हेलिंगर दूरी: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Metric used in probability and statistics}} | {{Short description|Metric used in probability and statistics}} | ||
प्रायिकता सिद्धांत और गणितीय आंकड़ों में, '''हेलिंगर दूरी''' ([[भट्टाचार्य दूरी]] से निकटता से संबंधित, यद्यपि भिन्न) का उपयोग दो [[संभाव्यता वितरण|प्रायिकता वितरणों]] के बीच समानता को मापने के लिए किया जाता है। यह एक प्रकार का ''f''-भिन्नता है। अतः हेलिंगर दूरी को [[हेलिंगर अभिन्न|'''हेलिंगर समाकलन''']] के संदर्भ में परिभाषित किया गया है, जिसे 1909 में [[अर्नेस्ट हेलिंगर]] द्वारा प्रस्तुत किया गया था।<ref>{{SpringerEOM|title=Hellinger distance|id=h/h046890|first=M.S. |last=Nikulin}}</ref><ref>{{Citation | प्रायिकता सिद्धांत और गणितीय आंकड़ों में, '''हेलिंगर दूरी''' ([[भट्टाचार्य दूरी]] से निकटता से संबंधित, यद्यपि भिन्न) का उपयोग दो [[संभाव्यता वितरण|प्रायिकता वितरणों]] के बीच समानता को मापने के लिए किया जाता है। यह एक प्रकार का ''f''-भिन्नता है। अतः हेलिंगर दूरी को [[हेलिंगर अभिन्न|'''हेलिंगर समाकलन''']] के संदर्भ में परिभाषित किया गया है, जिसे 1909 में [[अर्नेस्ट हेलिंगर]] द्वारा पूर्ण रूप से प्रस्तुत किया गया था।<ref>{{SpringerEOM|title=Hellinger distance|id=h/h046890|first=M.S. |last=Nikulin}}</ref><ref>{{Citation | ||
| last = Hellinger | | last = Hellinger | ||
| first = Ernst | | first = Ernst | ||
Line 23: | Line 23: | ||
अतः माप सिद्धांत के संदर्भ में हेलिंगर दूरी को परिभाषित करने के लिए, <math>P</math> और <math>Q</math> को माप समष्टि <math>\mathcal{X}</math> पर दो [[संभाव्यता माप|प्रायिकता मापों]] को निरूपित करने दें जो सहायक माप <math>\lambda</math> के संबंध में [[पूर्ण निरंतरता]] हैं। ऐसा माप सदैव स्थित रहता है, इस प्रकार से उदाहरण के लिए <math>\lambda = (P + Q)</math>। <math>P</math> और <math>Q</math> के बीच हेलिंगर दूरी का वर्ग मात्रा | अतः माप सिद्धांत के संदर्भ में हेलिंगर दूरी को परिभाषित करने के लिए, <math>P</math> और <math>Q</math> को माप समष्टि <math>\mathcal{X}</math> पर दो [[संभाव्यता माप|प्रायिकता मापों]] को निरूपित करने दें जो सहायक माप <math>\lambda</math> के संबंध में [[पूर्ण निरंतरता]] हैं। ऐसा माप सदैव स्थित रहता है, इस प्रकार से उदाहरण के लिए <math>\lambda = (P + Q)</math>। <math>P</math> और <math>Q</math> के बीच हेलिंगर दूरी का वर्ग मात्रा | ||
:<math>H^2(P,Q) = \frac{1}{2}\displaystyle \int_{\mathcal{X}} \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^2 \lambda(dx) </math> के रूप में परिभाषित किया गया है। | :<math>H^2(P,Q) = \frac{1}{2}\displaystyle \int_{\mathcal{X}} \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^2 \lambda(dx) </math> के रूप में पूर्ण रूप से परिभाषित किया गया है। | ||
