क्षणों की सामान्यीकृत विधि: Difference between revisions
(→दायरा) |
|||
Line 205: | Line 205: | ||
[[Category:Templates Vigyan Ready]] | [[Category:Templates Vigyan Ready]] | ||
== | == विस्तार == | ||
जीएमएम अनुकूलन के संदर्भ में कई अन्य लोकप्रिय अनुमान | जीएमएम अनुकूलन के संदर्भ में कई अन्य लोकप्रिय अनुमान विधियों को अपनाया जा सकता है: | ||
{{unordered list | {{unordered list | ||
|1= [[Ordinary least squares#Generalized method of moments| | |1= [[Ordinary least squares#Generalized method of moments|साधारण सबसे कम वर्ग]] (ओएलएस) क्षण स्थितियों के साथ जीएमएम के समान होती है: | ||
: <math>\operatorname{E}[ | : <math>\operatorname{E}[,x_t(y_t - x_t^{\mathsf{T}}\beta),]=0</math> | ||
|2= [[ | |2= [[भारित अत्यंत न्यून वर्ग]] (डब्ल्यूएलएस) | ||
: <math>\operatorname{E}[ | : <math>\operatorname{E}[,x_t(y_t - x_t^{\mathsf{T}}\beta)/\sigma^2(x_t),]=0</math> | ||
|3= [[ | |3= [[साधारण समकर्मी चर]] रेखांकन (आइवी) | ||
: <math>\operatorname{E}[ | : <math>\operatorname{E}[,z_t(y_t - x_t^{\mathsf{T}}\beta),]=0</math> | ||
|4= [[ | |4= [[गैर-रैखिक अत्यंत न्यून वर्ग]] (एनएलएलएस): | ||
: <math>\operatorname{E}[ | : <math>\operatorname{E}[,\nabla_{!\beta}, g(x_t,\beta)\cdot(y_t - g(x_t,\beta)),]=0</math> | ||
|5= [[ | |5= [[अधिकतम प्रायिकता]] अनुमापन (एमएलई): | ||
: <math>\operatorname{E}[ | : <math>\operatorname{E}[,\nabla_{!\theta} \ln f(x_t,\theta) ,]=0</math> | ||
}} | }} | ||
[[Category:All articles with unsourced statements]] | |||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:Articles with invalid date parameter in template]] | |||
[[Category:Articles with unsourced statements from June 2009]] | |||
[[Category:Created On 06/07/2023]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Template documentation pages|Short description/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
== कार्यान्वयन == | == कार्यान्वयन == |
Revision as of 00:53, 14 July 2023
अर्थमिति और सांख्यिकी में, क्षणों की सामान्यीकृत विधि (जीएमएम) सांख्यिकीय प्रारूपों में मानदंडों का अनुमान लगाने के लिए एक सामान्य विधि है। आमतौर पर इसे अर्धपैरामीट्रिक प्रारूप के संदर्भ में लागू किया जाता है, जहां पैरामीटर मुख्यतः परिमित-आयामी होता है, जबकि डेटा के वितरण फलन का पूर्ण आकार ज्ञात नहीं हो सकता है, और इसलिए अधिकतम प्रायिकता अनुमान लागू नहीं होता है।
