वर्तमान मूल्य: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Economic concept denoting value of an expected income stream determined as of the date of valuation.}}[[अर्थशास्त्र]] और [[वित्त]] में, वर्तमान मूल्य (पीवी), जिसे वर्तमान रियायती मूल्य के रूप में भी जाना जाता है, मूल्यांकन की तारीख के अनुसार निर्धारित अपेक्षित आय धारा का मूल्य है। वर्तमान मूल्य | {{short description|Economic concept denoting value of an expected income stream determined as of the date of valuation.}}[[अर्थशास्त्र]] और [[वित्त]] में, वर्तमान मूल्य (पीवी), जिसे वर्तमान रियायती मूल्य के रूप में भी जाना जाता है, मूल्यांकन की तारीख के अनुसार निर्धारित अपेक्षित आय धारा का मूल्य है। वर्तमान मूल्य सामान्यतः भविष्य के मूल्य से कम होता है क्योंकि पैसे में ब्याज कमाने की क्षमता होती है, विशेषता जिसे पैसे का समय मूल्य कहा जाता है, शून्य या नकारात्मक ब्याज दरों के समय को छोड़कर, जब वर्तमान मूल्य सामान्तर या उससे अधिक होगा भविष्य का मूल्य.<ref name="Moyer">{{cite book|last=Moyer|first=Charles|title=समसामयिक वित्तीय प्रबंधन|year=2011|publisher=South-Western Publishing Co|location=Winsted|isbn=9780538479172|pages=147–498|edition=12|author2=William Kretlow |author3=James McGuigan }}</ref> समय के मूल्य को सरलीकृत वाक्यांश के साथ वर्णित किया जा सकता है, "आज डॉलर का मूल्य कल डॉलर से अधिक है"। यहां 'मूल्य अधिक' का अर्थ है कि उसका मूल्य कल से अधिक है। आज डॉलर का मूल्य कल के डॉलर से अधिक है क्योंकि डॉलर का निवेश किया जा सकता है और दिन का ब्याज अर्जित किया जा सकता है, जिससे कल तक कुल राशि डॉलर से अधिक मूल्य पर जमा हो जाएगी। ब्याज की तुलना किराये से की जा सकती है।<ref name="Broverman"/> जिस तरह किरायेदार द्वारा मकान मालिक को संपत्ति का स्वामित्व हस्तांतरित किए बिना किराया भुगतान किया जाता है, उसी तरह [[ऋण]]दाता को ब्याज का भुगतान उधारकर्ता द्वारा किया जाता है जो इसे वापस भुगतान करने से पहले कुछ समय के लिए पैसे तक पहुंच प्राप्त करता है। उधारकर्ता को पैसे तक पहुंच देकर, ऋणदाता ने इस पैसे के विनिमय मूल्य का त्याग कर दिया है, और इसके लिए ब्याज के रूप में मुआवजा दिया जाता है। उधार ली गई धनराशि की प्रारंभिक राशि (वर्तमान मूल्य) ऋणदाता को भुगतान की गई कुल राशि से कम है। | ||
वर्तमान मूल्य गणना, और इसी तरह भविष्य के मूल्य गणना का उपयोग ऋण, [[बंधक]], [[वार्षिकी (वित्त सिद्धांत)]], डूबती निधि, [[शाश्वतता]], [[बांड (वित्त)]], और बहुत कुछ के मूल्य निर्धारण के लिए किया जाता है। इन गणनाओं का उपयोग उन नकदी प्रवाहों के | वर्तमान मूल्य गणना, और इसी तरह भविष्य के मूल्य गणना का उपयोग ऋण, [[बंधक]], [[वार्षिकी (वित्त सिद्धांत)]], डूबती निधि, [[शाश्वतता]], [[बांड (वित्त)]], और बहुत कुछ के मूल्य निर्धारण के लिए किया जाता है। इन गणनाओं का उपयोग उन नकदी प्रवाहों के मध्य तुलना करने के लिए किया जाता है जो साथ नहीं होते हैं,<ref name="Moyer"/> चूँकि मूल्यों के मध्य तुलना करने के लिए समय और तारीखें सुसंगत होनी चाहिए। ऐसी परियोजनाओं के मध्य निर्णय लेते समय जिनमें निवेश करना है, ऐसी परियोजनाओं के संबंधित वर्तमान मूल्यों की तुलना करके संबंधित परियोजना ब्याज दर, या वापसी की दर पर अपेक्षित आय धाराओं में छूट देकर चुनाव किया जा सकता है। उच्चतम वर्तमान मूल्य वाली परियोजना, अर्थात जो आज सबसे मूल्यवान है, को चुना जाना चाहिए। | ||
==पृष्ठभूमि== | ==पृष्ठभूमि== | ||
यदि आज $100 या वर्ष में $100 के | यदि आज $100 या वर्ष में $100 के मध्य विकल्प की प्रस्तुति की जाती है, और पूरे वर्ष सकारात्मक [[वास्तविक ब्याज दर]] होती है, तब तर्कसंगत व्यक्ति आज $100 का चयन करेगा। इसे अर्थशास्त्रियों द्वारा समय प्राथमिकता के रूप में वर्णित किया गया है। अमेरिकी ट्रेजरी बिल जैसी कठिन परिस्थिति मुक्त सुरक्षा की नीलामी करके [[समय की प्राथमिकता]] को मापा जा सकता है। यदि वर्ष में देय शून्य कूपन वाला $100 का नोट अब $80 में बिकता है, तब $80 उस नोट का वर्तमान मूल्य है जो अब से प्रति वर्ष $100 के सामान्तर होगा। ऐसा इसलिए है क्योंकि पैसा बैंक खाते या किसी अन्य (सुरक्षित) निवेश में डाला जा सकता है जो भविष्य में ब्याज लौटाएगा। | ||
निवेशक जिसके पास कुछ पैसा है उसके पास दो विकल्प हैं: इसे अभी खर्च करना या इसे बचाना। | निवेशक जिसके पास कुछ पैसा है उसके पास दो विकल्प हैं: इसे अभी खर्च करना या इसे बचाना। किन्तु इसे बचाने के लिए (और इसे खर्च न करने के लिए) वित्तीय मुआवजा यह है कि धन का मूल्य [[चक्रवृद्धि ब्याज]] के माध्यम से अर्जित होगा जो वह उधारकर्ता (जिस बैंक खाते में उसने पैसा जमा किया है) से प्राप्त करेगा। | ||
इसलिए, किसी निश्चित समयावधि के | इसलिए, किसी निश्चित समयावधि के पश्चात् आज किसी धनराशि के वास्तविक मूल्य का मूल्यांकन करने के लिए, आर्थिक एजेंट धनराशि को निश्चित (ब्याज) दर पर संयोजित करते हैं। अधिकांश बीमांकिक विज्ञान गणना कठिन परिस्थिति -मुक्त ब्याज दर का उपयोग करती है जो उदाहरण के लिए बैंक के बचत खाते द्वारा प्रदान की गई न्यूनतम गारंटी दर से मेल खाती है, यह मानते हुए कि बैंक द्वारा खाताधारक को समय पर पैसा वापस करने में डिफ़ॉल्ट का कोई कठिन परिस्थिति नहीं है। क्रय शक्ति में परिवर्तन की तुलना करने के लिए वास्तविक ब्याज दर (नाममात्र ब्याज दर घटा मुद्रास्फीति दर) का उपयोग किया जाना चाहिए। | ||
वर्तमान मूल्य का भविष्य के मूल्य में मूल्यांकन करने की प्रक्रिया को पूंजीकरण कहा जाता है (5 वर्षों में आज $100 का मूल्य कितना होगा?)। रिवर्स ऑपरेशन - भविष्य की धनराशि के वर्तमान मूल्य का मूल्यांकन करना - को डिस्काउंटिंग कहा जाता है (उदाहरण के लिए लॉटरी में 5 वर्षों में प्राप्त $ 100 का आज कितना मूल्य होगा?)। | वर्तमान मूल्य का भविष्य के मूल्य में मूल्यांकन करने की प्रक्रिया को पूंजीकरण कहा जाता है (5 वर्षों में आज $100 का मूल्य कितना होगा?)। रिवर्स ऑपरेशन - भविष्य की धनराशि के वर्तमान मूल्य का मूल्यांकन करना - को डिस्काउंटिंग कहा जाता है (उदाहरण के लिए लॉटरी में 5 वर्षों में प्राप्त $ 100 का आज कितना मूल्य होगा?)। | ||
इसका तात्पर्य यह है कि यदि किसी को आज 100 डॉलर और वर्ष में 100 डॉलर प्राप्त करने के | इसका तात्पर्य यह है कि यदि किसी को आज 100 डॉलर और वर्ष में 100 डॉलर प्राप्त करने के मध्य चयन करना है, तब तर्कसंगत निर्णय आज ही 100 डॉलर चुनना है। यदि पैसा वर्ष में प्राप्त करना है और यह मानते हुए कि बचत खाते की ब्याज दर 5% है, तब व्यक्ति को वर्ष में कम से कम $105 की प्रस्तुति करनी होगी जिससे दोनों विकल्प सामान्तर हों (या तब आज $100 प्राप्त करें या बार में $105 प्राप्त करें) वर्ष)। ऐसा इसलिए है क्योंकि यदि बचत खाते में $100 जमा किए जाते हैं, तब वर्ष के पश्चात् मूल्य $105 होगा, यह मानते हुए कि बैंक डिफ़ॉल्ट के माध्यम से प्रारंभिक राशि खोने का कोई कठिन परिस्थिति नहीं है। | ||
