पूरा करता है।

जहाँ T है

लीबनिज़ नियम और अदिश उत्पाद की अपरिवर्तनीयता संबंध के लिए संशोधित हो जाती है और तिरछा-समरूपता का उल्लंघन स्वयंसिद्ध के लिए प्रतिस्थापित हो जाता है

तिरछा-सममित ब्रैकेट व्युत्पत्ति डी और जैकोबीएटर टी के साथ मिलकर दृढ़ता से समस्थानिक झूठ बीजगणित बनाता है।

गुण

ब्रैकेट तिरछा-सममित नहीं है जैसा कि तीसरे सिद्धांत से देखा जा सकता है। इसके अतिरिक्त यह निश्चित जैकोबी-पहचान (पहला स्वयंसिद्ध) और लाइबनिज़ नियम (दूसरा स्वयंसिद्ध) को पूरा करता है। इन दो सिद्धांतों से कोई एक निष्कर्ष निकाल सकता है कि एंकर मानचित्र ρ कोष्ठक का रूपवाद है:

चौथा नियम ब्रैकेट के नीचे आंतरिक उत्पाद का अपरिवर्तनीयता है। ध्रुवीकरण की ओर ले जाता है|

उदाहरण

कूरेंट बीजगणित का उदाहरण डोर्फ़मैन ब्रैकेट है[3] सीधे योग पर सेवेरा के लिए प्रस्तुत ट्विस्ट के साथ,[4] (1998) को इस प्रकार परिभाषित किया गया है:

जहां X,Y वेक्टर क्षेत्र हैं, ξ,η 1-रूप हैं और H ब्रैकेट को घुमाने वाला बंद 3-रूप है। इस ब्रैकेट का उपयोग सामान्यीकृत जटिल ज्यामिति की अभिन्नता का वर्णन करने के लिए किया जाता है।

अधिक सामान्य उदाहरण झूठ बीजगणित ए से उत्पन्न होता है जिसका प्रेरित अंतर होता है पुनः d लिखा जायेगा। फिर उसी फॉर्मूले का उपयोग करें जो डॉर्फ़मैन ब्रैकेट के लिए एच के साथ ए-3-फॉर्म डी के अनुसार बंद है।

कूरेंट बीजगणित का अन्य उदाहरण द्विघात लाई बीजगणित है, अर्थात अपरिवर्तनीय अदिश उत्पाद के साथ लाई बीजगणित है। यहां बेस मैनिफोल्ड सिर्फ बिंदु है और इस प्रकार एंकर मैप (और डी) तुच्छ हैं।

वीनस्टीन एटअल पेपर में वर्णित उदाहरण ली बायलजेब्रॉइड से आता है, अर्थात ए ए लाई अलजेब्रॉइड (एंकर के साथ)। और ब्रैकेट ), यह भी दोहरा है झूठ बीजगणित (अंतर उत्प्रेरण) पर ) और (आरएचएस पर जहां आप ए-ब्रैकेट का विस्तार करते हैं श्रेणीबद्ध लीबनिज नियम का उपयोग करते हुए यह धारणा ए और में सममित है (रॉयटेनबर्ग देखें)। यहाँ लंगर के साथ और ब्रैकेट α में उपरोक्त का तिरछा-सममितीकरण है (समान रूप से वाई और β में)उपस्थित होता है

डिराक संरचनाएं

इसके आंतरिक उत्पाद के साथ कूरेंट बीजगणित दिया गया है विभाजित हस्ताक्षर का (उदाहरण के लिए मानक वाला)। ), तो डायराक संरचना अधिकतम आइसोट्रोपिक इंटीग्रेबल वेक्टर सबबंडल एल → एम है, अर्थात।

,
,
.

उदाहरण

इसके आंतरिक जैसा कि कूरेंट के लिए खोजा गया है और डॉर्फमैन के लिए समानांतर, 2-फॉर्म ω ∈ Ω का ग्राफ2(M) अधिकतम रूप से आइसोट्रोपिक है और इसके अतिरिक्त पूर्णांकीय है यदि dω = 0, अर्थात 2-फॉर्म डी राम अंतर के अनुसार बंद है, अर्थात प्रीसिम्पलेक्टिक संरचना होता है।

उदाहरणों का दूसरा वर्ग बायवेक्टर्स से उत्पन्न होता है जिसका ग्राफ अधिकतम रूप से आइसोट्रोपिक और पूर्णांक है यदि [Π,Π] = 0, अर्थात Π एम पर पॉइसन मैनिफ़ोल्ड है।

सामान्यीकृत जटिल संरचनाएँ

इसके आंतरिक(मुख्य लेख सामान्यीकृत जटिल ज्यामिति भी देखें) गए है|

इसके विभाजित हस्ताक्षर के आंतरिक उत्पाद के साथ कूरेंट बीजगणित दिया गया है। सामान्यीकृत जटिल संरचना एल → एम अतिरिक्त संपत्ति के साथ जटिलीकरण कूरेंट बीजगणित में डायराक संरचना है

जहाँ जटिलता पर मानक जटिल संरचना के संबंध में जटिल संयुग्मन का तात्पर्य है।

जैसा कि गुआल्टिएरी के लिए विस्तार से अध्ययन किया गया है[5] सामान्यीकृत जटिल संरचनाएं जटिल मैनिफोल्ड के अनुरूप ज्यामिति के अध्ययन की अनुमति देती हैं।

उदाहरण

उदाहरण प्रीसिंप्लेक्टिक और पॉइसन संरचनाओं के अतिरिक्त कॉम्प्लेक्स मैनिफोल्ड#अधिकतर जटिल संरचनाओं जे: टीएम → टीएम का ग्राफ भी हैं।

संदर्भ

  1. Z-J. Liu, A. Weinstein, and P. Xu: Manin triples for Lie Bialgebroids, Journ. of Diff.geom. 45 pp.647–574 (1997).
  2. T.J. Courant: Dirac Manifolds, Transactions of the American Mathematical Society, vol. 319, pp.631–661 (1990).
  3. I.Y. Dorfman: Dirac structures of integrable evolution equations, Physics Letters A, vol.125, pp.240–246 (1987).
  4. P. Ševera: Letters to A. Weinstein, unpublished.
  5. M. Gualtieri: Generalized complex geometry, Ph.D. thesis, Oxford university, (2004)


अग्रिम पठन