संवृत्त-रूप व्यंजक: Difference between revisions
(Created page with "{{Redirect|Closed formula|"closed formula" in the sense of a logic formula with no free variables|Sentence (mathematical logic)}} {{Use American English|date = January 2019}}...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Redirect| | {{Redirect|संवृत्त सूत्र|बिना मुक्त चर वाले तर्क सूत्र के अर्थ में "संवृत्त सूत्र"।|कथन (गणितीय तर्क)}} | ||
गणित में, एक | {{Short description|Mathematical formula involving a given set of operations}}गणित में, एक '''संवृत्त-रूप व्यंजक''', एक ऐसा [[गणितीय अभिव्यक्ति|व्यंजक]] है जिसे [[स्थिरांक (गणित)|अचर]], [[चर (गणित)|चर]] तथा मानक [[ऑपरेशन (गणित)|संक्रियाओं]] और [[फ़ंक्शन (गणित)|फलनों]] की एक परिमित संख्या द्वारा निर्मित किया जाता है। जैसे {{math|+, −, ×, ÷}}, एन वर्गमूल, [[घातांक]], लघुगणक, त्रिकोणमितीय फलन और व्युत्क्रम अतिपरवलयिक फलन आदि। इसमें कोई सीमा या [[अभिन्न]] स्वीकार नहीं किए जाते हैं। | ||
संक्रिया तथा फलनों के समुच्चय लेखक और संदर्भ के साथ भिन्न हो सकतें है। | |||
सामान्यतः, यदि किसी फलन को संवृत्त-रूप व्यंजक के रूप मर स्वीकारा जाता है, तो इसके व्युत्पन्न को संवृत्त-रूप व्यंजक के रूप में व्यक्त किया जा सकता है। इस प्रकार [[श्रृंखला नियम]] द्वारा,[[ यौगिक | व्युतपन्नों]] को संवृत्त-रूप व्यंजको से प्रतिस्थापित किया जा सकता है। चूँकि किसी व्युत्पन्न के व्यंजक, फलनों की तुलना में अत्यधिक बड़े हो सकते है, यह केवल सुविधा का प्रश्न है कि क्या व्युत्पन्न को संवृत्त-रूप व्यंजकों के रूप में स्वीकार किया जाता है। | |||
== उदाहरण: बहुपदों की जड़ें == | == उदाहरण: बहुपदों की जड़ें == | ||
Line 15: | Line 12: | ||
:<math>ax^2+bx+c=0,</math> | :<math>ax^2+bx+c=0,</math> | ||
सुव्यवस्थित है क्योंकि इसके समाधानों को एक | सुव्यवस्थित है क्योंकि इसके समाधानों को एक संवृत्त-रूप व्यंजक के रूप में व्यक्त किया जा सकता है, यानी प्राथमिक कार्यों के संदर्भ में: | ||
:<math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}.</math> | :<math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}.</math> | ||
इसी प्रकार, घन और चतुर्थक (तीसरी और चौथी डिग्री) समीकरणों के समाधान अंकगणित, वर्गमूल और nवें मूल का उपयोग करके व्यक्त किए जा सकते हैं|{{mvar|n}}वीं जड़ें. हालाँकि, उदाहरण के लिए, ऐसे | इसी प्रकार, घन और चतुर्थक (तीसरी और चौथी डिग्री) समीकरणों के समाधान अंकगणित, वर्गमूल और nवें मूल का उपयोग करके व्यक्त किए जा सकते हैं|{{mvar|n}}वीं जड़ें. हालाँकि, उदाहरण के लिए, ऐसे संवृत्त-रूप समाधानों के बिना [[क्विंटिक समीकरण]] भी हैं {{math|1=''x''<sup>5</sup> − ''x'' + 1 = 0}}; यह एबेल-रफिनी प्रमेय है। | ||
[[बहुपद जड़]]ों के लिए बंद रूपों के अस्तित्व का अध्ययन [[गैलोइस सिद्धांत]] नामक गणित के क्षेत्र की प्रारंभिक प्रेरणा और मुख्य उपलब्धियों में से एक है। | [[बहुपद जड़]]ों के लिए बंद रूपों के अस्तित्व का अध्ययन [[गैलोइस सिद्धांत]] नामक गणित के क्षेत्र की प्रारंभिक प्रेरणा और मुख्य उपलब्धियों में से एक है। | ||
Line 24: | Line 21: | ||
== वैकल्पिक परिभाषाएँ == | == वैकल्पिक परिभाषाएँ == | ||