यहाँ, <math>P(dx) = p(x)\lambda(dx)</math> और <math>Q(dx) = q(x) \lambda(dx)</math>, अर्थात <math>p</math> और <math>q</math>, <math>\lambda</math> के संबंध में क्रमशः P और Q के रेडॉन-निकोडिम व्युत्पन्न हैं। अतः यह परिभाषा <math>\lambda</math> पर निर्भर नहीं करती है,अर्थात P और Q के बीच हेलिंगर दूरी नहीं बदलती है यदि <math>\lambda</math> को एक अलग प्रायिकता माप के साथ प्रतिस्थापित किया जाता है जिसके संबंध में P और Q दोनों [[पूर्ण निरंतरता]] हैं। इस प्रकार से सघनता के लिए, उपरोक्त सूत्र को प्रातः | यहाँ, <math>P(dx) = p(x)\lambda(dx)</math> और <math>Q(dx) = q(x) \lambda(dx)</math>, अर्थात <math>p</math> और <math>q</math>, <math>\lambda</math> के संबंध में क्रमशः P और Q के रेडॉन-निकोडिम व्युत्पन्न हैं। अतः यह परिभाषा <math>\lambda</math> पर निर्भर नहीं करती है,अर्थात P और Q के बीच हेलिंगर दूरी नहीं बदलती है यदि <math>\lambda</math> को एक अलग प्रायिकता माप के साथ प्रतिस्थापित किया जाता है जिसके संबंध में P और Q दोनों [[पूर्ण निरंतरता]] हैं। इस प्रकार से सघनता के लिए, उपरोक्त सूत्र को प्रातः | ||
:<math>H^2(P,Q) = \frac{1}{2}\int_{\mathcal{X}} \left(\sqrt{P(dx)} - \sqrt{Q(dx)}\right)^2 </math> के रूप में लिखा जाता है। | :<math>H^2(P,Q) = \frac{1}{2}\int_{\mathcal{X}} \left(\sqrt{P(dx)} - \sqrt{Q(dx)}\right)^2 </math> के रूप में पूर्ण रूप से लिखा जाता है। | ||
===[[लेब्सेग माप]] का उपयोग कर प्रायिकता सिद्धांत=== | ===[[लेब्सेग माप]] का उपयोग कर प्रायिकता सिद्धांत=== | ||
Line 36: | Line 36: | ||
इस प्रकार से हेलिंगर दूरी '''H(P,Q)''' गुण (कॉची-श्वार्ज़ असमानता से व्युत्पन्न) | इस प्रकार से हेलिंगर दूरी '''H(P,Q)''' गुण (कॉची-श्वार्ज़ असमानता से व्युत्पन्न) | ||
: <math>0\le H(P,Q) \le 1</math> को संतुष्ट करती है। | : <math>0\le H(P,Q) \le 1</math> को पूर्ण रूप से संतुष्ट करती है। | ||
===असतत वितरण=== | ===असतत वितरण=== | ||
अतः दो असतत प्रायिकता वितरणों <math>P=(p_1, \ldots, p_k)</math> और <math>Q=(q_1, \ldots, q_k)</math> के लिए, उनकी हेलिंगर दूरी को | अतः दो असतत प्रायिकता वितरणों <math>P=(p_1, \ldots, p_k)</math> और <math>Q=(q_1, \ldots, q_k)</math> के लिए, उनकी हेलिंगर दूरी को | ||
Line 53: | Line 53: | ||
इस प्रकार से हेलिंगर दूरी किसी दिए गए [[संभाव्यता स्थान|प्रायिकता]] समष्टि पर प्रायिकता वितरण के फलन समष्टि पर एक [[बंधा हुआ कार्य|परिबद्ध फलन]] [[मीट्रिक (गणित)|माप (गणित)]] बनाती है। | इस प्रकार से हेलिंगर दूरी किसी दिए गए [[संभाव्यता स्थान|प्रायिकता]] समष्टि पर प्रायिकता वितरण के फलन समष्टि पर एक [[बंधा हुआ कार्य|परिबद्ध फलन]] [[मीट्रिक (गणित)|माप (गणित)]] बनाती है। | ||