==ब्याज दरें== | ==ब्याज दरें== | ||
ब्याज समय अवधि की | ब्याज समय अवधि की प्रारंभ और समाप्ति के मध्य प्राप्त अतिरिक्त धनराशि है। ब्याज पैसे के समय मूल्य का प्रतिनिधित्व करता है, और इसे किराए के रूप में सोचा जा सकता है जो ऋणदाता से पैसे का उपयोग करने के लिए उधारकर्ता के लिए आवश्यक है।<ref name=Broverman/><ref name=Ross/> उदाहरण के लिए, जब कोई व्यक्ति बैंक ऋण लेता है, तब उस व्यक्ति से ब्याज लिया जाता है। वैकल्पिक रूप से, जब कोई व्यक्ति बैंक में पैसा जमा करता है, तब उस पैसे पर ब्याज मिलता है। इस स्थितियों में, बैंक धनराशि का उधारकर्ता है और खाताधारक को ब्याज जमा करने के लिए जिम्मेदार है। इसी तरह, जब कोई व्यक्ति किसी कंपनी में निवेश करता है ([[कॉरपोरेट बॉन्ड]] के माध्यम से, या [[ भंडार |भंडार]] के माध्यम से), तब कंपनी धन उधार ले रही है, और उसे व्यक्ति को ब्याज देना होगा (कूपन भुगतान, [[लाभांश]] या स्टॉक मूल्य प्रशंसा के रूप में)।<ref name=Moyer/> ब्याज दर चक्रवृद्धि अवधि के समय धन की राशि में प्रतिशत के रूप में व्यक्त परिवर्तन है। चक्रवृद्धि अवधि वह अवधि है जो ब्याज जमा होने या कुल में जोड़े जाने से पहले होनी चाहिए।<ref name=Broverman/> उदाहरण के लिए, वार्षिक चक्रवृद्धि ब्याज साल में बार जमा किया जाता है और चक्रवृद्धि अवधि वर्ष होती है। त्रैमासिक रूप से संयोजित ब्याज वर्ष में चार बार जमा किया जाता है, और चक्रवृद्धि अवधि तीन महीने होती है। चक्रवृद्धि अवधि किसी भी लम्बाई की हो सकती है, किन्तु कुछ सामान्य अवधियाँ वार्षिक, अर्धवार्षिक, त्रैमासिक, मासिक, दैनिक और यहाँ तक कि लगातार भी होती हैं। | ||
ब्याज दरों से जुड़े | ब्याज दरों से जुड़े अनेक प्रकार और शर्तें हैं: | ||
*चक्रवृद्धि ब्याज, वह ब्याज जो | *चक्रवृद्धि ब्याज, वह ब्याज जो पश्चात् की अवधि में तेजी से बढ़ता है, | ||
*[[साधारण ब्याज]], योगात्मक ब्याज जो बढ़ता नहीं है | *[[साधारण ब्याज]], योगात्मक ब्याज जो बढ़ता नहीं है | ||
*[[प्रभावी ब्याज दर]], | *[[प्रभावी ब्याज दर]], अनेक चक्रवृद्धि ब्याज अवधियों की तुलना में प्रभावी समतुल्य | ||
*[[नाममात्र वार्षिक ब्याज]], ाधिक ब्याज अवधि की साधारण वार्षिक ब्याज दर | *[[नाममात्र वार्षिक ब्याज]], ाधिक ब्याज अवधि की साधारण वार्षिक ब्याज दर | ||
*[[डिस्काउंट विंडो]], रिवर्स में गणना करते समय उलटा ब्याज दर | *[[डिस्काउंट विंडो]], रिवर्स में गणना करते समय उलटा ब्याज दर | ||
Line 29: | Line 29: | ||
भविष्य में किसी समय किसी वर्तमान राशि का मूल्यांकन करने की प्रक्रिया को पूंजीकरण कहा जाता है (पांच वर्षों में आज 100 का मूल्य कितना होगा?)। रिवर्स ऑपरेशन - भविष्य की धनराशि के वर्तमान मूल्य का मूल्यांकन करना - डिस्काउंटिंग कहा जाता है (पांच वर्षों में प्राप्त 100 का आज कितना मूल्य होगा?)।<ref name=Ross>{{cite book|last=Ross|first=Stephen|title=कॉर्पोरेट वित्त के बुनियादी सिद्धांत|year=2010|publisher=McGraw-Hill|location=New York|isbn=9780077246129|pages=145–287|edition=9|author2=Randolph W. Westerfield |author3=Bradford D. Jordan }}</ref> | भविष्य में किसी समय किसी वर्तमान राशि का मूल्यांकन करने की प्रक्रिया को पूंजीकरण कहा जाता है (पांच वर्षों में आज 100 का मूल्य कितना होगा?)। रिवर्स ऑपरेशन - भविष्य की धनराशि के वर्तमान मूल्य का मूल्यांकन करना - डिस्काउंटिंग कहा जाता है (पांच वर्षों में प्राप्त 100 का आज कितना मूल्य होगा?)।<ref name=Ross>{{cite book|last=Ross|first=Stephen|title=कॉर्पोरेट वित्त के बुनियादी सिद्धांत|year=2010|publisher=McGraw-Hill|location=New York|isbn=9780077246129|pages=145–287|edition=9|author2=Randolph W. Westerfield |author3=Bradford D. Jordan }}</ref> | ||
स्प्रेडशीट | स्प्रेडशीट सामान्यतः वर्तमान मूल्य की गणना करने के लिए फलन प्रदान करती हैं। माइक्रोसॉफ्ट एक्सेल में, एकल भुगतान के लिए वर्तमान मूल्य फलन हैं - "=एनपीवी(...)", और समान, आवधिक भुगतान की श्रृंखला - "=पीवी(...)"। कार्यक्रम किसी भी नकदी प्रवाह और ब्याज दर के लिए या अलग-अलग समय पर अलग-अलग ब्याज दरों की अनुसूची के लिए लचीले ढंग से वर्तमान मूल्य की गणना करेंगे। | ||
===एकमुश्त राशि का वर्तमान मूल्य=== | ===एकमुश्त राशि का वर्तमान मूल्य=== | ||
वर्तमान मूल्यांकन का सबसे अधिक | वर्तमान मूल्यांकन का सबसे अधिक क्रियान्वित मॉडल चक्रवृद्धि ब्याज का उपयोग करता है। मानक सूत्र है: | ||
:<math>PV = \frac{C}{(1+i)^n} \,</math> | :<math>PV = \frac{C}{(1+i)^n} \,</math> | ||
जहां <math>\,C\,</math> भविष्य में मिलने वाली राशि है जिस पर छूट दी जानी चाहिए, <math>\,n\,</math> वर्तमान तिथि और उस तिथि के | जहां <math>\,C\,</math> भविष्य में मिलने वाली राशि है जिस पर छूट दी जानी चाहिए, <math>\,n\,</math> वर्तमान तिथि और उस तिथि के मध्य चक्रवृद्धि अवधि की संख्या है जहां राशि का मूल्य <math>\,C\,</math>, <math>\,i\,</math> है , चक्रवृद्धि अवधि के लिए ब्याज दर है (चक्रवृद्धि अवधि का अंत तब होता है जब ब्याज क्रियान्वित होता है, उदाहरण के लिए, वार्षिक, अर्धवार्षिक, त्रैमासिक, मासिक, दैनिक)। ब्याज दर,<math>\,i\,</math>, प्रतिशत के रूप में दी गई है, किन्तु इस सूत्र में दशमलव के रूप में व्यक्त की गई है। | ||
अधिकांशतः , <math>v^{n} = \,(1 + i)^{-n}</math> वर्तमान मूल्य कारक के रूप में जाना जाता है <ref name=Broverman>{{cite book|last=Broverman|first=Samuel|title=निवेश और ऋण का गणित|year=2010|publisher=ACTEX Publishers|location=Winsted|isbn=9781566987677|pages=4–229}}</ref> | |||
यह नकारात्मक समय के साथ भविष्य के मूल्य चक्रवृद्धि ब्याज से भी पाया जाता है। | यह नकारात्मक समय के साथ भविष्य के मूल्य चक्रवृद्धि ब्याज से भी पाया जाता है। | ||
उदाहरण के लिए, यदि आपको पाँच वर्षों में $1000 प्राप्त होने हैं, और इस अवधि के | उदाहरण के लिए, यदि आपको पाँच वर्षों में $1000 प्राप्त होने हैं, और इस अवधि के समय प्रभावी वार्षिक ब्याज दर 10% (या 0.10) है, तब इस राशि का वर्तमान मूल्य है | ||
:<math>PV = \frac{\$1000}{(1+0.10)^{5}} = \$620.92 \, </math> | :<math>PV = \frac{\$1000}{(1+0.10)^{5}} = \$620.92 \, </math> | ||
व्याख्या यह है कि 10% की प्रभावी वार्षिक ब्याज दर के लिए, व्यक्ति पांच वर्षों में $1000, या आज $620.92 प्राप्त करने के प्रति उदासीन होगा।<ref name="Moyer"/> | व्याख्या यह है कि 10% की प्रभावी वार्षिक ब्याज दर के लिए, व्यक्ति पांच वर्षों में $1000, या आज $620.92 प्राप्त करने के प्रति उदासीन होगा।<ref name="Moyer"/> | ||
आज के धन की राशि <math>\,C\,</math> की भविष्य में <math>\,n\,</math> वर्षों की [[क्रय शक्ति]] की गणना उसी सूत्र से की जा सकती है, जहां इस | आज के धन की राशि <math>\,C\,</math> की भविष्य में <math>\,n\,</math> वर्षों की [[क्रय शक्ति]] की गणना उसी सूत्र से की जा सकती है, जहां इस स्थितियों में <math>\,i\,</math> अनुमानित भविष्य की मुद्रास्फीति दर है। | ||