इस विधि में यह आवश्यक है कि प्रारूप के लिए निर्दिष्ट संख्या के "क्षण स्थितियों" को निर्दिष्ट किया जाए। ये क्षण स्थिति प्रारूप, पैरामीटर और डेटा के फलन होते हैं, जिनका अपेक्षित मान पैरामीटर के वास्तविक मान पर शून्य होता है। जीएमएम विधि तब क्षण स्थितियों के प्रारूप औसत के किसी परिमित मान को कम करती है, और इसलिए इसे न्यूनतम-दूरी अनुमान के एक विशेष परिप्रेक्ष्य के रूप में सोचा जा सकता है।[1] जीएमएम अनुमानकों को सभी अनुमानकों की श्रेणी में सुसंगत अनुमानक, स्पर्शोन्मुख वितरण और सबसे कुशल अनुमानक के रूप में जाना जाता है जो क्षण स्थितियों में निहित जानकारी के अतिरिक्त किसी भी अन्य जानकारी का उपयोग नहीं करते हैं। जीएमएम को 1982 में लार्स पीटर हैंसन द्वारा प्रस्तावित किया गया था, जो क्षण विधि का विस्तार है,[2] जिसे 1894 में कार्ल पियरसन ने प्रस्तुत किया था। यद्यपि, ये अनुमापक गणनाओं के साथ "लंबकोणीयता अवस्था" (सारगान, 1958, 1959) या "अमुख्य अनुमापक समीकरण" (ह्यूबर, 1967; वांग आदि, 1997) पर आधारित उन्नत अनुमापकों के लिए गणितीय रूप से समान होते हैं।
विवरण
मान लीजिए कि उपलब्ध डेटा में टी अवलोकन {Yt } t = 1,...,T, सम्मिलित है जहां प्रत्येक अवलोकन Ytएक एन-आयामी बहुभिन्नरूपी यादृच्छिक चर है। हम मान लेते हैं कि डेटा एक अपरिमित सांख्यिकीय प्रारूप से प्राप्त होता है, जिसे एक अज्ञात पैरामीटर θ ∈ Θ तक परिभाषित किया गया है। अनुमान समस्या का लक्ष्य इस पैरामीटर का "सही" मान, θ0, या कम से कम एक यथोचित निकटतम अनुमान खोजना है।
जीएमएम की एक सामान्य धारणा यह है कि डेटा Yt एक कमजोर स्थिर अभ्यतिप्राय प्रसंभाव्य प्रक्रिया द्वारा उत्पन्न किया जाता है। स्वतंत्र और समान रूप से वितरित चर Yt का परिप्रेक्ष्य इस स्थिति का एक विशेष उदाहरण है।
जीएमएम लागू करने के लिए, हमें क्षण स्थितियों की आवश्यकता है, अर्थात, हमें एक सदिश-मान फलन g(Y,θ) को जानना होगा जैसे कि
जहां E अपेक्षित मान दर्शाता है, और Ytएक सामान्य अवलोकन है. इसके अतिरिक्त, फ़ंक्शन m(θ) शून्य से भिन्न होना चाहिए θ ≠ θ0, अन्यथा पैरामीटर θ बिंदु-पहचान नहीं होगा।
जीएमएम के पीछे मूल विचार सैद्धांतिक अपेक्षित मान ई[⋅] को उसके अनुभवजन्य एनालॉग-प्रारूप औसत से परिवर्तित करना है:
और फिर θ के संबंध में इस व्यंजक के मानदंड को कम करने के लिए। θ का न्यूनतम मान θ के लिए हमारा अनुमान 0 है.
T के अत्यधिक बड़े मानों के लिए बड़ी संख्या के नियम के अनुसार, होता है, और इसलिए हम अपेक्षा करते हैं कि होगा। क्षणों की सामान्यीकृत विधि एक ऐसे संख्या की खोज करती है जो को शून्य के निकट स्थापित करेगा। गणितीय रूप से, यह एक निश्चित मानक को न्यूनतम करने के बराबर है (m का मान, जिसे ||m|| के रूप में दर्शाया गया है, m और शून्य के बीच की दूरी को मापता है)। ये परिणामी अनुमानक के गुण मानक फलन की विशेष पसंद पर निर्भर होंगे, और इसलिए जीएमएम का सिद्धांत मानदंडों के एक पूरे परिवार पर विचार करता है, जिसे इस प्रकार परिभाषित किया गया है
जहां W एक धनात्मक-परिमित आव्यूह है | धनात्मक-परिमित भार आव्यूह, और स्थानान्तरण को दर्शाता है। व्यवहार में, भार आव्यूह डब्ल्यू की गणना उपलब्ध डेटा समुच्चयों के आधार पर की जाती है, जिसे इस प्रकार दर्शाया जाता है . इस प्रकार, जीएमएम अनुमानकों को इस प्रकार लिखा जा सकता है
