सतत स्टोकेस्टिक प्रक्रिया: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Stochastic process that is a continuous function of time or index parameter}} {{distinguish|Continuous-time stochastic process}} संभाव्यत...")
 
No edit summary
Line 1: Line 1:
{{Short description|Stochastic process that is a continuous function of time or index parameter}}
{{Short description|Stochastic process that is a continuous function of time or index parameter}}
{{distinguish|Continuous-time stochastic process}}
{{distinguish|सतत-समय स्टोकेस्टिक प्रक्रिया}}


संभाव्यता सिद्धांत में, एक सतत स्टोकेस्टिक प्रक्रिया एक प्रकार की स्टोकेस्टिक प्रक्रिया है जिसे इसके समय या सूचकांक पैरामीटर के एक फ़ंक्शन के रूप में निरंतर कार्य कहा जा सकता है। निरंतरता एक प्रक्रिया के लिए (नमूना पथों के) लिए एक अच्छी संपत्ति है, क्योंकि इसका तात्पर्य यह है कि वे कुछ अर्थों में [[अच्छी तरह से व्यवहार]] करते हैं, और इसलिए, विश्लेषण करना बहुत आसान है। यहां यह निहित है कि स्टोकेस्टिक प्रक्रिया का सूचकांक एक सतत चर है। कुछ लेखक<ref name=D>Dodge, Y. (2006) ''The Oxford Dictionary of Statistical Terms'', OUP. {{ISBN|0-19-920613-9}} (Entry for "continuous process")</ref> एक सतत (स्टोकेस्टिक) प्रक्रिया को परिभाषित करें, जिसके लिए केवल यह आवश्यक है कि नमूना पथों की निरंतरता के बिना, सूचकांक चर निरंतर हो: कुछ शब्दावली में, यह एक अलग-समय प्रक्रिया के समानांतर, एक निरंतर-समय स्टोकेस्टिक प्रक्रिया होगी। संभावित भ्रम को देखते हुए सावधानी बरतने की जरूरत है.<ref name=D/>
संभाव्यता सिद्धांत में, एक '''सतत स्टोकेस्टिक प्रक्रिया''' एक प्रकार की स्टोकेस्टिक प्रक्रिया है जिसे इसके समय या सूचकांक पैरामीटर के एक फ़ंक्शन के रूप में निरंतर कहा जा सकता है। निरंतरता एक प्रक्रिया के लिए (नमूना पथों के) लिए एक अच्छी संपत्ति है, क्योंकि इसका तात्पर्य यह है कि वे कुछ अर्थों में [[अच्छी तरह से व्यवहार]] करते हैं, और इसलिए, विश्लेषण करना बहुत आसान है। यहां यह निहित है कि स्टोकेस्टिक प्रक्रिया का सूचकांक एक सतत चर है।<ref name=D>Dodge, Y. (2006) ''The Oxford Dictionary of Statistical Terms'', OUP. {{ISBN|0-19-920613-9}} (Entry for "continuous process")</ref> कुछ लेखक एक "निरंतर (स्टोकेस्टिक) प्रक्रिया" को परिभाषित करते हैं, जिसके लिए केवल यह आवश्यक है कि नमूना पथों की निरंतरता के बिना, सूचकांक चर निरंतर हो: कुछ शब्दावली में, यह "असतत" के समानांतर एक निरंतर-समय वाली स्टोकेस्टिक प्रक्रिया होगी। -समय प्रक्रिया"। संभावित भ्रम को देखते हुए सावधानी बरतने की जरूरत है।<ref name=D/>





Revision as of 19:48, 12 July 2023

संभाव्यता सिद्धांत में, एक सतत स्टोकेस्टिक प्रक्रिया एक प्रकार की स्टोकेस्टिक प्रक्रिया है जिसे इसके समय या सूचकांक पैरामीटर के एक फ़ंक्शन के रूप में निरंतर कहा जा सकता है। निरंतरता एक प्रक्रिया के लिए (नमूना पथों के) लिए एक अच्छी संपत्ति है, क्योंकि इसका तात्पर्य यह है कि वे कुछ अर्थों में अच्छी तरह से व्यवहार करते हैं, और इसलिए, विश्लेषण करना बहुत आसान है। यहां यह निहित है कि स्टोकेस्टिक प्रक्रिया का सूचकांक एक सतत चर है।[1] कुछ लेखक एक "निरंतर (स्टोकेस्टिक) प्रक्रिया" को परिभाषित करते हैं, जिसके लिए केवल यह आवश्यक है कि नमूना पथों की निरंतरता के बिना, सूचकांक चर निरंतर हो: कुछ शब्दावली में, यह "असतत" के समानांतर एक निरंतर-समय वाली स्टोकेस्टिक प्रक्रिया होगी। -समय प्रक्रिया"। संभावित भ्रम को देखते हुए सावधानी बरतने की जरूरत है।[1]