यदि हम कम छूट दर (i) का उपयोग कर रहे हैं, | यदि हम कम छूट दर (i) का उपयोग कर रहे हैं, तब यह छूट के भविष्य में वर्तमान मूल्यों को उच्च मूल्यों की अनुमति देता है। | ||
===नकदी प्रवाह की धारा का शुद्ध वर्तमान मूल्य === | ===नकदी प्रवाह की धारा का शुद्ध वर्तमान मूल्य === | ||
नकदी प्रवाह वह धनराशि है जो किसी अवधि के अंत में या | नकदी प्रवाह वह धनराशि है जो किसी अवधि के अंत में या तब भुगतान की जाती है या प्राप्त की जाती है, जिसे नकारात्मक या सकारात्मक संकेत द्वारा विभेदित किया जाता है। परंपरागत रूप से, प्राप्त नकदी प्रवाह को सकारात्मक संकेत के साथ दर्शाया जाता है (कुल नकदी में वृद्धि हुई है) और भुगतान किए गए नकदी प्रवाह को नकारात्मक संकेत के साथ दर्शाया जाता है (कुल नकदी में कमी आई है)। किसी अवधि के लिए नकदी प्रवाह उस अवधि के पैसे में शुद्ध परिवर्तन का प्रतिनिधित्व करता है।<ref name=Ross/> नकदी प्रवाह की धारा के शुद्ध वर्तमान मूल्य, <math>\,NPV\,</math> की गणना में प्रत्येक नकदी प्रवाह को वर्तमान में छूट देना, वर्तमान मूल्य कारक और उचित संख्या में चक्रवृद्धि अवधि का उपयोग करना और इन मूल्यों को संयोजित करना सम्मिलित है।<ref name="Moyer" /> | ||
उदाहरण के लिए, यदि नकदी प्रवाह की धारा में पहली अवधि के अंत में +$100, दूसरी अवधि के अंत में $50, और तीसरी अवधि के अंत में +$35 | उदाहरण के लिए, यदि नकदी प्रवाह की धारा में पहली अवधि के अंत में +$100, दूसरी अवधि के अंत में $50, और तीसरी अवधि के अंत में +$35 सम्मिलित हैं, और प्रति चक्रवृद्धि अवधि पर ब्याज दर 5% है ( 0.05) तब इन तीन नकदी प्रवाह का वर्तमान मूल्य हैं: | ||
:<math>PV_{1} = \frac{\$100}{(1.05)^{1}} = \$95.24 \, </math> | :<math>PV_{1} = \frac{\$100}{(1.05)^{1}} = \$95.24 \, </math> | ||
Line 63: | Line 63: | ||
:<math>NPV = PV_{1}+PV_{2}+PV_{3} = \frac{100}{(1.05)^{1}} + \frac{-50}{(1.05)^{2}} + \frac{35}{(1.05)^{3}} = 95.24 - 45.35 + 30.23 = 80.12, </math> | :<math>NPV = PV_{1}+PV_{2}+PV_{3} = \frac{100}{(1.05)^{1}} + \frac{-50}{(1.05)^{2}} + \frac{35}{(1.05)^{3}} = 95.24 - 45.35 + 30.23 = 80.12, </math> | ||
कुछ विचार करने होंगे। | कुछ विचार करने होंगे। | ||
* अवधियाँ लगातार नहीं हो सकतीं। यदि यह मामला है, | * अवधियाँ लगातार नहीं हो सकतीं। यदि यह मामला है, तब अवधियों की उचित संख्या को प्रतिबिंबित करने के लिए घातांक बदल जाएंगे | ||
* प्रति अवधि ब्याज दरें समान नहीं हो सकती हैं। उचित अवधि के लिए ब्याज दर का उपयोग करके नकदी प्रवाह में छूट दी जानी चाहिए: यदि ब्याज दर में परिवर्तन होता है, | * प्रति अवधि ब्याज दरें समान नहीं हो सकती हैं। उचित अवधि के लिए ब्याज दर का उपयोग करके नकदी प्रवाह में छूट दी जानी चाहिए: यदि ब्याज दर में परिवर्तन होता है, तब दूसरी ब्याज दर का उपयोग करके उस अवधि में राशि में छूट दी जानी चाहिए जहां परिवर्तन होता है, फिर पहली ब्याज दर का उपयोग करके वर्तमान में छूट दी जानी चाहिए .<ref name="Broverman" /> उदाहरण के लिए, यदि पहली अवधि के लिए नकदी प्रवाह $100 है, और दूसरी अवधि के लिए $200 है, और पहली अवधि के लिए ब्याज दर 5% है, और दूसरी के लिए 10% है, तब शुद्ध वर्तमान मूल्य होगा: | ||
:<math>NPV = 100\,(1.05)^{-1} + 200\,(1.10)^{-1}\,(1.05)^{-1} = \frac{100}{(1.05)^{1}} + \frac{200}{(1.10)^{1}(1.05)^{1}} = \$95.24 + \$173.16 = \$268.40 </math> | :<math>NPV = 100\,(1.05)^{-1} + 200\,(1.10)^{-1}\,(1.05)^{-1} = \frac{100}{(1.05)^{1}} + \frac{200}{(1.10)^{1}(1.05)^{1}} = \$95.24 + \$173.16 = \$268.40 </math> | ||
* ब्याज दर आवश्यक रूप से भुगतान अवधि के साथ मेल खाना चाहिए। यदि नहीं, | * ब्याज दर आवश्यक रूप से भुगतान अवधि के साथ मेल खाना चाहिए। यदि नहीं, तब या तब भुगतान अवधि या ब्याज दर को संशोधित किया जाना चाहिए। उदाहरण के लिए, यदि दी गई ब्याज दर प्रभावी वार्षिक ब्याज दर है, किन्तु नकदी प्रवाह त्रैमासिक प्राप्त होता है (और/या भुगतान किया जाता है), तब प्रति तिमाही ब्याज दर की गणना की जानी चाहिए। यह प्रभावी वार्षिक ब्याज दर, <math>\, i \, </math>, को त्रैमासिक रूप से संयोजित नाममात्र वार्षिक ब्याज दर में परिवर्तित करके किया जा सकता है: | ||
:<math> (1+i) = \left(1+\frac{i^{4}}{4}\right)^4 </math><ref name="Broverman"/> | :<math> (1+i) = \left(1+\frac{i^{4}}{4}\right)^4 </math><ref name="Broverman"/> | ||
Line 76: | Line 76: | ||
====किसी वार्षिकी का वर्तमान मूल्य==== | ====किसी वार्षिकी का वर्तमान मूल्य==== | ||
{{See also|वार्षिकी या मूल्यांकन}} | {{See also|वार्षिकी या मूल्यांकन}} | ||
अनेक वित्तीय व्यवस्थाएं (बांड, अन्य ऋण, पट्टे, वेतन, सदस्यता बकाया, [[वार्षिकी]]-तत्काल और वार्षिकी-देय, सीधी-रेखा मूल्यह्रास शुल्क सहित वार्षिकियां) संरचित भुगतान कार्यक्रम निर्धारित करती हैं; नियमित समय अंतराल पर समान राशि का भुगतान। ऐसी व्यवस्था को वार्षिकी कहा जाता है। ऐसे भुगतानों के वर्तमान मूल्य की अभिव्यक्तियाँ ज्यामितीय श्रृंखला का [[योग]] हैं। | |||
वार्षिकियां दो प्रकार की होती हैं: वार्षिकी-तत्काल और वार्षिकी-देय। तत्काल वार्षिकी के लिए, <math>\, n \, </math> भुगतान प्रत्येक अवधि के अंत में 1 से <math>\, n \, </math> तक प्राप्त होते हैं (या भुगतान किए जाते हैं), जबकि देय वार्षिकी, <math>\, n \, </math> के लिए, भुगतान प्राप्त होते हैं (या भुगतान किया जाता है) भुगतान) प्रत्येक अवधि की | वार्षिकियां दो प्रकार की होती हैं: वार्षिकी-तत्काल और वार्षिकी-देय। तत्काल वार्षिकी के लिए, <math>\, n \, </math> भुगतान प्रत्येक अवधि के अंत में 1 से <math>\, n \, </math> तक प्राप्त होते हैं (या भुगतान किए जाते हैं), जबकि देय वार्षिकी, <math>\, n \, </math> के लिए, भुगतान प्राप्त होते हैं (या भुगतान किया जाता है) भुगतान) प्रत्येक अवधि की प्रारंभ में, 0 से <math>\, n-1 \, </math> तक के समय पर।<ref name="Ross"/> वर्तमान मूल्य की गणना करते समय इस सूक्ष्म अंतर को ध्यान में रखा जाना चाहिए। | ||
देय वार्षिकी और ब्याज-अर्जन अवधि के साथ तत्काल वार्षिकी है। इस प्रकार, दो वर्तमान मान <math>(1+i)</math> के कारक से भिन्न हैं: | देय वार्षिकी और ब्याज-अर्जन अवधि के साथ तत्काल वार्षिकी है। इस प्रकार, दो वर्तमान मान <math>(1+i)</math> के कारक से भिन्न हैं: | ||
Line 98: | Line 98: | ||
