लैग्रेंज व्युत्क्रम प्रमेय: Difference between revisions
(→कथन) |
(→उदाहरण) |
||
Line 13: | Line 13: | ||
प्रमेय बताता है है कि इस श्रृंखला में अभिसरण की एक गैर-शून्य त्रिज्या होता है, अर्थात, <math>g(z)</math> निकटतम में {{mvar|z}} के एक विश्लेषणात्मक कार्य का प्रतिनिधित्व करता है <math>z= f(a)</math> इसे श्रृंखला का प्रत्यावर्तन भी कहा जाता है। | प्रमेय बताता है है कि इस श्रृंखला में अभिसरण की एक गैर-शून्य त्रिज्या होता है, अर्थात, <math>g(z)</math> निकटतम में {{mvar|z}} के एक विश्लेषणात्मक कार्य का प्रतिनिधित्व करता है <math>z= f(a)</math> इसे श्रृंखला का प्रत्यावर्तन भी कहा जाता है। | ||
यदि विश्लेषणात्मकता के बारे में | यदि विश्लेषणात्मकता के बारे में प्रमाण छोड़ दिए जाते हैं, तो सूत्र [[औपचारिक शक्ति श्रृंखला|औपचारिक घात श्रेणी]] के लिए भी मान्य है और इसे विभिन्न विधियों से सामान्यीकृत किया जा सकता है: इसे कई चरों के फलनों के लिए तैयार किया जा सकता है; इसे एक तैयार फार्मूला प्रदान करने के लिए बढ़ाया जा सकता है {{math|''F''(''g''(''z''))}} किसी भी विश्लेषणात्मक कार्य के लिए {{mvar|F}}; और इसे स्थिति में सामान्यीकृत किया जा सकता है <math>f'(a)=0,</math> जहां उलटा {{mvar|g}} एक बहुमूल्यवान फलन है। | ||
इस प्रमेय को [[जोसेफ लुई लैग्रेंज]] ने सिद्ध किया था<ref>{{cite journal |author=Lagrange, Joseph-Louis |year=1770 |title=Nouvelle méthode pour résoudre les équations littérales par le moyen des séries |journal=Histoire de l'Académie Royale des Sciences et Belles-Lettres de Berlin |pages=251–326 |url=http://bibliothek.bbaw.de/bbaw/bibliothek-digital/digitalequellen/schriften/anzeige/index_html?band=02-hist/1768&seite:int=257}} https://archive.org/details/uvresdelagrange18natigoog/page/n13 (Note: Although Lagrange submitted this article in 1768, it was not published until 1770.)</ref> और हंस हेनरिक बर्मन द्वारा सामान्यीकृत,<ref>Bürmann, Hans Heinrich, "Essai de calcul fonctionnaire aux constantes ad-libitum," submitted in 1796 to the Institut National de France. For a summary of this article, see: {{cite book |editor=Hindenburg, Carl Friedrich |title=Archiv der reinen und angewandten Mathematik |trans-title=Archive of pure and applied mathematics |location=Leipzig, Germany |publisher=Schäferischen Buchhandlung |year=1798 |volume=2 |chapter=Versuch einer vereinfachten Analysis; ein Auszug eines Auszuges von Herrn Bürmann |trans-chapter=Attempt at a simplified analysis; an extract of an abridgement by Mr. Bürmann |pages=495–499 |chapter-url=https://books.google.com/books?id=jj4DAAAAQAAJ&pg=495}}</ref><ref>Bürmann, Hans Heinrich, "Formules du développement, de retour et d'integration," submitted to the Institut National de France. Bürmann's manuscript survives in the archives of the École Nationale des Ponts et Chaussées [National School of Bridges and Roads] in Paris. (See ms. 1715.)