उपयुक्त परिस्थितियों में यह अनुमानक सुसंगत अनुमानक, स्पर्शोन्मुख सामान्यता और भार आव्यूह के सही विकल्प के साथ कुशल अनुमानक भी है।
गुण
संगतता
सुसंगत अनुमानक किसी अनुमानक का सांख्यिकीय गुण है जिसमें कहा गया है कि, पर्याप्त संख्या में अवलोकन होने पर, अनुमानक पैरामीटर के वास्तविक मूल्य की प्रायिकता में अभिसरण करेगा:
जीएमएम अनुमानक के संगतता के लिए पर्याप्त स्थितियाँ इस प्रकार हैं:
- जहां W एक सकारात्मक समीभूत आव्यूह है,
- केवल
- संभावित मापदंडों का स्थान सघन स्थान है।
- प्रायिकता एक के साथ प्रत्येक θ पर सतत है।
यहां दूसरी स्थिति (तथाकथित वैश्विक पहचान स्थिति) को सत्यापित करना प्रायः विशेष रूप से कठिन होता है। वहाँ सरल आवश्यक परंतु पर्याप्त स्थितियाँ उपलब्ध नहीं हैं, जिनका उपयोग गैर-पहचान समस्या का पता लगाने के लिए किया जा सकता है:
- क्रम स्थिति. क्षण फलन m(θ) का आयाम कम से कम पैरामीटर सदिश θ के आयाम जितना बड़ा होना चाहिए।
- स्थानिक पहचान। यदि के पास में g(Y,θ) सतत रूप से अविभाज्य है, तो आरेख का पूर्ण पंक्ति क्रमशः होना चाहिए।
व्यावहारिक रूप से लागू अर्थशास्त्री प्रायः वास्तव में इसे सिद्ध किए बिना यह मान लेते हैं कि वैश्विक पहचान मान्य है।[3]: 2127
उपगामी सामान्यता
उपगामी सामान्यता एक उपयोगी गुण है, क्योंकि यह हमें अनुमानक के लिए परिमित अंतराल बनाने और विभिन्न परीक्षण करने की अनुमति देता है। इससे पहले कि हम जीएमएम अनुमानक के उपगामी वितरण के बारे में एक बयान दे सकें, हमें दो सहायक आव्यूह को परिभाषित करने की आवश्यकता है:
फिर नीचे सूचीबद्ध स्थितियों 1-6 के अंतर्गत, जीएमएम अनुमानक वितरण में अभिसरण के साथ असम्बद्ध रूप से सामान्य होगा:
स्थितियाँ:
- सुसंगत है (पिछला अनुभाग देखें),
- संभावित मापदंडों का समुच्चय संयोजी समुच्चय है,
- अपने निकट N में प्रायिकता के साथ सतत भिन्न होता है ,
- गणित का प्रश्न निरर्थक है।
सापेक्ष दक्षता
अब तक हमने आव्यूह ''W'' के चयन के बारे में कुछ नहीं कहा है, केवल इतना कहा है कि यह सकारात्मक समीभूत होना चाहिए। वास्तव में, ऐसी कोई भी आव्यूह एक सुसंगत और अनंतिक रूप से सामान्य जीएमएम अनुमापक का निर्माण करेगी, एकमात्र अंतर होगा कि उस अनुमापक की उपगामी चारधिकता में होगा। इसे निम्नलिखित रूप से सिद्ध जा सकता है
जो क्षण अनुमानकों की सभी सामान्यीकृत विधियों की श्रेणी में सबसे कुशल अनुमानक का परिणाम होगा। केवल अनंत संख्या में ऑर्थोगोनल स्थितियों से सबसे छोटा विचरण, क्रैमर-राव विचरण प्राप्त होता है।
इस परिप्रेक्ष में जीएमएम अनुमानक के उपगामी वितरण का सूत्र सरल हो जाता है
यह प्रमाण कि भार आव्यूह का ऐसा विकल्प वास्तव में स्थानीय रूप से इष्टतम है, अन्य अनुमानकों की दक्षता स्थापित करते समय प्रायः मामूली संशोधनों के साथ अपनाया जाता है। एक नियम के रूप में, जब एक वेटिंग आव्यूह के क्रम के निकट रूप में परिवर्तित होती है, तब वह अनुकरणता की ओर आगे बढ़ती है।