अतिरिक्त फ़ंक्शंस को शामिल करने के लिए प्रसिद्ध की परिभाषा को बदलने से | अतिरिक्त फ़ंक्शंस को शामिल करने के लिए प्रसिद्ध की परिभाषा को बदलने से संवृत्त-रूप समाधान वाले समीकरणों का सेट बदल सकता है। कई [[संचयी वितरण कार्य]]ों को बंद रूप में व्यक्त नहीं किया जा सकता है, जब तक कि कोई [[विशेष कार्य]]ों जैसे कि [[त्रुटि फ़ंक्शन|त्रुटि फलन]] या [[गामा फ़ंक्शन|गामा फलन]] को अच्छी तरह से ज्ञात नहीं मानता है। यदि सामान्य [[हाइपरजियोमेट्रिक फ़ंक्शन|हाइपरजियोमेट्रिक फलन]] को शामिल किया जाए तो क्विंटिक समीकरण को हल करना संभव है, हालांकि समाधान उपयोगी होने के लिए बीजगणितीय रूप से बहुत जटिल है। कई व्यावहारिक कंप्यूटर अनुप्रयोगों के लिए, यह मान लेना पूरी तरह से उचित है कि गामा फलन और अन्य विशेष फलन अच्छी तरह से ज्ञात हैं क्योंकि संख्यात्मक कार्यान्वयन व्यापक रूप से उपलब्ध हैं। | ||
== विश्लेषणात्मक | == विश्लेषणात्मक व्यंजक == | ||
एक विश्लेषणात्मक | एक विश्लेषणात्मक व्यंजक (विश्लेषणात्मक रूप में व्यंजक या विश्लेषणात्मक सूत्र के रूप में भी जाना जाता है) एक गणितीय व्यंजक है जो प्रसिद्ध संचालन का उपयोग करके बनाई गई है जो गणना के लिए आसानी से उधार देती है।{{vague|date=February 2021}}{{cn|date=February 2021}} संवृत्त-रूप व्यंजकों के समान, अनुमत प्रसिद्ध कार्यों का सेट संदर्भ के अनुसार भिन्न हो सकता है लेकिन इसमें हमेशा अंकगणित # अंकगणित संचालन (जोड़, घटाव, गुणा और विभाजन), एक वास्तविक घातांक का घातांक (जिसमें निष्कर्षण शामिल होता है) शामिल होता है nवाँ मूल|{{math|''n''}}वें मूल), लघुगणक, और त्रिकोणमितीय कार्य। | ||
हालाँकि, विश्लेषणात्मक | हालाँकि, विश्लेषणात्मक व्यंजक मानी जाने वाली व्यंजकों का वर्ग संवृत्त-रूप वाली व्यंजकों की तुलना में व्यापक होता है। विशेष रूप से, [[बेसेल कार्य करता है]] और गामा फलन जैसे विशेष कार्यों की सामान्यतः अनुमति दी जाती है, और अक्सर अनंत श्रृंखला और निरंतर भिन्न भी होते हैं। दूसरी ओर, सामान्य रूप से अनुक्रम की सीमा और विशेष रूप से अभिन्न को आम तौर पर बाहर रखा जाता है।{{citation needed|reason=This paragraph seems [[WP:OR]]. In particular, here, the distinction between series and limits is completely irrelevant.|date=June 2018}} | ||
यदि एक विश्लेषणात्मक | यदि एक विश्लेषणात्मक व्यंजक में केवल बीजगणितीय संचालन (जोड़, घटाव, गुणा, विभाजन, और तर्कसंगत घातांक के लिए घातांक) और तर्कसंगत स्थिरांक शामिल होते हैं तो इसे विशेष रूप से बीजगणितीय व्यंजक के रूप में जाना जाता है। | ||
== | ==व्यंजक के विभिन्न वर्गों की तुलना == | ||
संवृत्त-रूप व्यंजकयाँ विश्लेषणात्मक व्यंजकों का एक महत्वपूर्ण उप-वर्ग हैं, जिसमें प्रसिद्ध कार्यों के अनुप्रयोगों की एक सीमित संख्या होती है। व्यापक विश्लेषणात्मक व्यंजकों के विपरीत, संवृत्त-रूप व्यंजकों में अनंत श्रृंखला या निरंतर भिन्न शामिल नहीं होते हैं; न तो किसी अनुक्रम का अभिन्न अंग या सीमा शामिल है। दरअसल, स्टोन-वीयरस्ट्रैस प्रमेय द्वारा, [[इकाई अंतराल]] पर किसी भी निरंतर कार्य को बहुपद की सीमा के रूप में व्यक्त किया जा सकता है, इसलिए बहुपद वाले और सीमाओं के तहत बंद किए गए कार्यों के किसी भी वर्ग में आवश्यक रूप से सभी निरंतर कार्य शामिल होंगे। | |||
इसी प्रकार, एक [[समीकरण]] या [[समीकरणों की प्रणाली]] को एक | इसी प्रकार, एक [[समीकरण]] या [[समीकरणों की प्रणाली]] को एक संवृत्त-रूप समाधान कहा जाता है यदि, और केवल तभी, कम से कम एक समीकरण समाधान को एक संवृत्त-रूप व्यंजक के रूप में व्यक्त किया जा सकता है; और इसे एक विश्लेषणात्मक समाधान कहा जाता है यदि और केवल तभी जब कम से कम एक समाधान को विश्लेषणात्मक व्यंजक के रूप में व्यक्त किया जा सके। क्लोज्ड-फॉर्म समाधान की चर्चा में क्लोज्ड-फॉर्म ''फंक्शन'' और #क्लोज्ड-फॉर्म नंबर|क्लोज्ड-फॉर्म ''नंबर'' के बीच एक सूक्ष्म अंतर है, जिस पर चर्चा की गई है। {{Harv|Chow|1999}} और #क्लोज्ड-फॉर्म नंबर। एक संवृत्त-रूप या विश्लेषणात्मक समाधान को कभी-कभी स्पष्ट समाधान के रूप में जाना जाता है। | ||