</ref><ref>A report on Bürmann's theorem by Joseph-Louis Lagrange and Adrien-Marie Legendre appears in: [http://gallica.bnf.fr/ark:/12148/bpt6k3217h.image.f22.langFR.pagination "Rapport sur deux mémoires d'analyse du professeur Burmann,"] ''Mémoires de l'Institut National des Sciences et Arts: Sciences Mathématiques et Physiques'', vol. 2, pages 13–17 (1799).</ref> दोनों 18वीं सदी के अंत में। [[जटिल विश्लेषण]] और [[समोच्च एकीकरण]] का उपयोग करके एक सीधी व्युत्पत्ति है;<ref>[[E. T. Whittaker]] and [[G. N. Watson]]. ''[[A Course of Modern Analysis]]''. Cambridge University Press; 4th edition (January 2, 1927), pp. 129–130</ref> जटिल औपचारिक | इस प्रमेय को [[जोसेफ लुई लैग्रेंज]] ने सिद्ध किया था<ref>{{cite journal |author=Lagrange, Joseph-Louis |year=1770 |title=Nouvelle méthode pour résoudre les équations littérales par le moyen des séries |journal=Histoire de l'Académie Royale des Sciences et Belles-Lettres de Berlin |pages=251–326 |url=http://bibliothek.bbaw.de/bbaw/bibliothek-digital/digitalequellen/schriften/anzeige/index_html?band=02-hist/1768&seite:int=257}} https://archive.org/details/uvresdelagrange18natigoog/page/n13 (Note: Although Lagrange submitted this article in 1768, it was not published until 1770.)</ref> और हंस हेनरिक बर्मन द्वारा सामान्यीकृत,<ref>Bürmann, Hans Heinrich, "Essai de calcul fonctionnaire aux constantes ad-libitum," submitted in 1796 to the Institut National de France. For a summary of this article, see: {{cite book |editor=Hindenburg, Carl Friedrich |title=Archiv der reinen und angewandten Mathematik |trans-title=Archive of pure and applied mathematics |location=Leipzig, Germany |publisher=Schäferischen Buchhandlung |year=1798 |volume=2 |chapter=Versuch einer vereinfachten Analysis; ein Auszug eines Auszuges von Herrn Bürmann |trans-chapter=Attempt at a simplified analysis; an extract of an abridgement by Mr. Bürmann |pages=495–499 |chapter-url=https://books.google.com/books?id=jj4DAAAAQAAJ&pg=495}}</ref><ref>Bürmann, Hans Heinrich, "Formules du développement, de retour et d'integration," submitted to the Institut National de France. Bürmann's manuscript survives in the archives of the École Nationale des Ponts et Chaussées [National School of Bridges and Roads] in Paris. (See ms. 1715.)</ref><ref>A report on Bürmann's theorem by Joseph-Louis Lagrange and Adrien-Marie Legendre appears in: [http://gallica.bnf.fr/ark:/12148/bpt6k3217h.image.f22.langFR.pagination "Rapport sur deux mémoires d'analyse du professeur Burmann,"] ''Mémoires de l'Institut National des Sciences et Arts: Sciences Mathématiques et Physiques'', vol. 2, pages 13–17 (1799).</ref> दोनों 18वीं सदी के अंत में। [[जटिल विश्लेषण]] और [[समोच्च एकीकरण]] का उपयोग करके एक सीधी व्युत्पत्ति है;<ref>[[E. T. Whittaker]] and [[G. N. Watson]]. ''[[A Course of Modern Analysis]]''. Cambridge University Press; 4th edition (January 2, 1927), pp. 129–130</ref> जटिल औपचारिक घात श्रेणी संस्करण [[बहुपद]]ों के सूत्र को जानने का परिणाम है, इसलिए विश्लेषणात्मक कार्यों के सिद्धांत को लागू किया जा सकता है। वास्तव में, विश्लेषणात्मक फलन सिद्धांत की मशीनरी इस प्रमाण में केवल औपचारिक तरीके से प्रवेश करती है, जिसमें वास्तव में औपचारिक घात श्रेणी # औपचारिक अवशेषों की कुछ संपत्ति की आवश्यकता होती है, और एक अधिक प्रत्यक्ष औपचारिक औपचारिक घात श्रेणी # लैग्रेंज व्युत्क्रम सूत्र है उपलब्ध। | ||