परिभाषाएँ

मान लीजिए (Ω, Σ, P) एक संभाव्यता स्थान है, T समय का कुछ अंतराल (गणित) है, और X : T × Ω → S होने दें एक स्टोकेस्टिक प्रक्रिया. सरलता के लिए, इस लेख के शेष भाग में राज्य स्थान एस को वास्तविक रेखा आर माना जाएगा, लेकिन यदि एस आर है तो परिभाषाएँ परिवर्तनशील परिवर्तनों से गुजरती हैं।n, एक मानक स्थान, या यहां तक ​​कि एक सामान्य मीट्रिक स्थान

प्रायिकता एक के साथ निरंतरता

किसी समय t∈T को देखते हुए, X को t पर 'संभावना एक के साथ निरंतर' कहा जाता है यदि


माध्य-वर्ग सातत्य

किसी समय t∈T को देखते हुए, X को t पर 'माध्य-वर्ग में निरंतर' कहा जाता है यदि 'E'[|Xt|2]<+∞ और


संभावना में निरंतरता

किसी समय t ∈ T को देखते हुए, X को t पर 'संभावना में निरंतर' कहा जाता है यदि, सभी ε > 0 के लिए,

समान रूप से, यदि समय t पर X संभाव्यता में निरंतर है


वितरण में निरंतरता

किसी समय t∈T को देखते हुए, X को t पर 'वितरण में निरंतर' कहा जाता है

सभी बिंदुओं x के लिए जिस पर Ft सतत है, जहाँ Ft यादृच्छिक चर X के संचयी वितरण फ़ंक्शन को दर्शाता हैt.

नमूना निरंतरता

यदि X है तो X को 'नमूना सतत' कहा जाता हैt(ω) 'पी' के लिए टी में निरंतर है-लगभग सभी ω ∈ Ω। नमूना निरंतरता इटो प्रसार जैसी प्रक्रियाओं के लिए निरंतरता की उचित धारणा है।

फेलर निरंतरता

एक्स को 'फ़ेलर-निरंतर प्रक्रिया' कहा जाता है, यदि किसी निश्चित टी∈टी और किसी बंधे हुए फ़ंक्शन के लिए, निरंतर और Σ-मापने योग्य फ़ंक्शन जी: एस→'आर', 'ई'x[g(Xt)] लगातार x पर निर्भर करता है। यहां x प्रक्रिया X की प्रारंभिक स्थिति को दर्शाता है, और 'E'x उस घटना पर सशर्त अपेक्षा को दर्शाता है जब X, x से शुरू होता है।

रिश्ते

स्टोकेस्टिक प्रक्रियाओं की विभिन्न प्रकार की निरंतरता के बीच संबंध यादृच्छिक चर के विभिन्न प्रकार के अभिसरण के बीच संबंधों के समान हैं। विशेष रूप से:

  • संभाव्यता के साथ निरंतरता का तात्पर्य संभाव्यता में निरंतरता से है;
  • माध्य-वर्ग में निरंतरता का तात्पर्य संभाव्यता में निरंतरता से है;
  • संभाव्यता के साथ निरंतरता, माध्य-वर्ग में निरंतरता का न तो तात्पर्य है, न ही इसका तात्पर्य है;
  • संभाव्यता में निरंतरता का तात्पर्य वितरण में निरंतरता से है, लेकिन यह निहित नहीं है।

नमूना निरंतरता के साथ निरंतरता को संभाव्यता के साथ भ्रमित करना आकर्षक है। समय t पर प्रायिकता एक के साथ निरंतरता का अर्थ है कि 'P'(At) = 0, जहां घटना एt द्वारा दिया गया है

और यह जांचना पूरी तरह से संभव है कि यह प्रत्येक टी∈टी के लिए सही है या नहीं। दूसरी ओर, नमूना निरंतरता के लिए आवश्यक है कि 'पी'(ए)=0, जहां

ए घटनाओं का एक बेशुमार संघ (सेट सिद्धांत) है, इसलिए यह वास्तव में स्वयं एक घटना नहीं हो सकता है, इसलिए 'पी' (ए) अपरिभाषित हो सकता है! इससे भी बदतर, भले ही ए एक घटना हो, 'पी'(ए) सख्ती से सकारात्मक हो सकता है भले ही 'पी'(ए)।t)=प्रत्येक t∈T के लिए 0। यह मामला है, उदाहरण के लिए, टेलीग्राफ प्रक्रिया के साथ।

टिप्पणियाँ

  1. 1.0 1.1 Dodge, Y. (2006) The Oxford Dictionary of Statistical Terms, OUP. ISBN 0-19-920613-9 (Entry for "continuous process")


संदर्भ

  • Kloeden, Peter E.; Platen, Eckhard (1992). Numerical solution of stochastic differential equations. Applications of Mathematics (New York) 23. Berlin: Springer-Verlag. pp. 38–39. ISBN 3-540-54062-8.
  • Øksendal, Bernt K. (2003). Stochastic Differential Equations: An Introduction with Applications (Sixth ed.). Berlin: Springer. ISBN 3-540-04758-1. (See Lemma 8.1.4)