{{Mathematical expressions}} | {{Mathematical expressions}} | ||
== गैर- | == गैर-संवृत्त-रूप व्यंजकों से निपटना == | ||
=== | === संवृत्त-रूप वाले भावों में परिवर्तन === | ||
इजहार: | इजहार: | ||
<math display="block">f(x) = \sum_{n=0}^\infty \frac{x}{2^n}</math> | <math display="block">f(x) = \sum_{n=0}^\infty \frac{x}{2^n}</math> | ||
बंद रूप में नहीं है क्योंकि सारांश में अनंत संख्या में प्राथमिक संचालन शामिल होते हैं। हालाँकि, एक ज्यामितीय श्रृंखला का योग करके इस | बंद रूप में नहीं है क्योंकि सारांश में अनंत संख्या में प्राथमिक संचालन शामिल होते हैं। हालाँकि, एक ज्यामितीय श्रृंखला का योग करके इस व्यंजक को बंद रूप में व्यक्त किया जा सकता है:<ref>{{cite web | last=Holton | first=Glyn | title = संख्यात्मक समाधान, बंद प्रपत्र समाधान| url = http://www.riskglossary.com/link/closed_form_solution.htm | access-date = 31 December 2012 |url-status = dead | archive-url = https://web.archive.org/web/20120204082706/http://www.riskglossary.com/link/closed_form_solution.htm |archive-date = 4 February 2012 }}</ref> | ||
<math display="block">f(x) = 2x.</math> | <math display="block">f(x) = 2x.</math> | ||
Line 56: | Line 53: | ||
{{See also|Nonelementary integral}} | {{See also|Nonelementary integral}} | ||
एक | एक संवृत्त-रूप व्यंजक का अभिन्न अंग स्वयं एक संवृत्त-रूप व्यंजक के रूप में अभिव्यक्त हो भी सकता है और नहीं भी। बीजगणितीय गैलोज़ सिद्धांत के अनुरूप इस अध्ययन को [[विभेदक गैलोज़ सिद्धांत]] कहा जाता है। | ||
डिफरेंशियल गैलोज़ सिद्धांत का मूल प्रमेय 1830 और 1840 के दशक में [[जोसेफ लिउविल]]े के कारण है और इसलिए इसे लिउविले के प्रमेय (डिफरेंशियल अलजेब्रा) | लिउविले के प्रमेय के रूप में जाना जाता है। | डिफरेंशियल गैलोज़ सिद्धांत का मूल प्रमेय 1830 और 1840 के दशक में [[जोसेफ लिउविल]]े के कारण है और इसलिए इसे लिउविले के प्रमेय (डिफरेंशियल अलजेब्रा) | लिउविले के प्रमेय के रूप में जाना जाता है। | ||
एक प्राथमिक | एक प्राथमिक फलन का एक मानक उदाहरण जिसका एंटीडेरिवेटिव में संवृत्त-रूप व्यंजक नहीं है: <math display="block">e^{-x^2},</math> जिसका एक प्रतिअवकलन (गुणात्मक स्थिरांक [[तक]]) त्रुटि फलन है: | ||
<math display="block">\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^x e^{-t^2} \, dt.</math> | <math display="block">\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^x e^{-t^2} \, dt.</math> | ||
Line 66: | Line 63: | ||
=== गणितीय मॉडलिंग और [[कंप्यूटर सिमुलेशन]] === | === गणितीय मॉडलिंग और [[कंप्यूटर सिमुलेशन]] === | ||
संवृत्त-रूप या विश्लेषणात्मक समाधानों के लिए बहुत जटिल समीकरणों या प्रणालियों का अक्सर गणितीय मॉडलिंग और कंप्यूटर सिमुलेशन द्वारा विश्लेषण किया जा सकता है। | |||
== बंद प्रपत्र संख्या == | == बंद प्रपत्र संख्या == | ||
Line 72: | Line 69: | ||
{{see also|Transcendental number theory}} | {{see also|Transcendental number theory}} | ||