अगर {{mvar|f}} एक औपचारिक घात श्रेणी है, तो उपरोक्त सूत्र संघात्मक व्युत्क्रम श्रृंखला के गुणांक नहीं देता है {{mvar|g}}श्रृंखला के गुणांकों के संदर्भ में सीधे {{mvar|f}}. यदि कोई कार्यों को व्यक्त कर सकता है {{mvar|f}} और {{mvar|g}} औपचारिक घात श्रेणी में जैसे | |||
अगर {{mvar|f}} एक औपचारिक | |||
:<math>f(w) = \sum_{k=0}^\infty f_k \frac{w^k}{k!} \qquad \text{and} \qquad g(z) = \sum_{k=0}^\infty g_k \frac{z^k}{k!}</math> | :<math>f(w) = \sum_{k=0}^\infty f_k \frac{w^k}{k!} \qquad \text{and} \qquad g(z) = \sum_{k=0}^\infty g_k \frac{z^k}{k!}</math> | ||
Line 33: | Line 32: | ||
कब {{math|1=''f''<sub>1</sub> = 1}}, अंतिम सूत्र की व्याख्या [[असोसिएहेड्रॉन]] के फलकों के संदर्भ में की जा सकती है <ref>{{cite arXiv|eprint=1709.07504|class=math.CO|title=हॉपफ मोनोइड्स और सामान्यीकृत परमुटाहेड्रा|last1=Aguiar|first1=Marcelo|last2=Ardila|first2=Federico|year=2017}}</ref> | कब {{math|1=''f''<sub>1</sub> = 1}}, अंतिम सूत्र की व्याख्या [[असोसिएहेड्रॉन]] के फलकों के संदर्भ में की जा सकती है <ref>{{cite arXiv|eprint=1709.07504|class=math.CO|title=हॉपफ मोनोइड्स और सामान्यीकृत परमुटाहेड्रा|last1=Aguiar|first1=Marcelo|last2=Ardila|first2=Federico|year=2017}}</ref> | ||
:<math> g_n = \sum_{F \text{ face of } K_n} (-1)^{n-\dim F} f_F , \quad n \geq 2, </math> कहाँ <math> f_{F} = f_{i_{1}} \cdots f_{i_{m}} </math> प्रत्येक चेहरे के लिए <math> F = K_{i_1} \times \cdots \times K_{i_m} </math> असोसिएहेड्रॉन का <math> K_n .</math> | :<math> g_n = \sum_{F \text{ face of } K_n} (-1)^{n-\dim F} f_F , \quad n \geq 2, </math> कहाँ <math> f_{F} = f_{i_{1}} \cdots f_{i_{m}} </math> प्रत्येक चेहरे के लिए <math> F = K_{i_1} \times \cdots \times K_{i_m} </math> असोसिएहेड्रॉन का <math> K_n .</math> | ||
==उदाहरण== | ==उदाहरण== | ||
उदाहरण के लिए, डिग्री का बीजगणितीय समीकरण {{mvar|p}} | उदाहरण के लिए, डिग्री का बीजगणितीय समीकरण {{mvar|p}} | ||
Line 134: | Line 131: | ||
:<math>1 + f(z) + \ln (1 + f(z)) = z.</math> | :<math>1 + f(z) + \ln (1 + f(z)) = z.</math> | ||
तब <math>z + \ln (1 + z)</math> एक | तब <math>z + \ln (1 + z)</math> एक घात श्रेणी में विस्तारित किया जा सकता है और उलटा किया जा सकता है।<ref>{{cite conference |url=https://dl.acm.org/doi/pdf/10.1145/258726.258783 |title=लैम्बर्ट डब्ल्यू फ़ंक्शन के लिए श्रृंखला का एक क्रम|last1=Corless |first1=Robert M. |last2=Jeffrey |first2= David J.|author-link2=|last3=Knuth|first3=Donald E.|author-link3=Donald E. Knuth|date=July 1997 |book-title=Proceedings of the 1997 international symposium on Symbolic and algebraic computation |pages=197–204}}</ref> यह के लिए एक श्रृंखला देता है <math>f(z+1) = W(e^{z+1})-1\text{:}</math> | ||