अतः अधिकतम दूरी 1 तब प्राप्त होती है जब P प्रत्येक समुच्चय के लिए प्रायिकता शून्य निर्दिष्ट करता है, जिस पर Q धनात्मक प्रायिकता निर्दिष्ट करता है, और इसके | अतः अधिकतम दूरी 1 तब प्राप्त होती है जब P प्रत्येक समुच्चय के लिए प्रायिकता शून्य निर्दिष्ट करता है, जिस पर Q धनात्मक प्रायिकता को पूर्ण रूप से निर्दिष्ट करता है, और इसके विपरीत होता है। | ||
इस प्रकार से कभी-कभी समाकलन के सामने कारक <math>1/\sqrt{2}</math> को छोड़ दिया जाता है, ऐसी स्थिति में हेलिंगर की दूरी शून्य से दो के वर्गमूल तक होती है। | इस प्रकार से कभी-कभी समाकलन के सामने कारक <math>1/\sqrt{2}</math> को छोड़ दिया जाता है, ऐसी स्थिति में हेलिंगर की दूरी शून्य से दो के वर्गमूल तक होती है। | ||
Line 59: | Line 59: | ||
अतः हेलिंगर दूरी भट्टाचार्य दूरी <math>BC(P,Q)</math> से संबंधित है क्योंकि इसे | अतः हेलिंगर दूरी भट्टाचार्य दूरी <math>BC(P,Q)</math> से संबंधित है क्योंकि इसे | ||
: <math>H(P,Q) = \sqrt{1 - BC(P,Q)}</math> के रूप में परिभाषित किया जा सकता है। | : <math>H(P,Q) = \sqrt{1 - BC(P,Q)}</math> के रूप में पूर्ण रूप से परिभाषित किया जा सकता है। | ||
इस प्रकार से हेलिंजर दूरियों का उपयोग [[अनुक्रमिक विश्लेषण]] और स्पर्शोन्मुख सांख्यिकी के सिद्धांत में किया जाता है।<ref>{{cite book |first=Erik |last=Torgerson |year=1991 |chapter=Comparison of Statistical Experiments |volume=36 |title=गणित का विश्वकोश|publisher=Cambridge University Press }}</ref><ref>{{cite book | इस प्रकार से हेलिंजर दूरियों का उपयोग [[अनुक्रमिक विश्लेषण]] और स्पर्शोन्मुख सांख्यिकी के सिद्धांत में किया जाता है।<ref>{{cite book |first=Erik |last=Torgerson |year=1991 |chapter=Comparison of Statistical Experiments |volume=36 |title=गणित का विश्वकोश|publisher=Cambridge University Press }}</ref><ref>{{cite book | ||
|author1=Liese, Friedrich |author2=Miescke, Klaus-J. | |author1=Liese, Friedrich |author2=Miescke, Klaus-J. | ||
Line 100: | Line 100: | ||
H^2(P,Q) \leq \delta(P,Q) \leq \sqrt{2}H(P,Q)\,. | H^2(P,Q) \leq \delta(P,Q) \leq \sqrt{2}H(P,Q)\,. | ||
</math> | </math> | ||
अतः इस असमानता में स्थिरांक इस पर निर्भर हो सकते हैं कि आप कौन सा पुनर्सामान्यीकरण (<math>1/2</math> या <math>1/\sqrt{2}</math>) चुनते हैं। | अतः इस असमानता में स्थिरांक इस पर निर्भर हो सकते हैं कि आप कौन सा पुनर्सामान्यीकरण (<math>1/2</math> या <math>1/\sqrt{2}</math>) पूर्ण रूप से चुनते हैं। | ||
इस प्रकार से ये असमानताएं 1-मानदंड और 2-मानदंड के बीच की असमानताओं से तुरंत उत्पन्न होती हैं। | इस प्रकार से ये असमानताएं 1-मानदंड और 2-मानदंड के बीच की असमानताओं से तुरंत उत्पन्न होती हैं। |
Revision as of 11:21, 14 July 2023
प्रायिकता सिद्धांत और गणितीय आंकड़ों में, हेलिंगर दूरी (भट्टाचार्य दूरी से निकटता से संबंधित, यद्यपि भिन्न) का उपयोग दो प्रायिकता वितरणों के बीच समानता को मापने के लिए किया जाता है। यह एक प्रकार का f-भिन्नता है। अतः हेलिंगर दूरी को हेलिंगर समाकलन के संदर्भ में परिभाषित किया गया है, जिसे 1909 में अर्नेस्ट हेलिंगर द्वारा पूर्ण रूप से प्रस्तुत किया गया था।[1][2]