सम्मिश्र संख्याओं के तीन उपक्षेत्र {{math|'''C'''}} को एक | सम्मिश्र संख्याओं के तीन उपक्षेत्र {{math|'''C'''}} को एक संवृत्त-रूप संख्या की धारणा को एन्कोडिंग के रूप में सुझाया गया है; व्यापकता के बढ़ते क्रम में, ये लिउविलियन संख्याएं हैं (तर्कसंगत सन्निकटन के अर्थ में लिउविल संख्याओं के साथ भ्रमित नहीं होना चाहिए), ईएल संख्याएं और [[प्राथमिक संख्या]]एं। लिउविलियन संख्याएँ, निरूपित {{math|'''L'''}}, सबसे छोटा [[बीजगणितीय रूप से बंद]] उपक्षेत्र बनाएं {{math|'''C'''}} घातांक और लघुगणक के तहत बंद (औपचारिक रूप से, ऐसे सभी उपक्षेत्रों का प्रतिच्छेदन) - अर्थात, संख्याएँ जिनमें स्पष्ट घातांक और लघुगणक शामिल होते हैं, लेकिन स्पष्ट और अंतर्निहित बहुपद (बहुपद की जड़ें) की अनुमति देते हैं; इसे इसमें परिभाषित किया गया है {{Harv|Ritt|1948|loc=p. 60}}. {{math|'''L'''}} को मूल रूप से प्रारंभिक संख्याओं के रूप में संदर्भित किया गया था, लेकिन अब इस शब्द का उपयोग बीजगणितीय संचालन, घातांक और लघुगणक के संदर्भ में स्पष्ट रूप से या अंतर्निहित रूप से परिभाषित संख्याओं को संदर्भित करने के लिए अधिक व्यापक रूप से किया जाता है। में एक संकीर्ण परिभाषा प्रस्तावित है {{Harv|Chow|1999|loc=pp. 441–442}}, निरूपित {{math|'''E'''}}, और इसे ईएल संख्या के रूप में संदर्भित किया जाता है, यह सबसे छोटा उपक्षेत्र है {{math|'''C'''}} घातांक और लघुगणक के तहत बंद - इसे बीजगणितीय रूप से बंद करने की आवश्यकता नहीं है, और यह स्पष्ट बीजगणितीय, घातीय और लघुगणकीय संचालन के अनुरूप है। ईएल का अर्थ घातीय-लघुगणक और प्राथमिक के संक्षिप्त रूप दोनों के लिए है। | ||
क्या कोई संख्या एक बंद रूप वाली संख्या है, इसका संबंध इस बात से है कि क्या कोई संख्या [[पारलौकिक संख्या]] है। औपचारिक रूप से, लिउविलियन संख्याओं और प्राथमिक संख्याओं में [[बीजगणितीय संख्या]]एँ होती हैं, और उनमें कुछ नहीं बल्कि सभी पारलौकिक संख्याएँ शामिल होती हैं। इसके विपरीत, ईएल संख्याओं में सभी बीजगणितीय संख्याएँ शामिल नहीं होती हैं, लेकिन कुछ पारलौकिक संख्याएँ शामिल होती हैं। | क्या कोई संख्या एक बंद रूप वाली संख्या है, इसका संबंध इस बात से है कि क्या कोई संख्या [[पारलौकिक संख्या]] है। औपचारिक रूप से, लिउविलियन संख्याओं और प्राथमिक संख्याओं में [[बीजगणितीय संख्या]]एँ होती हैं, और उनमें कुछ नहीं बल्कि सभी पारलौकिक संख्याएँ शामिल होती हैं। इसके विपरीत, ईएल संख्याओं में सभी बीजगणितीय संख्याएँ शामिल नहीं होती हैं, लेकिन कुछ पारलौकिक संख्याएँ शामिल होती हैं। संवृत्त-रूप संख्याओं का अध्ययन ट्रान्सेंडैंटल संख्या सिद्धांत के माध्यम से किया जा सकता है, जिसमें एक प्रमुख परिणाम गेलफोंड-श्नाइडर प्रमेय है, और एक प्रमुख खुला प्रश्न शैनुएल का अनुमान है। | ||
==संख्यात्मक गणना == | ==संख्यात्मक गणना == | ||
Line 82: | Line 79: | ||
== संख्यात्मक रूपों से रूपांतरण == | == संख्यात्मक रूपों से रूपांतरण == | ||
ऐसा सॉफ़्टवेयर है जो RIES सहित संख्यात्मक मानों के लिए | ऐसा सॉफ़्टवेयर है जो RIES सहित संख्यात्मक मानों के लिए संवृत्त-रूप व्यंजक खोजने का प्रयास करता है,<ref>{{cite web |last = Munafo |first = Robert |title = RIES - बीजगणितीय समीकरण खोजें, उनका समाधान देखें|url = http://mrob.com/pub/ries/index.html |access-date = 30 April 2012 }}</ref> {{mono|identify}} मेपल में (सॉफ़्टवेयर)<ref>{{cite web |title = पहचान करना|url = http://www.maplesoft.com/support/help/Maple/view.aspx?path=पहचान करना|work = Maple Online Help |publisher = Maplesoft |access-date = 30 April 2012 }}</ref> और [[सिम्पी]],<ref>{{cite web |title = संख्या पहचान|url = http://docs.sympy.org/0.7.1/modules/mpmath/identification.html |work = SymPy documentation |access-date = 2016-12-01 |archive-date = 2018-07-06 |archive-url = https://web.archive.org/web/20180706114117/http://docs.sympy.org/0.7.1/modules/mpmath/identification.html |url-status = dead }}</ref> प्लॉफ़े का इन्वर्टर,<ref>{{cite web |title = प्लॉफ़े का इन्वर्टर|url = http://pi.lacim.uqam.ca/eng/server_en.html |access-date = 30 April 2012 |archive-url = https://web.archive.org/web/20120419132713/http://pi.lacim.uqam.ca/eng/server_en.html |archive-date = 19 April 2012 |url-status = dead }}</ref> और व्युत्क्रम प्रतीकात्मक कैलकुलेटर।<ref>{{cite web |title = उलटा प्रतीकात्मक कैलकुलेटर|url = http://oldweb.cecm.sfu.ca/projects/ISC/ |access-date = 30 April 2012 |url-status = dead |archive-url = https://web.archive.org/web/20120329145758/http://oldweb.cecm.sfu.ca/projects/ISC/ |archive-date = 29 March 2012 }}</ref> | ||
Revision as of 21:19, 10 July 2023
गणित में, एक संवृत्त-रूप व्यंजक, एक ऐसा व्यंजक है जिसे अचर, चर तथा मानक संक्रियाओं और फलनों की एक परिमित संख्या द्वारा निर्मित किया जाता है। जैसे +, −, ×, ÷, एन वर्गमूल, घातांक, लघुगणक, त्रिकोणमितीय फलन और व्युत्क्रम अतिपरवलयिक फलन आदि। इसमें कोई सीमा या अभिन्न स्वीकार नहीं किए जाते हैं।
संक्रिया तथा फलनों के समुच्चय लेखक और संदर्भ के साथ भिन्न हो सकतें है।
सामान्यतः, यदि किसी फलन को संवृत्त-रूप व्यंजक के रूप मर स्वीकारा जाता है, तो इसके व्युत्पन्न को संवृत्त-रूप व्यंजक के रूप में व्यक्त किया जा सकता है। इस प्रकार श्रृंखला नियम द्वारा, व्युतपन्नों को संवृत्त-रूप व्यंजको से प्रतिस्थापित किया जा सकता है। चूँकि किसी व्युत्पन्न के व्यंजक, फलनों की तुलना में अत्यधिक बड़े हो सकते है, यह केवल सुविधा का प्रश्न है कि क्या व्युत्पन्न को संवृत्त-रूप व्यंजकों के रूप में स्वीकार किया जाता है।
उदाहरण: बहुपदों की जड़ें
सम्मिश्र संख्या गुणांक वाले किसी भी द्विघात समीकरण के समाधान को जोड़, घटाव, गुणा, भाग (गणित), और वर्गमूल निष्कर्षण के रूप में बंद रूप में व्यक्त किया जा सकता है, जिनमें से प्रत्येक एक प्राथमिक कार्य है। उदाहरण के लिए, द्विघात समीकरण
सुव्यवस्थित है क्योंकि इसके समाधानों को एक संवृत्त-रूप व्यंजक के रूप में व्यक्त किया जा सकता है, यानी प्राथमिक कार्यों के संदर्भ में:
इसी प्रकार, घन और चतुर्थक (तीसरी और चौथी डिग्री) समीकरणों के समाधान अंकगणित, वर्गमूल और nवें मूल का उपयोग करके व्यक्त किए जा सकते हैं|nवीं जड़ें. हालाँकि, उदाहरण के लिए, ऐसे संवृत्त-रूप समाधानों के बिना क्विंटिक समीकरण भी हैं x5 − x + 1 = 0; यह एबेल-रफिनी प्रमेय है।
बहुपद जड़ों के लिए बंद रूपों के अस्तित्व का अध्ययन गैलोइस सिद्धांत नामक गणित के क्षेत्र की प्रारंभिक प्रेरणा और मुख्य उपलब्धियों में से एक है।
वैकल्पिक परिभाषाएँ
अतिरिक्त फ़ंक्शंस को शामिल करने के लिए प्रसिद्ध की परिभाषा को बदलने से संवृत्त-रूप समाधान वाले समीकरणों का सेट बदल सकता है। कई संचयी वितरण कार्यों को बंद रूप में व्यक्त नहीं किया जा सकता है, जब तक कि कोई विशेष कार्यों जैसे कि त्रुटि फलन या गामा फलन को अच्छी तरह से ज्ञात नहीं मानता है। यदि सामान्य हाइपरजियोमेट्रिक फलन को शामिल किया जाए तो क्विंटिक समीकरण को हल करना संभव है, हालांकि समाधान उपयोगी होने के लिए बीजगणितीय रूप से बहुत जटिल है। कई व्यावहारिक कंप्यूटर अनुप्रयोगों के लिए, यह मान लेना पूरी तरह से उचित है कि गामा फलन और अन्य विशेष फलन अच्छी तरह से ज्ञात हैं क्योंकि संख्यात्मक कार्यान्वयन व्यापक रूप से उपलब्ध हैं।