:<math>W(e^{1+z}) = 1 + \frac{z}{2} + \frac{z^2}{16} - \frac{z^3}{192} - \frac{z^4}{3072} + \frac{13 z^5}{61440} - O(z^6).</math> | :<math>W(e^{1+z}) = 1 + \frac{z}{2} + \frac{z^2}{16} - \frac{z^3}{192} - \frac{z^4}{3072} + \frac{13 z^5}{61440} - O(z^6).</math> | ||
Line 154: | Line 151: | ||
==यह भी देखें== | ==यह भी देखें== | ||
*फ़ा डि ब्रूनो का सूत्र उन दो श्रृंखलाओं के गुणांकों के संदर्भ में दो औपचारिक | *फ़ा डि ब्रूनो का सूत्र उन दो श्रृंखलाओं के गुणांकों के संदर्भ में दो औपचारिक घात श्रेणीओं की संरचना के गुणांक देता है। समान रूप से, यह एक समग्र फलन के nवें अवकलज के लिए एक सूत्र है। | ||
*किसी अन्य प्रमेय के लिए [[लैग्रेंज प्रत्यावर्तन प्रमेय]] को कभी-कभी व्युत्क्रम प्रमेय भी कहा जाता है | *किसी अन्य प्रमेय के लिए [[लैग्रेंज प्रत्यावर्तन प्रमेय]] को कभी-कभी व्युत्क्रम प्रमेय भी कहा जाता है | ||
*औपचारिक | *औपचारिक घात श्रेणी#लैग्रेंज व्युत्क्रम सूत्र | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 00:01, 10 July 2023
गणितीय विश्लेषण में, लैग्रेंज व्युत्क्रम प्रमेय, जिसे लैग्रेंज-बर्मन सूत्र के रूप में भी जाना जाता है, एक विश्लेषणात्मक फलन के व्युत्क्रम फलन का टेलरश्रेणी मे विस्तार करता है।
कथन
मान लीजिए कि z को प्रपत्र के एक समीकरण द्वारा w के फलन के रूप में परिभाषित किया गया है
जहाँ f एक बिंदु पर विश्लेषणात्मक होता है a और तब w के लिए समीकरण को उलटना या हल करना संभव है, इसे इस रूप में व्यक्त करना, इसे इस रूप में व्यक्त करना एक घात श्रेणी द्वारा दिया गया[1]
जहाँ
प्रमेय बताता है है कि इस श्रृंखला में अभिसरण की एक गैर-शून्य त्रिज्या होता है, अर्थात, निकटतम में z के एक विश्लेषणात्मक कार्य का प्रतिनिधित्व करता है इसे श्रृंखला का प्रत्यावर्तन भी कहा जाता है।
यदि विश्लेषणात्मकता के बारे में प्रमाण छोड़ दिए जाते हैं, तो सूत्र औपचारिक घात श्रेणी के लिए भी मान्य है और इसे विभिन्न विधियों से सामान्यीकृत किया जा सकता है: इसे कई चरों के फलनों के लिए तैयार किया जा सकता है; इसे एक तैयार फार्मूला प्रदान करने के लिए बढ़ाया जा सकता है F(g(z)) किसी भी विश्लेषणात्मक कार्य के लिए F; और इसे स्थिति में सामान्यीकृत किया जा सकता है जहां उलटा g एक बहुमूल्यवान फलन है।
इस प्रमेय को जोसेफ लुई लैग्रेंज ने सिद्ध किया था[2] और हंस हेनरिक बर्मन द्वारा सामान्यीकृत,[3][4][5] दोनों 18वीं सदी के अंत में। जटिल विश्लेषण और समोच्च एकीकरण का उपयोग करके एक सीधी व्युत्पत्ति है;[6] जटिल औपचारिक घात श्रेणी संस्करण बहुपदों के सूत्र को जानने का परिणाम है, इसलिए विश्लेषणात्मक कार्यों के सिद्धांत को लागू किया जा सकता है। वास्तव में, विश्लेषणात्मक फलन सिद्धांत की मशीनरी इस प्रमाण में केवल औपचारिक तरीके से प्रवेश करती है, जिसमें वास्तव में औपचारिक घात श्रेणी # औपचारिक अवशेषों की कुछ संपत्ति की आवश्यकता होती है, और एक अधिक प्रत्यक्ष औपचारिक औपचारिक घात श्रेणी # लैग्रेंज व्युत्क्रम सूत्र है उपलब्ध।
अगर f एक औपचारिक घात श्रेणी है, तो उपरोक्त सूत्र संघात्मक व्युत्क्रम श्रृंखला के गुणांक नहीं देता है gश्रृंखला के गुणांकों के संदर्भ में सीधे f. यदि कोई कार्यों को व्यक्त कर सकता है f और g औपचारिक घात श्रेणी में जैसे
साथ f0 = 0 और f1 ≠ 0, तो बेल बहुपद के पद में व्युत्क्रम गुणांक का एक स्पष्ट रूप दिया जा सकता है:[7]
कहाँ
बढ़ती फैक्टोरियल है.