इस प्रकार से इसे कभी-कभी जेफ़्रीज़ दूरी भी कहा जाता है।[3][4]
परिभाषा
माप सिद्धांत
अतः माप सिद्धांत के संदर्भ में हेलिंगर दूरी को परिभाषित करने के लिए, और को माप समष्टि पर दो प्रायिकता मापों को निरूपित करने दें जो सहायक माप के संबंध में पूर्ण निरंतरता हैं। ऐसा माप सदैव स्थित रहता है, इस प्रकार से उदाहरण के लिए । और के बीच हेलिंगर दूरी का वर्ग मात्रा
- के रूप में पूर्ण रूप से परिभाषित किया गया है।
यहाँ, और , अर्थात और , के संबंध में क्रमशः P और Q के रेडॉन-निकोडिम व्युत्पन्न हैं। अतः यह परिभाषा पर निर्भर नहीं करती है,अर्थात P और Q के बीच हेलिंगर दूरी नहीं बदलती है यदि को एक अलग प्रायिकता माप के साथ प्रतिस्थापित किया जाता है जिसके संबंध में P और Q दोनों पूर्ण निरंतरता हैं। इस प्रकार से सघनता के लिए, उपरोक्त सूत्र को प्रातः
- के रूप में पूर्ण रूप से लिखा जाता है।
लेब्सेग माप का उपयोग कर प्रायिकता सिद्धांत
अतः प्रारंभिक प्रायिकता सिद्धांत के संदर्भ में हेलिंगर दूरी को परिभाषित करने के लिए, हम λ को लेबेस्ग माप के रूप में लेते हैं, ताकि dP / dλ और dQ / dλ मात्र प्रायिकता घनत्व फलन हों। इस प्रकार से यदि हम घनत्वों को क्रमशः f और g के रूप में निरूपित करते हैं, तो वर्ग हेलिंगर दूरी को मानक गणना समाकल
के रूप में निरूपित करते हैं, जहां दूसरा रूप वर्ग का विस्तार करके और इस तथ्य का उपयोग करके प्राप्त किया जा सकता है कि इसके डोमेन पर प्रायिकता घनत्व का अभिन्न अंग 1 के बराबर है।
इस प्रकार से हेलिंगर दूरी H(P,Q) गुण (कॉची-श्वार्ज़ असमानता से व्युत्पन्न)
- को पूर्ण रूप से संतुष्ट करती है।
असतत वितरण
अतः दो असतत प्रायिकता वितरणों और के लिए, उनकी हेलिंगर दूरी को
के रूप में परिभाषित किया गया है, जो प्रत्यक्षतः वर्गमूल सदिश के अंतर के यूक्लिडियन दूरी से संबंधित है, अर्थात
भी,
गुण
इस प्रकार से हेलिंगर दूरी किसी दिए गए प्रायिकता समष्टि पर प्रायिकता वितरण के फलन समष्टि पर एक परिबद्ध फलन माप (गणित) बनाती है।
अतः अधिकतम दूरी 1 तब प्राप्त होती है जब P प्रत्येक समुच्चय के लिए प्रायिकता शून्य निर्दिष्ट करता है, जिस पर Q धनात्मक प्रायिकता को पूर्ण रूप से निर्दिष्ट करता है, और इसके विपरीत होता है।
इस प्रकार से कभी-कभी समाकलन के सामने कारक को छोड़ दिया जाता है, ऐसी स्थिति में हेलिंगर की दूरी शून्य से दो के वर्गमूल तक होती है।
अतः हेलिंगर दूरी भट्टाचार्य दूरी से संबंधित है क्योंकि इसे
- के रूप में पूर्ण रूप से परिभाषित किया जा सकता है।
इस प्रकार से हेलिंजर दूरियों का उपयोग अनुक्रमिक विश्लेषण और स्पर्शोन्मुख सांख्यिकी के सिद्धांत में किया जाता है।[5][6]
अतः दो सामान्य वितरणों और के बीच वर्गाकार हेलिंगर दूरी है:
दो बहुभिन्नरूपी सामान्य वितरणों और के बीच वर्गाकार हेलिंगर दूरी है [7]