विश्लेषणात्मक व्यंजक
एक विश्लेषणात्मक व्यंजक (विश्लेषणात्मक रूप में व्यंजक या विश्लेषणात्मक सूत्र के रूप में भी जाना जाता है) एक गणितीय व्यंजक है जो प्रसिद्ध संचालन का उपयोग करके बनाई गई है जो गणना के लिए आसानी से उधार देती है।[vague][citation needed] संवृत्त-रूप व्यंजकों के समान, अनुमत प्रसिद्ध कार्यों का सेट संदर्भ के अनुसार भिन्न हो सकता है लेकिन इसमें हमेशा अंकगणित # अंकगणित संचालन (जोड़, घटाव, गुणा और विभाजन), एक वास्तविक घातांक का घातांक (जिसमें निष्कर्षण शामिल होता है) शामिल होता है nवाँ मूल|nवें मूल), लघुगणक, और त्रिकोणमितीय कार्य।
हालाँकि, विश्लेषणात्मक व्यंजक मानी जाने वाली व्यंजकों का वर्ग संवृत्त-रूप वाली व्यंजकों की तुलना में व्यापक होता है। विशेष रूप से, बेसेल कार्य करता है और गामा फलन जैसे विशेष कार्यों की सामान्यतः अनुमति दी जाती है, और अक्सर अनंत श्रृंखला और निरंतर भिन्न भी होते हैं। दूसरी ओर, सामान्य रूप से अनुक्रम की सीमा और विशेष रूप से अभिन्न को आम तौर पर बाहर रखा जाता है।[citation needed]
यदि एक विश्लेषणात्मक व्यंजक में केवल बीजगणितीय संचालन (जोड़, घटाव, गुणा, विभाजन, और तर्कसंगत घातांक के लिए घातांक) और तर्कसंगत स्थिरांक शामिल होते हैं तो इसे विशेष रूप से बीजगणितीय व्यंजक के रूप में जाना जाता है।
व्यंजक के विभिन्न वर्गों की तुलना
संवृत्त-रूप व्यंजकयाँ विश्लेषणात्मक व्यंजकों का एक महत्वपूर्ण उप-वर्ग हैं, जिसमें प्रसिद्ध कार्यों के अनुप्रयोगों की एक सीमित संख्या होती है। व्यापक विश्लेषणात्मक व्यंजकों के विपरीत, संवृत्त-रूप व्यंजकों में अनंत श्रृंखला या निरंतर भिन्न शामिल नहीं होते हैं; न तो किसी अनुक्रम का अभिन्न अंग या सीमा शामिल है। दरअसल, स्टोन-वीयरस्ट्रैस प्रमेय द्वारा, इकाई अंतराल पर किसी भी निरंतर कार्य को बहुपद की सीमा के रूप में व्यक्त किया जा सकता है, इसलिए बहुपद वाले और सीमाओं के तहत बंद किए गए कार्यों के किसी भी वर्ग में आवश्यक रूप से सभी निरंतर कार्य शामिल होंगे।
इसी प्रकार, एक समीकरण या समीकरणों की प्रणाली को एक संवृत्त-रूप समाधान कहा जाता है यदि, और केवल तभी, कम से कम एक समीकरण समाधान को एक संवृत्त-रूप व्यंजक के रूप में व्यक्त किया जा सकता है; और इसे एक विश्लेषणात्मक समाधान कहा जाता है यदि और केवल तभी जब कम से कम एक समाधान को विश्लेषणात्मक व्यंजक के रूप में व्यक्त किया जा सके। क्लोज्ड-फॉर्म समाधान की चर्चा में क्लोज्ड-फॉर्म फंक्शन और #क्लोज्ड-फॉर्म नंबर|क्लोज्ड-फॉर्म नंबर के बीच एक सूक्ष्म अंतर है, जिस पर चर्चा की गई है। (Chow 1999) और #क्लोज्ड-फॉर्म नंबर। एक संवृत्त-रूप या विश्लेषणात्मक समाधान को कभी-कभी स्पष्ट समाधान के रूप में जाना जाता है।
Arithmetic expressions | Polynomial expressions | Algebraic expressions | Closed-form expressions | Analytic expressions | Mathematical expressions | |
---|---|---|---|---|---|---|
Constant | Yes | Yes | Yes | Yes | Yes | Yes |
Elementary arithmetic operation | Yes | Addition, subtraction, and multiplication only | Yes | Yes | Yes | Yes |
Finite sum | Yes | Yes | Yes | Yes | Yes | Yes |
Finite product | Yes | Yes | Yes | Yes | Yes | Yes |