प्रमाण. हम अपरिमित चरणीय विसरण के बीच का अंतर यादृच्छिक W के साथ और के साथ की उपगामी विसरण के बीच की तुलना करेंगे। यदि हम इस अंतर को CC' के रूप में किसी आव्यूह C के साथ गुणन कर सकते हैं, तो यह यह दावा सिद्ध करेगा कि यह अंतर अविनाशीय असकारात्मक होगा, और इस प्रकार परिभाषा के अनुसार सर्वोत्तम होगा। | |
जहां हमने अक्षरण को थोड़ा सरल बनाने के लिए आव्यूह A और B को प्रस्तुत किया है; I एक इकाई आव्यूह है। हम देख सकते हैं कि यहां आव्यूह B सममित और आइडेम्पोटेंट है: । इसका अर्थ है कि I−B भी सममित और आइडेम्पोटेंट होगा: । इस प्रकार हम पिछले व्यंजकों को गुणा करना जारी रख सकते हैं | |
कार्यान्वयन
आरेखित विधि को लागू करने में एक कठिनाई यह है कि हम W = Ω−1 नहीं ले सकते हैं क्योंकि, आव्यूह Ω की परिभाषा के अनुसार, हमें इस आव्यूह को गणना करने के लिए θ0 की मान को जानने की आवश्यकता होती है, और θ0 वही मात्रा है जिसे हम नहीं जानते हैं और पहले ही अपेक्षा कर रहे हैं कि हम उसे अनुमानित करेंगे। वाई के परिप्रेक्ष्य में t आईआईडी होने के कारण हम डब्ल्यू का अनुमान लगा सकते हैं
इस समस्या के समाधान के लिए कई दृष्टिकोण उपलब्ध हैं, जिनमें से पहला सबसे लोकप्रिय है:
- दो-चरणीय संभव जीएमएम:
- चरण 1: W = I (इकाई आव्यूह) या कोई अन्य सकारात्मक परिभाषित आव्यूह लें और प्राथमिक जीएमएम अनुमापन की गणना करें। यह अनुमापक θ0 के लिए सुसंगत है, यद्यपि प्रभावी नहीं है।
- चरण 2: प्रायिकता में Ω−1 के प्रति संघटित होता है, और इसलिए यदि हम इस वेटिंग मैट्रिक्स के साथ की गणना करें, तो अनुमापक उपगामी रूप से प्रभावी होगा।
- अनुक्रमित जीएमएम. मूलतः दो-चरणीय जीएमएम की तरहीं प्रक्रिया होती है, बस इसके बाद आव्यूह कई बार पुनर्गणना की जाती है। अर्थात, चरण 2 में प्राप्त अनुमापित मान का उपयोग चरण 3 के लिए भार आव्यूह की गणना के लिए किया जाता है, और इसी प्रकार चरण 4 तक जारी रखा जाता है, जब तक कि कुछ संघटन मापदंड पूरे नहीं हो जाते हैं।
- सतत अपडेटिंग जीएमएम (सीयूजीएमएम, या सीयूई). अनुमापन और भार आव्यूह W का एक साथ अनुमापन करता है:
न्यूनतमकरण प्रक्रिया के कार्यान्वयन में एक और महत्वपूर्ण विषय यह है कि फलन को (संभवतः उच्च-आयामी) पैरामीटर स्पेस Θ के माध्यम से खोजना होता है और θ का मान ढूंढना होता है जो उद्देश्य फलन को न्यूनतम करता है। ऐसी प्रक्रिया के लिए कोई सामान्य अनुशंसा उपलब्ध नहीं है, यह अपने स्वयं के क्षेत्र, संख्यात्मक अनुकूलन का विषय है।
सर्गन-हैनसेन जे परीक्षण
जब क्षण स्थितियों की संख्या पैरामीटर वेक्टर θ के आयाम से अधिक होती है, तो प्रारूप को अति-पहचानित कहा जाता है। सरगन (1958) ने वाद्य चर अनुमानकों के आधार पर अति-पहचान प्रतिबंधों के लिए परीक्षणों का प्रस्ताव रखा, जिन्हें स्वतंत्रता के क्रम के साथ ची-वर्ग चर के रूप में बड़े प्रारूपों में वितरित किया जाता है जो अति-पहचान प्रतिबंधों की संख्या पर निर्भर करते हैं। इसके बाद, हैनसेन (1982) ने इस परीक्षण को जीएमएम अनुमानकों के गणितीय समकक्ष सूत्रण पर लागू किया। यद्यपि, ध्यान दें कि ऐसे आँकड़े अनुभवजन्य अनुप्रयोगों में जहाँ प्रारूप गलत निर्दिष्ट हैं, नकारात्मक हो सकते हैं, और प्रायिकता अनुपात परीक्षण अंतर्दृष्टि प्राप्त कर सकते हैं क्योंकि प्रारूप का अनुमान शून्य और वैकल्पिक दोनों परिकल्पनाओं (भार्गव और सरगन, 1983) के अंतर्गत लगाया गया है।