वार्षिकी तत्काल गणना के लिए उपरोक्त सूत्र (1) औसत उपयोगकर्ता के लिए बहुत कम जानकारी प्रदान करता है और इसके लिए कुछ प्रकार की कंप्यूटिंग मशीनरी के उपयोग की आवश्यकता होती है। अनुमान है जो कम डराने वाला है, गणना करने में आसान है और गैर-विशेषज्ञ के लिए कुछ अंतर्दृष्टि प्रदान करता है। यह द्वारा दिया गया है <ref>Swingler, D. N., (2014), "A Rule of Thumb approximation for time value of money calculations", ''Journal of Personal Finance'', Vol. 13,Issue 2, pp.57-61</ref> | वार्षिकी तत्काल गणना के लिए उपरोक्त सूत्र (1) औसत उपयोगकर्ता के लिए बहुत कम जानकारी प्रदान करता है और इसके लिए कुछ प्रकार की कंप्यूटिंग मशीनरी के उपयोग की आवश्यकता होती है। अनुमान है जो कम डराने वाला है, गणना करने में आसान है और गैर-विशेषज्ञ के लिए कुछ अंतर्दृष्टि प्रदान करता है। यह द्वारा दिया गया है <ref>Swingler, D. N., (2014), "A Rule of Thumb approximation for time value of money calculations", ''Journal of Personal Finance'', Vol. 13,Issue 2, pp.57-61</ref> | ||
:: <math>C \approx PV \left( \frac {1}{n} + \frac {2}{3} i \right) </math> | :: <math>C \approx PV \left( \frac {1}{n} + \frac {2}{3} i \right) </math> | ||
जहां, ऊपर के अनुसार, सी वार्षिकी भुगतान है, पीवी मूलधन है, एन पहली अवधि के अंत से | जहां, ऊपर के अनुसार, सी वार्षिकी भुगतान है, पीवी मूलधन है, एन पहली अवधि के अंत से प्रारंभिक होने वाले भुगतानों की संख्या है, और आई प्रति अवधि ब्याज दर है। समान रूप से सी, ब्याज दर पर n अवधियों तक विस्तारित पीवी के ऋण के लिए आवधिक ऋण चुकौती है। सूत्र ni≤3 के लिए (सकारात्मक n, i के लिए) मान्य है। पूर्णता के लिए, ni≥3 के लिए सन्निकटन है <math> C \approx PV i</math> है. | ||
सूत्र, कुछ परिस्थितियों में, गणना को केवल मानसिक अंकगणित तक कम कर सकता है। उदाहरण के लिए, 15% ब्याज (i = 0.15) पर n = दस वर्षों के लिए पीवी = $10,000 के ऋण के लिए (अनुमानित) ऋण चुकौती क्या है? अकेले मानसिक अंकगणित द्वारा | सूत्र, कुछ परिस्थितियों में, गणना को केवल मानसिक अंकगणित तक कम कर सकता है। उदाहरण के लिए, 15% ब्याज (i = 0.15) पर n = दस वर्षों के लिए पीवी = $10,000 के ऋण के लिए (अनुमानित) ऋण चुकौती क्या है? अकेले मानसिक अंकगणित द्वारा क्रियान्वित अनुमानित सूत्र C ≈ 10,000*(1/10 + (2/3) 0.15) = 10,000*(0.1+0.1) = 10,000*0.2 = $2000 प्रति वर्ष है। सही उत्तर $1993 है, बहुत करीब। | ||
समग्र अनुमान 0≤i≤0.20 ब्याज दरों के लिए ±6% (सभी n≥1 के लिए) के | समग्र अनुमान 0≤i≤0.20 ब्याज दरों के लिए ±6% (सभी n≥1 के लिए) के अंदर और 0.20≤i≤0.40 ब्याज दरों के लिए ±10% के अंदर स्पष्ट है। चूँकि , इसका उद्देश्य केवल मोटे तौर पर गणना करना है। | ||
====किसी शाश्वतता का वर्तमान मूल्य==== | ====किसी शाश्वतता का वर्तमान मूल्य==== | ||
शाश्वतता का तात्पर्य आवधिक भुगतान से है, जो अनिश्चित काल तक प्राप्य है, | शाश्वतता का तात्पर्य आवधिक भुगतान से है, जो अनिश्चित काल तक प्राप्य है, चूँकि ऐसे कुछ ही उपकरण उपस्थित हैं। जैसे-जैसे n अनंत की ओर बढ़ता है, उपरोक्त सूत्र की सीमा लेकर शाश्वतता के वर्तमान मूल्य की गणना की जा सकती है। | ||
:<math>PV\,=\,\frac{C}{i}. \qquad (2)</math> | :<math>PV\,=\,\frac{C}{i}. \qquad (2)</math> | ||
Line 113: | Line 113: | ||
जो ज्यामितीय श्रृंखला बनाते हैं। | जो ज्यामितीय श्रृंखला बनाते हैं। | ||
फिर से शाश्वत तत्काल - जब भुगतान अवधि के अंत में प्राप्त होता है - और शाश्वत देय भुगतान - अवधि की | फिर से शाश्वत तत्काल - जब भुगतान अवधि के अंत में प्राप्त होता है - और शाश्वत देय भुगतान - अवधि की प्रारंभ में प्राप्त भुगतान के मध्य अंतर होता है। और वार्षिकी गणना के समान, स्थायी देयता और तत्काल देय राशि में कारक का अंतर होता है <math>(1+i) </math>: | ||
:<math> PV_\text{perpetuity due} = PV_\text{perpetuity immediate}(1+i) \,\!</math><ref name="Broverman"/> | :<math> PV_\text{perpetuity due} = PV_\text{perpetuity immediate}(1+i) \,\!</math><ref name="Broverman"/> | ||
Line 124: | Line 124: | ||
बांड का वर्तमान मूल्य खरीद मूल्य है।<ref name="Broverman"/> खरीद मूल्य की गणना इस प्रकार की जा सकती है: | बांड का वर्तमान मूल्य खरीद मूल्य है।<ref name="Broverman"/> खरीद मूल्य की गणना इस प्रकार की जा सकती है: | ||
:<math>PV = \left[\sum_{k=1}^{n} Fr(1+i)^{-k}\right]</math> <math> + F(1+i)^{-n} </math> | :<math>PV = \left[\sum_{k=1}^{n} Fr(1+i)^{-k}\right]</math> <math> + F(1+i)^{-n} </math> | ||
यदि कूपन दर बाजार की | यदि कूपन दर बाजार की आधुनिक ब्याज दर के सामान्तर है तब खरीद मूल्य बांड के अंकित मूल्य के सामान्तर है, और इस स्थितियों में, बांड को 'सामान्तर पर' बेचा जाता है। यदि कूपन दर बाजार ब्याज दर से कम है, तब खरीद मूल्य बांड के अंकित मूल्य से कम होगा, और कहा जाता है कि बांड 'छूट पर' या सामान्तर से नीचे बेचा गया है। अंत में, यदि कूपन दर बाजार ब्याज दर से अधिक है, तब खरीद मूल्य बांड के अंकित मूल्य से अधिक होगा, और कहा जाता है कि बांड 'प्रीमियम पर' या उससे ऊपर बेचा गया है।<ref name="Ross"/> | ||
===== | =====विधि विवरण===== | ||
वर्तमान मान योगात्मक व्युत्क्रम है। [[नकदी प्रवाह]] के बंडल का वर्तमान मूल्य प्रत्येक के वर्तमान मूल्य का योग है। आगे की चर्चा के लिए पैसे का समय मूल्य देखें। | वर्तमान मान योगात्मक व्युत्क्रम है। [[नकदी प्रवाह]] के बंडल का वर्तमान मूल्य प्रत्येक के वर्तमान मूल्य का योग है। आगे की चर्चा के लिए पैसे का समय मूल्य देखें। | ||
इन गणनाओं को सावधानीपूर्वक | इन गणनाओं को सावधानीपूर्वक क्रियान्वित किया जाना चाहिए, क्योंकि इसमें अंतर्निहित धारणाएँ हैं: | ||
* कि मूल्य मुद्रास्फीति को ध्यान में रखना आवश्यक नहीं है, या वैकल्पिक रूप से, मुद्रास्फीति की | * कि मूल्य मुद्रास्फीति को ध्यान में रखना आवश्यक नहीं है, या वैकल्पिक रूप से, मुद्रास्फीति की निवेश को ब्याज दर में सम्मिलित किया गया है; [[मुद्रास्फीति-सूचकांकित बांड]] देखें। | ||
* कि भुगतान प्राप्त होने की संभावना अधिक है - या, वैकल्पिक रूप से, डिफ़ॉल्ट | * कि भुगतान प्राप्त होने की संभावना अधिक है - या, वैकल्पिक रूप से, डिफ़ॉल्ट कठिन परिस्थिति को ब्याज दर में सम्मिलित किया गया है; कॉर्पोरेट बांड कठिन परिस्थिति विश्लेषण देखें। | ||
(वास्तव में, स्थिर ब्याज दर पर नकदी प्रवाह का वर्तमान मूल्य गणितीय रूप से उस नकदी प्रवाह के [[लाप्लास परिवर्तन]] में बिंदु है, जिसका मूल्यांकन ब्याज दर के | (वास्तव में, स्थिर ब्याज दर पर नकदी प्रवाह का वर्तमान मूल्य गणितीय रूप से उस नकदी प्रवाह के [[लाप्लास परिवर्तन]] में बिंदु है, जिसका मूल्यांकन ब्याज दर के सामान्तर परिवर्तन चर (सामान्यतः "एस" के रूप में दर्शाया जाता है) के साथ किया जाता है। पूर्ण लाप्लास परिवर्तन है सभी आधुनिक मूल्यों का वक्र, ब्याज दर के फलन के रूप में प्लॉट किया गया। अलग-अलग समय के लिए, जहां भुगतान बड़ी समय अवधि से अलग हो जाते हैं, परिवर्तन राशि में कम हो जाता है, किन्तु जब भुगतान लगभग निरंतर आधार पर चल रहे होते हैं, तब निरंतर का गणित फ़ंक्शंस का उपयोग सन्निकटन के रूप में किया जा सकता है।) | ||