Finite continued fraction | Yes | No | Yes | Yes | Yes | Yes |
Variable | No | Yes | Yes | Yes | Yes | Yes |
Integer exponent | No | Yes | Yes | Yes | Yes | Yes |
Integer nth root | No | No | Yes | Yes | Yes | Yes |
Rational exponent | No | No | Yes | Yes | Yes | Yes |
Integer factorial | No | No | Yes | Yes | Yes | Yes |
Irrational exponent | No | No | No | Yes | Yes | Yes |
Logarithm | No | No | No | Yes | Yes | Yes |
Trigonometric function | No | No | No | Yes | Yes | Yes |
Inverse trigonometric function | No | No | No | Yes | Yes | Yes |
Hyperbolic function | No | No | No | Yes | Yes | Yes |
Inverse hyperbolic function | No | No | No | Yes | Yes | Yes |
Root of a polynomial that is not an algebraic solution | No | No | No | No | Yes | Yes |
Gamma function and factorial of a non-integer | No | No | No | No | Yes | Yes |
Bessel function | No | No | No | No | Yes | Yes |
Special function | No | No | No | No | Yes | Yes |
Infinite sum (series) (including power series) | No | No | No | No | Convergent only | Yes |
Infinite product | No | No | No | No | Convergent only | Yes |
Infinite continued fraction | No | No | No | No | Convergent only | Yes |
Limit | No | No | No | No | No | Yes |
Derivative | No | No | No | No | No | Yes |
Integral | No | No | No | No | No | Yes |
गैर-संवृत्त-रूप व्यंजकों से निपटना
संवृत्त-रूप वाले भावों में परिवर्तन
इजहार:
विभेदक गैलोज़ सिद्धांत
एक संवृत्त-रूप व्यंजक का अभिन्न अंग स्वयं एक संवृत्त-रूप व्यंजक के रूप में अभिव्यक्त हो भी सकता है और नहीं भी। बीजगणितीय गैलोज़ सिद्धांत के अनुरूप इस अध्ययन को विभेदक गैलोज़ सिद्धांत कहा जाता है।
डिफरेंशियल गैलोज़ सिद्धांत का मूल प्रमेय 1830 और 1840 के दशक में जोसेफ लिउविले के कारण है और इसलिए इसे लिउविले के प्रमेय (डिफरेंशियल अलजेब्रा) | लिउविले के प्रमेय के रूप में जाना जाता है।
एक प्राथमिक फलन का एक मानक उदाहरण जिसका एंटीडेरिवेटिव में संवृत्त-रूप व्यंजक नहीं है:
गणितीय मॉडलिंग और कंप्यूटर सिमुलेशन
संवृत्त-रूप या विश्लेषणात्मक समाधानों के लिए बहुत जटिल समीकरणों या प्रणालियों का अक्सर गणितीय मॉडलिंग और कंप्यूटर सिमुलेशन द्वारा विश्लेषण किया जा सकता है।
बंद प्रपत्र संख्या
This section may be confusing or unclear to readers. In particular, as the section is written, it seems that Liouvillian numbers and elementary numbers are exactly the same. (October 2020) (Learn how and when to remove this template message) |
सम्मिश्र संख्याओं के तीन उपक्षेत्र C को एक संवृत्त-रूप संख्या की धारणा को एन्कोडिंग के रूप में सुझाया गया है; व्यापकता के बढ़ते क्रम में, ये लिउविलियन संख्याएं हैं (तर्कसंगत सन्निकटन के अर्थ में लिउविल संख्याओं के साथ भ्रमित नहीं होना चाहिए), ईएल संख्याएं और प्राथमिक संख्याएं। लिउविलियन संख्याएँ, निरूपित L, सबसे छोटा बीजगणितीय रूप से बंद उपक्षेत्र बनाएं C घातांक और लघुगणक के तहत बंद (औपचारिक रूप से, ऐसे सभी उपक्षेत्रों का प्रतिच्छेदन) - अर्थात, संख्याएँ जिनमें स्पष्ट घातांक और लघुगणक शामिल होते हैं, लेकिन स्पष्ट और अंतर्निहित बहुपद (बहुपद की जड़ें) की अनुमति देते हैं; इसे इसमें परिभाषित किया गया है (Ritt 1948, p. 60). L को मूल रूप से प्रारंभिक संख्याओं के रूप में संदर्भित किया गया था, लेकिन अब इस शब्द का उपयोग बीजगणितीय