इस प्रकार से दो घातीय वितरणों और के बीच वर्गाकार हेलिंगर दूरी है:
अतः दो वेइबुल वितरणों के बीच वर्गाकार हेलिंगर दूरी और (जहाँ एक सामान्य आकार पैरामीटर है और क्रमशः माप पैरामीटर हैं):
दर मापदंडों और के साथ दो पॉइसन वितरणों के बीच वर्गाकार हेलिंगर दूरी, ताकि और , है:
इस प्रकार से दो बीटा वितरणों के बीच वर्गाकार हेलिंगर दूरी और है:
जहाँ बीटा फलन है।
अतः दो गामा वितरणों और के बीच वर्गाकार हेलिंगर दूरी है:
जहाँ गामा फलन है।
कुल भिन्नता दूरी के साथ संबंध
इस प्रकार से हेलिंगर दूरी और कुल भिन्नता दूरी (या सांख्यिकीय दूरी) इस प्रकार संबंधित हैं:[8]
अतः इस असमानता में स्थिरांक इस पर निर्भर हो सकते हैं कि आप कौन सा पुनर्सामान्यीकरण ( या ) पूर्ण रूप से चुनते हैं।
इस प्रकार से ये असमानताएं 1-मानदंड और 2-मानदंड के बीच की असमानताओं से तुरंत उत्पन्न होती हैं।
यह भी देखें
- सांख्यिकीय दूरी
- कुल्बैक-लीब्लर विचलन
- भट्टाचार्य दूरी
- कुल भिन्नता दूरी
- फिशर सूचना मापन
टिप्पणियाँ
- ↑ Nikulin, M.S. (2001) [1994], "Hellinger distance", Encyclopedia of Mathematics, EMS Press
- ↑ Hellinger, Ernst (1909), "Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen", Journal für die reine und angewandte Mathematik (in Deutsch), 1909 (136): 210–271, doi:10.1515/crll.1909.136.210, JFM 40.0393.01, S2CID 121150138
- ↑ "जेफ़्रीज़ दूरी - गणित का विश्वकोश". encyclopediaofmath.org (in English). Retrieved 2022-05-24.
- ↑ Jeffreys, Harold (1946-09-24). "अनुमान समस्याओं में पूर्व संभाव्यता के लिए एक अपरिवर्तनीय रूप". Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 186 (1007): 453–461. Bibcode:1946RSPSA.186..453J. doi:10.1098/rspa.1946.0056. ISSN 0080-4630. PMID 20998741. S2CID 19490929.
- ↑ Torgerson, Erik (1991). "Comparison of Statistical Experiments". गणित का विश्वकोश. Vol. 36. Cambridge University Press.
- ↑ Liese, Friedrich; Miescke, Klaus-J. (2008). Statistical Decision Theory: Estimation, Testing, and Selection. Springer. ISBN 978-0-387-73193-3.
- ↑ Pardo, L. (2006). विचलन माप के आधार पर सांख्यिकीय अनुमान. New York: Chapman and Hall/CRC. p. 51. ISBN 1-58488-600-5.
- ↑ Harsha, Prahladh (September 23, 2011). "संचार जटिलता पर व्याख्यान नोट्स" (PDF).
संदर्भ
- Yang, Grace Lo; Le Cam, Lucien M. (2000). Asymptotics in Statistics: Some Basic Concepts. Berlin: Springer. ISBN 0-387-95036-2.
- Vaart, A. W. van der (19 June 2000). Asymptotic Statistics (Cambridge Series in Statistical and Probabilistic Mathematics). Cambridge, UK: Cambridge University Press. ISBN 0-521-78450-6.
- Pollard, David E. (2002). A user's guide to measure theoretic probability. Cambridge, UK: Cambridge University Press. ISBN 0-521-00289-3.