बानाच माप: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{for|बानाच स्थान मूल्यवान मेश़र के रूप में होते है | इसे सदिश माप के रूप में देख सकते है।}} | {{for|बानाच स्थान मूल्यवान मेश़र के रूप में होते है | इसे सदिश माप के रूप में देख सकते है।}} | ||
[[माप सिद्धांत]] के गणित अभ्यास में | [[माप सिद्धांत]] के गणित अभ्यास में '''बानाच माप''' एक निश्चित प्रकार का [[परिमित माप]] होता है, जिसका उपयोग पसंद के एक्सीओम के प्रति वल्नरेबल समस्याओं में ज्यामितीय क्षेत्र को फॉर्मल बनाने के लिए किया जाता है। | ||
परंपरागत रूप से, क्षेत्र की सहज धारणाओं को एक मौलिक गणनीय योगात्मक उपाय के रूप में औपचारिक रूप से तैयार किया जाता है। इसके परिणामस्वरूप कुछ [[गैर-मापने योग्य सेट|गैर-मापने योग्य समुच्चय]] को बिना किसी निश्चित स्थान के क्षेत्र पर छोड़ देने का परिणाम दुर्भाग्यपूर्ण रूप में होता है और इसका परिणाम यह है कि कुछ ज्यामितीय रूपांतरणों के कारण क्षेत्र अपरिवर्तनीय नहीं रहता हैं, जो बानाच-टार्स्की विरोधाभास का सार है। इस समस्या से निपटने के लिए | परंपरागत रूप से, क्षेत्र की सहज धारणाओं को एक मौलिक गणनीय योगात्मक उपाय के रूप में औपचारिक रूप से तैयार किया जाता है। इसके परिणामस्वरूप कुछ [[गैर-मापने योग्य सेट|गैर-मापने योग्य समुच्चय]] को बिना किसी निश्चित स्थान के क्षेत्र पर छोड़ देने का परिणाम दुर्भाग्यपूर्ण रूप में होता है और इसका परिणाम यह है कि कुछ ज्यामितीय रूपांतरणों के कारण क्षेत्र अपरिवर्तनीय नहीं रहता हैं, जो बानाच-टार्स्की विरोधाभास का सार है। इस समस्या से निपटने के लिए बानाच माप एक प्रकार का सामान्यीकृत उपाय है। | ||
समुच्चय {{math|Ω}} पर एक बैनाच माप एक परिमित रूप से ऐडिटिव माप {{math|''μ'' ≠ 0}} है, जो {{math|℘(Ω)}} के प्रत्येक उपसमुच्चय के लिए परिभाषित है और जिसका मान परिमित उपसमुच्चय पर 0 है। | समुच्चय {{math|Ω}} पर एक बैनाच माप एक परिमित रूप से ऐडिटिव माप {{math|''μ'' ≠ 0}} है, जो {{math|℘(Ω)}} के प्रत्येक उपसमुच्चय के लिए परिभाषित है और जिसका मान परिमित उपसमुच्चय पर 0 है। | ||
एक | एक बानाच माप चालू {{math|Ω}} के रूप में होता है, जो मान लेता है {{math|{0, 1}}} को Ω पर उलम माप कहा जाता है। | ||
जैसा कि विटाली पैराडॉक्स से पता चलता है कि बानाच उपायों को अनगिनत ऐडिटिव उपायों तक मजबूत नहीं किया जा सकता है। | जैसा कि विटाली पैराडॉक्स से पता चलता है कि बानाच उपायों को अनगिनत ऐडिटिव उपायों तक मजबूत नहीं किया जा सकता है। |
Revision as of 11:06, 9 July 2023
माप सिद्धांत के गणित अभ्यास में बानाच माप एक निश्चित प्रकार का परिमित माप होता है, जिसका उपयोग पसंद के एक्सीओम के प्रति वल्नरेबल समस्याओं में ज्यामितीय क्षेत्र को फॉर्मल बनाने के लिए किया जाता है।
परंपरागत रूप से, क्षेत्र की सहज धारणाओं को एक मौलिक गणनीय योगात्मक उपाय के रूप में औपचारिक रूप से तैयार किया जाता है। इसके परिणामस्वरूप कुछ गैर-मापने योग्य समुच्चय को बिना किसी निश्चित स्थान के क्षेत्र पर छोड़ देने का परिणाम दुर्भाग्यपूर्ण रूप में होता है और इसका परिणाम यह है कि कुछ ज्यामितीय रूपांतरणों के कारण क्षेत्र अपरिवर्तनीय नहीं रहता हैं, जो बानाच-टार्स्की विरोधाभास का सार है। इस समस्या से निपटने के लिए बानाच माप एक प्रकार का सामान्यीकृत उपाय है।
समुच्चय Ω पर एक बैनाच माप एक परिमित रूप से ऐडिटिव माप μ ≠ 0 है, जो ℘(Ω) के प्रत्येक उपसमुच्चय के लिए परिभाषित है और जिसका मान परिमित उपसमुच्चय पर 0 है।
एक बानाच माप चालू Ω के रूप में होता है, जो मान लेता है {0, 1} को Ω पर उलम माप कहा जाता है।
जैसा कि विटाली पैराडॉक्स से पता चलता है कि बानाच उपायों को अनगिनत ऐडिटिव उपायों तक मजबूत नहीं किया जा सकता है।
स्टीफ़न बानाच ने दिखाया कि यूक्लिडियन क्षेत्र के लिए बानाच माप को परिभाषित करना संभव होता है, जो सामान्य लेब्सग्यू माप के अनुरूप है। इसका अर्थ यह है कि प्रत्येक लेब्सग्यू मापन योग्य उपसमुच्चय बनच-मापने योग्य है, जिसका अर्थ है कि दोनों माप बराबर हैं।[1]
इस माप के अस्तित्व से दो आयामों में बानाच-टार्स्की विरोधाभास की असंभवता को साबित करता है और इस प्रकार परिमित लेब्सग्यू माप के दो-आयामी समुच्चय को सीमित रूप से कई समुच्चय में विघटित करना संभव नहीं है, जिन्हें एक भिन्न माप के साथ एक समुच्चय में फिर से जोड़ा जा सकता है, क्योंकि यह बानाच माप के गुणों का उल्लंघन करता है, जो लेबेस्ग माप का विस्तार करता है।[2]
संदर्भ
- ↑ Banach, Stefan (1923). "Sur le problème de la mesure" (PDF). Fundamenta Mathematicae. 4: 7–33. doi:10.4064/fm-4-1-7-33. Retrieved 6 March 2022.
- ↑ Stewart, Ian (1996), From Here to Infinity, Oxford University Press, p. 177, ISBN 9780192832023.