===वेरिएंट/दृष्टिकोण=== | ===वेरिएंट/दृष्टिकोण=== | ||
वर्तमान मूल्य के मुख्य रूप से दो स्वाद हैं। जब भी नकदी प्रवाह के समय और मात्रा दोनों में अनिश्चितताएं होंगी, | वर्तमान मूल्य के मुख्य रूप से दो स्वाद हैं। जब भी नकदी प्रवाह के समय और मात्रा दोनों में अनिश्चितताएं होंगी, तब अपेक्षित वर्तमान मूल्य दृष्टिकोण अधिकांशतः उपयुक्त विधि होगी। अनिश्चितता के अनुसार वर्तमान मूल्य के साथ, भविष्य के लाभांश को उनकी सशर्त अपेक्षा से बदल दिया जाता है। | ||
* पारंपरिक वर्तमान मूल्य दृष्टिकोण - इस दृष्टिकोण में उचित मूल्य का अनुमान लगाने के लिए अनुमानित नकदी प्रवाह का | * पारंपरिक वर्तमान मूल्य दृष्टिकोण - इस दृष्टिकोण में उचित मूल्य का अनुमान लगाने के लिए अनुमानित नकदी प्रवाह का समुच्चय और ल ब्याज दर (कठिन परिस्थिति के अनुरूप, सामान्यतः निवेश घटकों का भारित औसत) का उपयोग किया जाएगा। | ||
* अपेक्षित वर्तमान मूल्य दृष्टिकोण - इस दृष्टिकोण में उचित मूल्य का अनुमान लगाने के लिए विभिन्न/अपेक्षित संभावनाओं और क्रेडिट-समायोजित | * अपेक्षित वर्तमान मूल्य दृष्टिकोण - इस दृष्टिकोण में उचित मूल्य का अनुमान लगाने के लिए विभिन्न/अपेक्षित संभावनाओं और क्रेडिट-समायोजित कठिन परिस्थिति मुक्त दर के साथ अनेक नकदी प्रवाह परिदृश्यों का उपयोग किया जाता है। | ||
===ब्याज दर का विकल्प=== | ===ब्याज दर का विकल्प=== | ||
यदि परियोजना में कोई | यदि परियोजना में कोई कठिन परिस्थिति सम्मिलित नहीं है तब उपयोग की जाने वाली ब्याज दर कठिन परिस्थिति -मुक्त ब्याज दर है। परियोजना से रिटर्न की दर रिटर्न की इस दर के सामान्तर या उससे अधिक होनी चाहिए या इन कठिन परिस्थिति मुक्त परिसंपत्तियों में पूंजी निवेश करना बढ़िया होगा। यदि किसी निवेश में कठिन परिस्थिति सम्मिलित हैं तब इसे [[जोखिम प्रीमियम|कठिन परिस्थिति प्रीमियम]] के उपयोग के माध्यम से दर्शाया जा सकता है। आवश्यक कठिन परिस्थिति प्रीमियम को समान कठिन परिस्थिति वाली अन्य परियोजनाओं से अपेक्षित रिटर्न की दर के साथ परियोजना की तुलना करके पाया जा सकता है। इस प्रकार निवेशकों के लिए विभिन्न निवेशों में सम्मिलित किसी भी अनिश्चितता को ध्यान में रखना संभव है। | ||
==मूल्यांकन की वर्तमान मूल्य पद्धति== | ==मूल्यांकन की वर्तमान मूल्य पद्धति== | ||
निवेशक, पैसे का ऋणदाता, को उस वित्तीय परियोजना का निर्णय करना होगा जिसमें अपना पैसा निवेश करना है, और वर्तमान मूल्य निर्णय लेने का | निवेशक, पैसे का ऋणदाता, को उस वित्तीय परियोजना का निर्णय करना होगा जिसमें अपना पैसा निवेश करना है, और वर्तमान मूल्य निर्णय लेने का प्रणाली प्रदान करता है।<ref name=Moyer/> वित्तीय परियोजना के लिए धन के प्रारंभिक परिव्यय की आवश्यकता होती है, जैसे स्टॉक की कीमत या कॉर्पोरेट बॉन्ड की कीमत। परियोजना प्रारंभिक परिव्यय, साथ ही कुछ अधिशेष (उदाहरण के लिए, ब्याज, या भविष्य के नकदी प्रवाह) को वापस करने का प्रमाणित करती है। निवेशक प्रत्येक परियोजना के वर्तमान मूल्य (प्रत्येक गणना के लिए समान ब्याज दर का उपयोग करके) की गणना करके और फिर उनकी तुलना करके यह तय कर सकता है कि किस परियोजना में निवेश करना है। सबसे कम वर्तमान मूल्य वाली परियोजना - सबसे कम प्रारंभिक परिव्यय - को चुना जाएगा क्योंकि यह कम से कम धनराशि के लिए अन्य परियोजनाओं के समान रिटर्न प्रदान करती है।<ref name=Broverman/> | ||
==वर्षों की खरीद== | ==वर्षों की खरीद== | ||
वर्तमान पूंजी योग के रूप में भविष्य की आय धाराओं का मूल्यांकन करने की पारंपरिक विधि औसत अपेक्षित वार्षिक नकदी प्रवाह को गुणक से गुणा करना है, जिसे वर्षों की खरीद के रूप में जाना जाता है। उदाहरण के लिए, किसी किरायेदार को 99 साल के पट्टे के | वर्तमान पूंजी योग के रूप में भविष्य की आय धाराओं का मूल्यांकन करने की पारंपरिक विधि औसत अपेक्षित वार्षिक नकदी प्रवाह को गुणक से गुणा करना है, जिसे वर्षों की खरीद के रूप में जाना जाता है। उदाहरण के लिए, किसी किरायेदार को 99 साल के पट्टे के अनुसार 10,000 डॉलर प्रति वर्ष के किराए पर ली गई संपत्ति को किसी तीसरे पक्ष को बेचने पर, 20 साल की खरीद पर सौदा हो सकता है, जिसमें पट्टे का मूल्य 20 * $10,000 होगा, अर्थात $200,000. यह वर्तमान मूल्य पर 5% की शाश्वत छूट के सामान्तर है। कठिन परिस्थिति पूर्ण निवेश के लिए क्रेता कम वर्षों की खरीद के लिए भुगतान करने की मांग करेगा। उदाहरण के लिए, 16वीं शताब्दी की प्रारंभ में मठों के विघटन के समय जब्त की गई जागीरों के लिए पुनर्विक्रय मूल्य निर्धारित करने में अंग्रेजी ताज द्वारा इसी पद्धति का उपयोग किया गया था। मानक उपयोग 20 वर्षों की खरीद थी।<ref>Youings, Joyce, "Devon Monastic Lands: Calendar of Particulars for Grants 1536–1558", Devon & Cornwall Record Society, ''New Series'', Vol.1, 1955</ref> | ||
Revision as of 22:38, 10 July 2023
अर्थशास्त्र और वित्त में, वर्तमान मूल्य (पीवी), जिसे वर्तमान रियायती मूल्य के रूप में भी जाना जाता है, मूल्यांकन की तारीख के अनुसार निर्धारित अपेक्षित आय धारा का मूल्य है। वर्तमान मूल्य सामान्यतः भविष्य के मूल्य से कम होता है क्योंकि पैसे में ब्याज कमाने की क्षमता होती है, विशेषता जिसे पैसे का समय मूल्य कहा जाता है, शून्य या नकारात्मक ब्याज दरों के समय को छोड़कर, जब वर्तमान मूल्य सामान्तर या उससे अधिक होगा भविष्य का मूल्य.[1] समय के मूल्य को सरलीकृत वाक्यांश के साथ वर्णित किया जा सकता है, "आज डॉलर का मूल्य कल डॉलर से अधिक है"। यहां 'मूल्य अधिक' का अर्थ है कि उसका मूल्य कल से अधिक है। आज डॉलर का मूल्य कल के डॉलर से अधिक है क्योंकि डॉलर का निवेश किया जा सकता है और दिन का ब्याज अर्जित किया जा सकता है, जिससे कल तक कुल राशि डॉलर से अधिक मूल्य पर जमा हो जाएगी। ब्याज की तुलना किराये से की जा सकती है।[2] जिस तरह किरायेदार द्वारा मकान मालिक को संपत्ति का स्वामित्व हस्तांतरित किए बिना किराया भुगतान किया जाता है, उसी तरह ऋणदाता को ब्याज का भुगतान उधारकर्ता द्वारा किया जाता है जो इसे वापस भुगतान करने से पहले कुछ समय के लिए पैसे तक पहुंच प्राप्त करता है। उधारकर्ता को पैसे तक पहुंच देकर, ऋणदाता ने इस पैसे के विनिमय मूल्य का त्याग कर दिया है, और इसके लिए ब्याज के रूप में मुआवजा दिया जाता है। उधार ली गई धनराशि की प्रारंभिक राशि (वर्तमान मूल्य) ऋणदाता को भुगतान की गई कुल राशि से कम है।
वर्तमान मूल्य गणना, और इसी तरह भविष्य के मूल्य गणना का उपयोग ऋण, बंधक, वार्षिकी (वित्त सिद्धांत), डूबती निधि, शाश्वतता, बांड (वित्त), और बहुत कुछ के मूल्य निर्धारण के लिए किया जाता है। इन गणनाओं का उपयोग उन नकदी प्रवाहों के मध्य तुलना करने के लिए किया जाता है जो साथ नहीं होते हैं,[1] चूँकि मूल्यों के मध्य तुलना करने के लिए समय और तारीखें सुसंगत होनी चाहिए। ऐसी परियोजनाओं के मध्य निर्णय लेते समय जिनमें निवेश करना है, ऐसी परियोजनाओं के संबंधित वर्तमान मूल्यों की तुलना करके संबंधित परियोजना ब्याज दर, या वापसी की दर पर अपेक्षित आय धाराओं में छूट देकर चुनाव किया जा सकता है। उच्चतम वर्तमान मूल्य वाली परियोजना, अर्थात जो आज सबसे मूल्यवान है, को चुना जाना चाहिए।