संचालन, घातांक और लघुगणक के संदर्भ में स्पष्ट रूप से या अंतर्निहित रूप से परिभाषित संख्याओं को संदर्भित करने के लिए अधिक व्यापक रूप से किया जाता है। में एक संकीर्ण परिभाषा प्रस्तावित है (Chow 1999, pp. 441–442), निरूपित E, और इसे ईएल संख्या के रूप में संदर्भित किया जाता है, यह सबसे छोटा उपक्षेत्र है C घातांक और लघुगणक के तहत बंद - इसे बीजगणितीय रूप से बंद करने की आवश्यकता नहीं है, और यह स्पष्ट बीजगणितीय, घातीय और लघुगणकीय संचालन के अनुरूप है। ईएल का अर्थ घातीय-लघुगणक और प्राथमिक के संक्षिप्त रूप दोनों के लिए है।
क्या कोई संख्या एक बंद रूप वाली संख्या है, इसका संबंध इस बात से है कि क्या कोई संख्या पारलौकिक संख्या है। औपचारिक रूप से, लिउविलियन संख्याओं और प्राथमिक संख्याओं में बीजगणितीय संख्याएँ होती हैं, और उनमें कुछ नहीं बल्कि सभी पारलौकिक संख्याएँ शामिल होती हैं। इसके विपरीत, ईएल संख्याओं में सभी बीजगणितीय संख्याएँ शामिल नहीं होती हैं, लेकिन कुछ पारलौकिक संख्याएँ शामिल होती हैं। संवृत्त-रूप संख्याओं का अध्ययन ट्रान्सेंडैंटल संख्या सिद्धांत के माध्यम से किया जा सकता है, जिसमें एक प्रमुख परिणाम गेलफोंड-श्नाइडर प्रमेय है, और एक प्रमुख खुला प्रश्न शैनुएल का अनुमान है।
संख्यात्मक गणना
संख्यात्मक गणना के प्रयोजनों के लिए, बंद रूप में होना सामान्य रूप से आवश्यक नहीं है, क्योंकि कई सीमाओं और अभिन्नों की गणना कुशलतापूर्वक की जा सकती है। कुछ समीकरणों का कोई बंद रूप समाधान नहीं होता है, जैसे कि वे जो तीन-निकाय समस्या या हॉजकिन-हक्सले मॉडल का प्रतिनिधित्व करते हैं। इसलिए, इन प्रणालियों की भविष्य की स्थितियों की गणना संख्यात्मक रूप से की जानी चाहिए।
संख्यात्मक रूपों से रूपांतरण
ऐसा सॉफ़्टवेयर है जो RIES सहित संख्यात्मक मानों के लिए संवृत्त-रूप व्यंजक खोजने का प्रयास करता है,[2] identify मेपल में (सॉफ़्टवेयर)[3] और सिम्पी,[4] प्लॉफ़े का इन्वर्टर,[5] और व्युत्क्रम प्रतीकात्मक कैलकुलेटर।[6]
यह भी देखें
- Algebraic solution
- Computer simulation
- Elementary function
- Finitary operation
- Numerical solution
- Liouvillian function
- Symbolic regression
- Tarski's high school algebra problem
- Term (logic)
- Tupper's self-referential formula
संदर्भ
- ↑ Holton, Glyn. "संख्यात्मक समाधान, बंद प्रपत्र समाधान". Archived from the original on 4 February 2012. Retrieved 31 December 2012.
- ↑ Munafo, Robert. "RIES - बीजगणितीय समीकरण खोजें, उनका समाधान देखें". Retrieved 30 April 2012.
- ↑ करना "पहचान करना". Maple Online Help. Maplesoft. Retrieved 30 April 2012.
{{cite web}}
: Check|url=
value (help) - ↑ "संख्या पहचान". SymPy documentation. Archived from the original on 2018-07-06. Retrieved 2016-12-01.
- ↑ "प्लॉफ़े का इन्वर्टर". Archived from the original on 19 April 2012. Retrieved 30 April 2012.
- ↑ "उलटा प्रतीकात्मक कैलकुलेटर". Archived from the original on 29 March 2012. Retrieved 30 April 2012.
अग्रिम पठन
- Ritt, J. F. (1948), Integration in finite terms
- Chow, Timothy Y. (May 1999), "What is a Closed-Form Number?", American Mathematical Monthly, 106 (5): 440–448, arXiv:math/9805045, doi:10.2307/2589148, JSTOR 2589148
- Jonathan M. Borwein and Richard E. Crandall (January 2013), "Closed Forms: What They Are and Why We Care", Notices of the American Mathematical Society, 60 (1): 50–65, doi:10.1090/noti936