संकल्पनात्मक रूप से हम जाँच सकते हैं कि क्या यह सुझाव देने के लिए शून्य के पर्याप्त निकट है कि प्रारूप डेटा को अच्छी तरह से संयोजित करता है। फिर जीएमएम विधि ने समीकरण को हल करने की समस्या को, जिसमें को पूरी तरह से प्रतिबंधों के साथ मेल खाता है, एक कम से कमीकरण के लिए गणना के द्वारा परिवर्तित कर दिया है। न्यूनतमकरण के लिए कोई ऐसा उपलब्ध न होने के बाद भी, कम से कमीकरण सदैव की जा सकती है। जे-परीक्षण यही करता है। जे-परीक्षण को प्रायः प्रतिबंधों के लिए परीक्षण कहा जाता है।
औपचारिक रूप से हम दो सांख्यिकीय परिकल्पना परीक्षण पर विचार करते हैं:
- (शून्य परिकल्पना का प्रारूप "वैध" है), और
- (वैकल्पिक परिकल्पना का प्रारूप "अमान्य" है; जो डेटा प्रतिबंधों को पूरा करने के निकट नहीं आता है)
परिकल्पना के अंतर्गत , निम्नलिखित तथाकथित जे-डाटा उपगामी रूप से ची-वर्ग वितरण है | ची-वर्ग स्वतंत्रता के k-l क्रम के साथ वितरित किया जाता है। J को निम्नलिखित रूप से परिभाषित किया जा सकता है:
- अंतर्गत
जहाँ पैरामीटर का जीएमएम अनुमानक है, k क्षण स्थितियों की संख्या (सदिश g का आयाम) है, और l अनुमानित मापदंडों की संख्या (सदिश θ का आयाम) है। मानचित्र की प्रायिकता में की ओर संघटित होनी चाहिए, यह प्रभावी भार आव्यूह है। ध्यान दें कि पहले हमने सिर्फ यह चयन किया था कि W के आनुपातिक होना चाहिए जिससे अनुमापक प्रभावी हो; यद्यपि जे-परीक्षण को आयोजित करने के लिए W बिल्कुल के बराबर होना चाहिए तथा सिर्फ़ आनुपातिक नहीं होना चाहिए।
वैकल्पिक परिकल्पना के अंतर्गत , जे-डाटा उपगामी रूप से अपरिमित है:
- अंतर्गत
परीक्षण करने के लिए हम डेटा से J के मान की गणना करते हैं। यह एक अऋणात्मक संख्या है. हम इसकी तुलना (उदाहरण के लिए) 0.95 मात्रात्मक रूप से करते हैं।
वितरण:
- को 95% विश्वसनीयता स्तर पर अस्वीकार कर दिया जाता है यदि
- को 95% विश्वसनीयता स्तर पर अस्वीकार नहीं किया जा सकता है यदि
विस्तार
जीएमएम अनुकूलन के संदर्भ में कई अन्य लोकप्रिय अनुमान विधियों को अपनाया जा सकता है:
- साधारण सबसे कम वर्ग (ओएलएस) क्षण स्थितियों के साथ जीएमएम के समान होती है:
- भारित अत्यंत न्यून वर्ग (डब्ल्यूएलएस)
- साधारण समकर्मी चर रेखांकन (आइवी)
- गैर-रैखिक अत्यंत न्यून वर्ग (एनएलएलएस):
- अधिकतम प्रायिकता अनुमापन (एमएलई):
कार्यान्वयन
- विकीबुक:आर प्रोग्रामिंग/मेथड ऑफ मोमेंट्स|आर प्रोग्रामिंग विकिबुक, मेथड ऑफ मोमेंट्स
- आर
- स्टेटा
- EViews
- SAS
- ग्रेटल
यह भी देखें
- अधिकतम प्रायिकता की विधि
- सामान्यीकृत अनुभवजन्य प्रायिकता
- अरेलानो-बॉन्ड अनुमानक