पृष्ठभूमि
यदि आज $100 या वर्ष में $100 के मध्य विकल्प की प्रस्तुति की जाती है, और पूरे वर्ष सकारात्मक वास्तविक ब्याज दर होती है, तब तर्कसंगत व्यक्ति आज $100 का चयन करेगा। इसे अर्थशास्त्रियों द्वारा समय प्राथमिकता के रूप में वर्णित किया गया है। अमेरिकी ट्रेजरी बिल जैसी कठिन परिस्थिति मुक्त सुरक्षा की नीलामी करके समय की प्राथमिकता को मापा जा सकता है। यदि वर्ष में देय शून्य कूपन वाला $100 का नोट अब $80 में बिकता है, तब $80 उस नोट का वर्तमान मूल्य है जो अब से प्रति वर्ष $100 के सामान्तर होगा। ऐसा इसलिए है क्योंकि पैसा बैंक खाते या किसी अन्य (सुरक्षित) निवेश में डाला जा सकता है जो भविष्य में ब्याज लौटाएगा।
निवेशक जिसके पास कुछ पैसा है उसके पास दो विकल्प हैं: इसे अभी खर्च करना या इसे बचाना। किन्तु इसे बचाने के लिए (और इसे खर्च न करने के लिए) वित्तीय मुआवजा यह है कि धन का मूल्य चक्रवृद्धि ब्याज के माध्यम से अर्जित होगा जो वह उधारकर्ता (जिस बैंक खाते में उसने पैसा जमा किया है) से प्राप्त करेगा।
इसलिए, किसी निश्चित समयावधि के पश्चात् आज किसी धनराशि के वास्तविक मूल्य का मूल्यांकन करने के लिए, आर्थिक एजेंट धनराशि को निश्चित (ब्याज) दर पर संयोजित करते हैं। अधिकांश बीमांकिक विज्ञान गणना कठिन परिस्थिति -मुक्त ब्याज दर का उपयोग करती है जो उदाहरण के लिए बैंक के बचत खाते द्वारा प्रदान की गई न्यूनतम गारंटी दर से मेल खाती है, यह मानते हुए कि बैंक द्वारा खाताधारक को समय पर पैसा वापस करने में डिफ़ॉल्ट का कोई कठिन परिस्थिति नहीं है। क्रय शक्ति में परिवर्तन की तुलना करने के लिए वास्तविक ब्याज दर (नाममात्र ब्याज दर घटा मुद्रास्फीति दर) का उपयोग किया जाना चाहिए।
वर्तमान मूल्य का भविष्य के मूल्य में मूल्यांकन करने की प्रक्रिया को पूंजीकरण कहा जाता है (5 वर्षों में आज $100 का मूल्य कितना होगा?)। रिवर्स ऑपरेशन - भविष्य की धनराशि के वर्तमान मूल्य का मूल्यांकन करना - को डिस्काउंटिंग कहा जाता है (उदाहरण के लिए लॉटरी में 5 वर्षों में प्राप्त $ 100 का आज कितना मूल्य होगा?)।
इसका तात्पर्य यह है कि यदि किसी को आज 100 डॉलर और वर्ष में 100 डॉलर प्राप्त करने के मध्य चयन करना है, तब तर्कसंगत निर्णय आज ही 100 डॉलर चुनना है। यदि पैसा वर्ष में प्राप्त करना है और यह मानते हुए कि बचत खाते की ब्याज दर 5% है, तब व्यक्ति को वर्ष में कम से कम $105 की प्रस्तुति करनी होगी जिससे दोनों विकल्प सामान्तर हों (या तब आज $100 प्राप्त करें या बार में $105 प्राप्त करें) वर्ष)। ऐसा इसलिए है क्योंकि यदि बचत खाते में $100 जमा किए जाते हैं, तब वर्ष के पश्चात् मूल्य $105 होगा, यह मानते हुए कि बैंक डिफ़ॉल्ट के माध्यम से प्रारंभिक राशि खोने का कोई कठिन परिस्थिति नहीं है।
ब्याज दरें
ब्याज समय अवधि की प्रारंभ और समाप्ति के मध्य प्राप्त अतिरिक्त धनराशि है। ब्याज पैसे के समय मूल्य का प्रतिनिधित्व करता है, और इसे किराए के रूप में सोचा जा सकता है जो ऋणदाता से पैसे का उपयोग करने के लिए उधारकर्ता के लिए आवश्यक है।[2][3] उदाहरण के लिए, जब कोई व्यक्ति बैंक ऋण लेता है, तब उस व्यक्ति से ब्याज लिया जाता है। वैकल्पिक रूप से, जब कोई व्यक्ति बैंक में पैसा जमा करता है, तब उस पैसे पर ब्याज मिलता है। इस स्थितियों में, बैंक धनराशि का उधारकर्ता है और खाताधारक को ब्याज जमा करने के लिए जिम्मेदार है। इसी तरह, जब कोई व्यक्ति किसी कंपनी में निवेश करता है (कॉरपोरेट बॉन्ड के माध्यम से, या भंडार के माध्यम से), तब कंपनी धन उधार ले रही है, और उसे व्यक्ति को ब्याज देना होगा (कूपन भुगतान, लाभांश या स्टॉक मूल्य प्रशंसा के रूप में)।[1] ब्याज दर चक्रवृद्धि अवधि के समय धन की राशि में प्रतिशत के रूप में व्यक्त परिवर्तन है। चक्रवृद्धि अवधि वह अवधि है जो ब्याज जमा होने या कुल में जोड़े जाने से पहले होनी चाहिए।[2] उदाहरण के लिए, वार्षिक चक्रवृद्धि ब्याज साल में बार जमा किया जाता है और चक्रवृद्धि अवधि वर्ष होती है। त्रैमासिक रूप से संयोजित ब्याज वर्ष में चार बार जमा किया जाता है, और चक्रवृद्धि अवधि तीन महीने होती है। चक्रवृद्धि अवधि किसी भी लम्बाई की हो सकती है, किन्तु कुछ सामान्य अवधियाँ वार्षिक, अर्धवार्षिक, त्रैमासिक, मासिक, दैनिक और यहाँ तक कि लगातार भी होती हैं।
ब्याज दरों से जुड़े अनेक प्रकार और शर्तें हैं:
- चक्रवृद्धि ब्याज, वह ब्याज जो पश्चात् की अवधि में तेजी से बढ़ता है,
- साधारण ब्याज, योगात्मक ब्याज जो बढ़ता नहीं है
- प्रभावी ब्याज दर, अनेक चक्रवृद्धि ब्याज अवधियों की तुलना में प्रभावी समतुल्य
- नाममात्र वार्षिक ब्याज, ाधिक ब्याज अवधि की साधारण वार्षिक ब्याज दर
- डिस्काउंट विंडो, रिवर्स में गणना करते समय उलटा ब्याज दर
- निरंतर चक्रवृद्धि ब्याज, शून्य समय की अवधि के साथ ब्याज दर की गणितीय सीमा।
- वास्तविक ब्याज दर, जो मुद्रास्फीति के लिए जिम्मेदार है।
गणना
भविष्य में किसी समय किसी वर्तमान राशि का मूल्यांकन करने की प्रक्रिया को पूंजीकरण कहा जाता है (पांच वर्षों में आज 100 का मूल्य कितना होगा?)। रिवर्स ऑपरेशन - भविष्य की धनराशि के वर्तमान मूल्य का मूल्यांकन करना - डिस्काउंटिंग कहा जाता है (पांच वर्षों में प्राप्त 100 का आज कितना मूल्य होगा?)।[3]
स्प्रेडशीट सामान्यतः वर्तमान मूल्य की गणना करने के लिए फलन प्रदान करती हैं। माइक्रोसॉफ्ट एक्सेल में, एकल भुगतान के लिए वर्तमान मूल्य फलन हैं - "=एनपीवी(...)", और समान, आवधिक भुगतान की श्रृंखला - "=पीवी(...)"। कार्यक्रम किसी भी नकदी प्रवाह और ब्याज दर के लिए या अलग-अलग समय पर अलग-अलग ब्याज दरों की अनुसूची के लिए लचीले ढंग से वर्तमान मूल्य की गणना करेंगे।
एकमुश्त राशि का वर्तमान मूल्य
वर्तमान मूल्यांकन का सबसे अधिक क्रियान्वित मॉडल चक्रवृद्धि ब्याज का उपयोग करता है। मानक सूत्र है:
जहां भविष्य में मिलने वाली राशि है जिस पर छूट दी जानी चाहिए, वर्तमान तिथि और उस तिथि के मध्य चक्रवृद्धि अवधि की संख्या है जहां राशि का मूल्य , है , चक्रवृद्धि अवधि के लिए ब्याज दर है (चक्रवृद्धि अवधि का अंत तब होता है जब ब्याज क्रियान्वित होता है, उदाहरण के लिए, वार्षिक, अर्धवार्षिक, त्रैमासिक, मासिक, दैनिक)। ब्याज दर,, प्रतिशत के रूप में दी गई है, किन्तु इस सूत्र में दशमलव के रूप में व्यक्त की गई है।
अधिकांशतः , वर्तमान मूल्य कारक के रूप में जाना जाता है [2]
यह नकारात्मक समय के साथ भविष्य के मूल्य चक्रवृद्धि ब्याज से भी पाया जाता है।
उदाहरण के लिए, यदि आपको पाँच वर्षों में $1000 प्राप्त होने हैं, और इस अवधि के समय प्रभावी वार्षिक ब्याज दर 10% (या 0.10) है, तब इस राशि का वर्तमान मूल्य है
व्याख्या यह है कि 10% की प्रभावी वार्षिक ब्याज दर के लिए, व्यक्ति पांच वर्षों में $1000, या आज $620.92 प्राप्त करने के प्रति उदासीन होगा।[1]