- अनुमानित बायेसियन गणना
संदर्भ
- ↑ Hayashi, Fumio (2000). अर्थमिति. Princeton University Press. p. 206. ISBN 0-691-01018-8.
- ↑ Hansen, Lars Peter (1982). "Large Sample Properties of Generalized Method of Moments Estimators". Econometrica. 50 (4): 1029–1054. doi:10.2307/1912775. JSTOR 1912775.
- ↑ Newey, W.; McFadden, D. (1994). "Large sample estimation and hypothesis testing". अर्थमिति की पुस्तिका. Vol. 4. Elsevier Science. pp. 2111–2245. CiteSeerX 10.1.1.724.4480. doi:10.1016/S1573-4412(05)80005-4. ISBN 9780444887665.
- ↑ Hansen, Lars Peter; Heaton, John; Yaron, Amir (1996). "Finite-sample properties of some alternative GMM estimators" (PDF). Journal of Business & Economic Statistics. 14 (3): 262–280. doi:10.1080/07350015.1996.10524656. hdl:1721.1/47970. JSTOR 1392442.
अग्रिम पठन
- Huber, P. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability 1, 221-233.
- Newey W., McFadden D. (1994). Large sample estimation and hypothesis testing, in Handbook of Econometrics, Ch.36. Elsevier Science.
- Imbens, Guido W.; Spady, Richard H.; Johnson, Phillip (1998). "Information theoretic approaches to inference in moment condition models" (PDF). Econometrica. 66 (2): 333–357. doi:10.2307/2998561. JSTOR 2998561.
- Sargan, J.D. (1958). The estimation of economic relationships using instrumental variables. Econometrica, 26, 393-415.
- Sargan, J.D. (1959). The estimation of relationships with autocorrelated residuals by the use on instrumental variables. Journal of the Royal Statistical Society B, 21, 91-105.
- Wang, C.Y., Wang, S., and Carroll, R. (1997). Estimation in choice-based sampling with measurement error and bootstrap analysis. Journal of Econometrics, 77, 65-86.
- Bhargava, A., and Sargan, J.D. (1983). Estimating dynamic random effects from panel data covering short time periods. Econometrica, 51, 6, 1635-1659.
- Hayashi, Fumio (2000). Econometrics. Princeton: Princeton University Press. ISBN 0-691-01018-8.
- Hansen, Lars Peter (2002). "Method of Moments". In Smelser, N. J.; Bates, P. B. (eds.). International Encyclopedia of the Social and Behavior Sciences. Oxford: Pergamon.
- Hall, Alastair R. (2005). Generalized Method of Moments. Advanced Texts in Econometrics. Oxford University Press. ISBN 0-19-877520-2.
- Faciane, Kirby Adam Jr. (2006). Statistics for Empirical and Quantitative Finance. Statistics for Empirical and Quantitative Finance. H.C. Baird. ISBN 0-9788208-9-4.
- Special issues of Journal of Business and Economic Statistics: vol. 14, no. 3 and vol. 20, no. 4.