आज के धन की राशि की भविष्य में वर्षों की क्रय शक्ति की गणना उसी सूत्र से की जा सकती है, जहां इस स्थितियों में अनुमानित भविष्य की मुद्रास्फीति दर है।
यदि हम कम छूट दर (i) का उपयोग कर रहे हैं, तब यह छूट के भविष्य में वर्तमान मूल्यों को उच्च मूल्यों की अनुमति देता है।
नकदी प्रवाह की धारा का शुद्ध वर्तमान मूल्य
नकदी प्रवाह वह धनराशि है जो किसी अवधि के अंत में या तब भुगतान की जाती है या प्राप्त की जाती है, जिसे नकारात्मक या सकारात्मक संकेत द्वारा विभेदित किया जाता है। परंपरागत रूप से, प्राप्त नकदी प्रवाह को सकारात्मक संकेत के साथ दर्शाया जाता है (कुल नकदी में वृद्धि हुई है) और भुगतान किए गए नकदी प्रवाह को नकारात्मक संकेत के साथ दर्शाया जाता है (कुल नकदी में कमी आई है)। किसी अवधि के लिए नकदी प्रवाह उस अवधि के पैसे में शुद्ध परिवर्तन का प्रतिनिधित्व करता है।[3] नकदी प्रवाह की धारा के शुद्ध वर्तमान मूल्य, की गणना में प्रत्येक नकदी प्रवाह को वर्तमान में छूट देना, वर्तमान मूल्य कारक और उचित संख्या में चक्रवृद्धि अवधि का उपयोग करना और इन मूल्यों को संयोजित करना सम्मिलित है।[1]
उदाहरण के लिए, यदि नकदी प्रवाह की धारा में पहली अवधि के अंत में +$100, दूसरी अवधि के अंत में $50, और तीसरी अवधि के अंत में +$35 सम्मिलित हैं, और प्रति चक्रवृद्धि अवधि पर ब्याज दर 5% है ( 0.05) तब इन तीन नकदी प्रवाह का वर्तमान मूल्य हैं:
- क्रमश:
इस प्रकार शुद्ध वर्तमान मूल्य होगा:
कुछ विचार करने होंगे।
- अवधियाँ लगातार नहीं हो सकतीं। यदि यह मामला है, तब अवधियों की उचित संख्या को प्रतिबिंबित करने के लिए घातांक बदल जाएंगे
- प्रति अवधि ब्याज दरें समान नहीं हो सकती हैं। उचित अवधि के लिए ब्याज दर का उपयोग करके नकदी प्रवाह में छूट दी जानी चाहिए: यदि ब्याज दर में परिवर्तन होता है, तब दूसरी ब्याज दर का उपयोग करके उस अवधि में राशि में छूट दी जानी चाहिए जहां परिवर्तन होता है, फिर पहली ब्याज दर का उपयोग करके वर्तमान में छूट दी जानी चाहिए .[2] उदाहरण के लिए, यदि पहली अवधि के लिए नकदी प्रवाह $100 है, और दूसरी अवधि के लिए $200 है, और पहली अवधि के लिए ब्याज दर 5% है, और दूसरी के लिए 10% है, तब शुद्ध वर्तमान मूल्य होगा:
- ब्याज दर आवश्यक रूप से भुगतान अवधि के साथ मेल खाना चाहिए। यदि नहीं, तब या तब भुगतान अवधि या ब्याज दर को संशोधित किया जाना चाहिए। उदाहरण के लिए, यदि दी गई ब्याज दर प्रभावी वार्षिक ब्याज दर है, किन्तु नकदी प्रवाह त्रैमासिक प्राप्त होता है (और/या भुगतान किया जाता है), तब प्रति तिमाही ब्याज दर की गणना की जानी चाहिए। यह प्रभावी वार्षिक ब्याज दर, , को त्रैमासिक रूप से संयोजित नाममात्र वार्षिक ब्याज दर में परिवर्तित करके किया जा सकता है:
यहाँ, नाममात्र वार्षिक ब्याज दर है, जो त्रैमासिक रूप से संयोजित होती है, और प्रति तिमाही ब्याज दर है
किसी वार्षिकी का वर्तमान मूल्य
अनेक वित्तीय व्यवस्थाएं (बांड, अन्य ऋण, पट्टे, वेतन, सदस्यता बकाया, वार्षिकी-तत्काल और वार्षिकी-देय, सीधी-रेखा मूल्यह्रास शुल्क सहित वार्षिकियां) संरचित भुगतान कार्यक्रम निर्धारित करती हैं; नियमित समय अंतराल पर समान राशि का भुगतान। ऐसी व्यवस्था को वार्षिकी कहा जाता है। ऐसे भुगतानों के वर्तमान मूल्य की अभिव्यक्तियाँ ज्यामितीय श्रृंखला का योग हैं।
वार्षिकियां दो प्रकार की होती हैं: वार्षिकी-तत्काल और वार्षिकी-देय। तत्काल वार्षिकी के लिए, भुगतान प्रत्येक अवधि के अंत में 1 से तक प्राप्त होते हैं (या भुगतान किए जाते हैं), जबकि देय वार्षिकी, के लिए, भुगतान प्राप्त होते हैं (या भुगतान किया जाता है) भुगतान) प्रत्येक अवधि की प्रारंभ में, 0 से तक के समय पर।[3] वर्तमान मूल्य की गणना करते समय इस सूक्ष्म अंतर को ध्यान में रखा जाना चाहिए।
देय वार्षिकी और ब्याज-अर्जन अवधि के साथ तत्काल वार्षिकी है। इस प्रकार, दो वर्तमान मान के कारक से भिन्न हैं:
तत्काल वार्षिकी का वर्तमान मूल्य नकदी प्रवाह की धारा के समय 0 पर मूल्य है:
जहाँ:
- = अवधियों की संख्या,
- = नकदी प्रवाह की राशि,
- = प्रभावी आवधिक ब्याज दर या वापसी की दर.
वार्षिकी और ऋण गणना के लिए अनुमान
वार्षिकी तत्काल गणना के लिए उपरोक्त सूत्र (1) औसत उपयोगकर्ता के लिए बहुत कम जानकारी प्रदान करता है और इसके लिए कुछ प्रकार की कंप्यूटिंग मशीनरी के उपयोग की आवश्यकता होती है। अनुमान है जो कम डराने वाला है, गणना करने में आसान है और गैर-विशेषज्ञ के लिए कुछ अंतर्दृष्टि प्रदान करता है। यह द्वारा दिया गया है [4]
जहां, ऊपर के अनुसार, सी वार्षिकी भुगतान है, पीवी मूलधन है, एन पहली अवधि के अंत से प्रारंभिक होने वाले भुगतानों की संख्या है, और आई प्रति अवधि ब्याज दर है। समान रूप से सी, ब्याज दर पर n अवधियों तक विस्तारित पीवी के ऋण के लिए आवधिक ऋण चुकौती है। सूत्र ni≤3 के लिए (सकारात्मक n, i के लिए) मान्य है। पूर्णता के लिए, ni≥3 के लिए सन्निकटन है है.
सूत्र, कुछ परिस्थितियों में, गणना को केवल मानसिक अंकगणित तक कम कर सकता है। उदाहरण के लिए, 15% ब्याज (i = 0.15) पर n = दस वर्षों के लिए पीवी = $10,000 के ऋण के लिए (अनुमानित) ऋण चुकौती क्या है? अकेले मानसिक अंकगणित द्वारा क्रियान्वित अनुमानित सूत्र C ≈ 10,000*(1/10 + (2/3) 0.15) = 10,000*(0.1+0.1) = 10,000*0.2 = $2000 प्रति वर्ष है। सही उत्तर $1993 है, बहुत करीब।
समग्र अनुमान 0≤i≤0.20 ब्याज दरों के लिए ±6% (सभी n≥1 के लिए) के अंदर और 0.20≤i≤0.40 ब्याज दरों के लिए ±10% के अंदर स्पष्ट है। चूँकि , इसका उद्देश्य केवल मोटे तौर पर गणना करना है।
किसी शाश्वतता का वर्तमान मूल्य
शाश्वतता का तात्पर्य आवधिक भुगतान से है, जो अनिश्चित काल तक प्राप्य है, चूँकि ऐसे कुछ ही उपकरण उपस्थित हैं। जैसे-जैसे n अनंत की ओर बढ़ता है, उपरोक्त सूत्र की सीमा लेकर शाश्वतता के वर्तमान मूल्य की गणना की जा सकती है।
फॉर्मूला (2) को (1) शाश्वत विलंबित एन अवधि के वर्तमान मूल्य से घटाकर, या सीधे भुगतान के वर्तमान मूल्य को जोड़कर भी पाया जा सकता है।
जो ज्यामितीय श्रृंखला बनाते हैं।
फिर से शाश्वत तत्काल - जब भुगतान अवधि के अंत में प्राप्त होता है - और शाश्वत देय भुगतान - अवधि की प्रारंभ में प्राप्त भुगतान के मध्य अंतर होता है। और वार्षिकी गणना के समान, स्थायी देयता और तत्काल देय राशि में कारक का अंतर होता है :
बंधन का पीवी
- देखें: बांड मूल्यांकन वर्तमान मूल्य दृष्टिकोण
निगम धन जुटाने के लिए निवेशक को बांड (वित्त), ब्याज अर्जित करने वाली ऋण सुरक्षा जारी करता है।[3] बांड का अंकित मूल्य होता है, , कूपन दर, , और परिपक्वता तिथि जो बदले में ऋण परिपक्व होने और चुकाए जाने तक की अवधि की संख्या उत्पन्न करती है। बांडधारक को अर्धवार्षिक रूप से कूपन भुगतान प्राप्त होगा (जब तक कि अन्यथा निर्दिष्ट न हो)। , जब तक बांड परिपक्व नहीं हो जाता, तब तक बांडधारक को अंतिम कूपन भुगतान और बांड का अंकित मूल्य प्राप्त होगा, .
बांड का वर्तमान मूल्य खरीद मूल्य है।[2] खरीद मूल्य की गणना इस प्रकार की जा सकती है:
यदि कूपन दर बाजार की आधुनिक ब्याज दर के सामान्तर है तब खरीद मूल्य बांड के अंकित मूल्य के सामान्तर है, और इस स्थितियों में, बांड को 'सामान्तर पर' बेचा जाता है। यदि कूपन दर बाजार ब्याज दर से कम है, तब खरीद मूल्य बांड के अंकित मूल्य से कम होगा, और कहा जाता है कि बांड 'छूट पर' या सामान्तर से नीचे बेचा गया है। अंत में, यदि कूपन दर बाजार ब्याज दर से अधिक है, तब खरीद मूल्य बांड के अंकित मूल्य से अधिक होगा, और कहा जाता है कि बांड 'प्रीमियम पर' या उससे ऊपर बेचा गया है।[3]
विधि विवरण
वर्तमान मान योगात्मक व्युत्क्रम है। नकदी प्रवाह के बंडल का वर्तमान मूल्य प्रत्येक के वर्तमान मूल्य का योग है। आगे की चर्चा के लिए पैसे का समय मूल्य देखें। इन गणनाओं को सावधानीपूर्वक क्रियान्वित किया जाना चाहिए, क्योंकि इसमें अंतर्निहित धारणाएँ हैं:
- कि मूल्य मुद्रास्फीति को ध्यान में रखना आवश्यक नहीं है, या वैकल्पिक रूप से, मुद्रास्फीति की निवेश को ब्याज दर में सम्मिलित किया गया है; मुद्रास्फीति-सूचकांकित बांड देखें।
- कि भुगतान प्राप्त होने की संभावना अधिक है - या, वैकल्पिक रूप से, डिफ़ॉल्ट कठिन परिस्थिति को ब्याज दर में सम्मिलित किया गया है; कॉर्पोरेट बांड कठिन परिस्थिति विश्लेषण देखें।
(वास्तव में, स्थिर ब्याज दर पर नकदी प्रवाह का वर्तमान मूल्य गणितीय रूप से उस नकदी प्रवाह के लाप्लास परिवर्तन में बिंदु है, जिसका मूल्यांकन ब्याज दर के सामान्तर परिवर्तन चर (सामान्यतः "एस" के रूप में दर्शाया जाता है) के साथ किया जाता है। पूर्ण लाप्लास परिवर्तन है सभी आधुनिक मूल्यों का वक्र, ब्याज दर के फलन के रूप में प्लॉट किया गया। अलग-अलग समय के लिए, जहां भुगतान बड़ी समय अवधि से अलग हो जाते हैं, परिवर्तन राशि में कम हो जाता है, किन्तु जब भुगतान लगभग निरंतर आधार पर चल रहे होते हैं, तब निरंतर का गणित फ़ंक्शंस का उपयोग सन्निकटन के रूप में किया जा सकता है।)
वेरिएंट/दृष्टिकोण
वर्तमान मूल्य के मुख्य रूप से दो स्वाद हैं। जब भी नकदी प्रवाह के समय और मात्रा दोनों में अनिश्चितताएं होंगी, तब अपेक्षित वर्तमान मूल्य दृष्टिकोण अधिकांशतः उपयुक्त विधि होगी। अनिश्चितता के अनुसार वर्तमान मूल्य के साथ, भविष्य के लाभांश को उनकी सशर्त अपेक्षा से बदल दिया जाता है।
- पारंपरिक वर्तमान मूल्य दृष्टिकोण - इस दृष्टिकोण में उचित मूल्य का अनुमान लगाने के लिए अनुमानित नकदी प्रवाह का समुच्चय और ल ब्याज दर (कठिन परिस्थिति के अनुरूप, सामान्यतः निवेश घटकों का भारित औसत) का उपयोग किया जाएगा।
- अपेक्षित वर्तमान मूल्य दृष्टिकोण - इस दृष्टिकोण में उचित मूल्य का अनुमान लगाने के लिए विभिन्न/अपेक्षित संभावनाओं और क्रेडिट-समायोजित कठिन परिस्थिति मुक्त दर के साथ अनेक नकदी प्रवाह परिदृश्यों का उपयोग किया जाता है।
ब्याज दर का विकल्प
यदि परियोजना में कोई कठिन परिस्थिति सम्मिलित नहीं है तब उपयोग की जाने वाली ब्याज दर कठिन परिस्थिति -मुक्त ब्याज दर है। परियोजना से रिटर्न की दर रिटर्न की इस दर के सामान्तर या उससे अधिक होनी चाहिए या इन कठिन परिस्थिति मुक्त परिसंपत्तियों में पूंजी निवेश करना बढ़िया होगा। यदि किसी निवेश में कठिन परिस्थिति सम्मिलित हैं तब इसे कठिन परिस्थिति प्रीमियम के उपयोग के माध्यम से दर्शाया जा सकता है। आवश्यक कठिन परिस्थिति प्रीमियम को समान कठिन परिस्थिति वाली अन्य परियोजनाओं से अपेक्षित रिटर्न की दर के साथ परियोजना की तुलना करके पाया जा सकता है। इस प्रकार निवेशकों के लिए विभिन्न निवेशों में सम्मिलित किसी भी अनिश्चितता को ध्यान में रखना संभव है।
मूल्यांकन की वर्तमान मूल्य पद्धति
निवेशक, पैसे का ऋणदाता, को उस वित्तीय परियोजना का निर्णय करना होगा जिसमें अपना पैसा निवेश करना है, और वर्तमान मूल्य निर्णय लेने का प्रणाली प्रदान करता है।[1] वित्तीय परियोजना के लिए धन के प्रारंभिक परिव्यय की आवश्यकता होती है, जैसे स्टॉक की कीमत या कॉर्पोरेट बॉन्ड की कीमत। परियोजना प्रारंभिक परिव्यय, साथ ही कुछ अधिशेष (उदाहरण के लिए, ब्याज, या भविष्य के नकदी प्रवाह) को वापस करने का प्रमाणित करती है। निवेशक प्रत्येक परियोजना के वर्तमान मूल्य (प्रत्येक गणना के लिए समान ब्याज दर का उपयोग करके) की गणना करके और फिर उनकी तुलना करके यह तय कर सकता है कि किस परियोजना में निवेश करना है। सबसे कम वर्तमान मूल्य वाली परियोजना - सबसे कम प्रारंभिक परिव्यय - को चुना जाएगा क्योंकि यह कम से कम धनराशि के लिए अन्य परियोजनाओं के समान रिटर्न प्रदान करती है।[2]
वर्षों की खरीद
वर्तमान पूंजी योग के रूप में भविष्य की आय धाराओं का मूल्यांकन करने की पारंपरिक विधि औसत अपेक्षित वार्षिक नकदी प्रवाह को गुणक से गुणा करना है, जिसे वर्षों की खरीद के रूप में जाना जाता है। उदाहरण के लिए, किसी किरायेदार को 99 साल के पट्टे के अनुसार 10,000 डॉलर प्रति वर्ष के किराए पर ली गई संपत्ति को किसी तीसरे पक्ष को बेचने पर, 20 साल की खरीद पर सौदा हो सकता है, जिसमें पट्टे का मूल्य 20 * $10,000 होगा, अर्थात $200,000. यह वर्तमान मूल्य पर 5% की शाश्वत छूट के सामान्तर है। कठिन परिस्थिति पूर्ण निवेश के लिए क्रेता कम वर्षों की खरीद के लिए भुगतान करने की मांग करेगा। उदाहरण के लिए, 16वीं शताब्दी की प्रारंभ में मठों के विघटन के समय जब्त की गई जागीरों के लिए पुनर्विक्रय मूल्य निर्धारित करने में अंग्रेजी ताज द्वारा इसी पद्धति का उपयोग किया गया था। मानक उपयोग 20 वर्षों की खरीद थी।[5]
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 Moyer, Charles; William Kretlow; James McGuigan (2011). समसामयिक वित्तीय प्रबंधन (12 ed.). Winsted: South-Western Publishing Co. pp. 147–498. ISBN 9780538479172.
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Broverman, Samuel (2010). निवेश और ऋण का गणित. Winsted: ACTEX Publishers. pp. 4–229. ISBN 9781566987677.
- ↑ 3.0 3.1 3.2 3.3 3.4 3.5 Ross, Stephen; Randolph W. Westerfield; Bradford D. Jordan (2010). कॉर्पोरेट वित्त के बुनियादी सिद्धांत (9 ed.). New York: McGraw-Hill. pp. 145–287. ISBN 9780077246129.
- ↑ Swingler, D. N., (2014), "A Rule of Thumb approximation for time value of money calculations", Journal of Personal Finance, Vol. 13,Issue 2, pp.57-61
- ↑ Youings, Joyce, "Devon Monastic Lands: Calendar of Particulars for Grants 1536–1558", Devon & Cornwall Record Society, New Series, Vol.1, 1955
अग्रिम पठन
- Henderson, David R. (2008). "Present Value". Concise Encyclopedia of Economics (2nd ed.). Indianapolis: Library of Economics and Liberty. ISBN 978-0865976658. OCLC 237794267.