कब f1 = 1, अंतिम सूत्र की व्याख्या असोसिएहेड्रॉन के फलकों के संदर्भ में की जा सकती है [8]
- कहाँ प्रत्येक चेहरे के लिए असोसिएहेड्रॉन का
उदाहरण
उदाहरण के लिए, डिग्री का बीजगणितीय समीकरण p
के लिए हल किया जा सकता है x फलन के लिए लैग्रेंज व्युत्क्रम सूत्र के माध्यम से f(x) = x − xp, जिसके परिणामस्वरूप एक औपचारिक श्रृंखला समाधान प्राप्त होता है
अभिसरण परीक्षणों द्वारा, यह श्रृंखला वास्तव में अभिसरण के लिए है जो कि सबसे बड़ी डिस्क भी है जिसमें स्थानीय व्युत्क्रम होता है f परिभाषित किया जा सकता।
प्रमाण का रेखाचित्र
सरलता के लिए मान लीजिए . फिर हम गणना कर सकते हैं
यदि हम ज्यामितीय श्रृंखला का उपयोग करके इंटीग्रैंड का विस्तार करते हैं तो हमें प्राप्त होता है
जहां अंतिम चरण में हमने इस तथ्य का उपयोग किया था एक साधारण शून्य है.
अंततः हम एकीकरण कर सकते हैं ध्यान में रखना
सारांश सूचकांक को पुनः परिभाषित करने पर हमें बताया गया सूत्र प्राप्त होता है।
अनुप्रयोग
लैग्रेंज-बर्मन सूत्र
लैग्रेंज व्युत्क्रम प्रमेय का एक विशेष मामला है जिसका उपयोग साहचर्य में किया जाता है और जब लागू होता है कुछ विश्लेषणात्मक के लिए साथ लेना प्राप्त करने के लिए फिर व्युत्क्रम के लिए (संतुष्टि देने वाला ), अपने पास
जिसे वैकल्पिक रूप से इस प्रकार लिखा जा सकता है
कहाँ एक ऑपरेटर है जो का गुणांक निकालता है के एक समारोह की टेलर श्रृंखला में w.
सूत्र के सामान्यीकरण को लैग्रेंज-बर्मन सूत्र के रूप में जाना जाता है:
कहाँ H एक मनमाना विश्लेषणात्मक कार्य है।
कभी-कभी, व्युत्पन्न H′(w) काफी जटिल हो सकता है. सूत्र का एक सरल संस्करण प्रतिस्थापित करता है H′(w) साथ H(w)(1 − φ′(w)/φ(w)) पाने के
कौन शामिल है φ′(w) के बजाय H′(w).
लैम्बर्ट डब्ल्यू फलन
लैंबर्ट W फलन फलन है यह समीकरण द्वारा स्पष्ट रूप से परिभाषित है
हम टेलर श्रृंखला की गणना करने के लिए प्रमेय का उपयोग कर सकते हैं पर हम लेते हैं और उसे पहचानते हुए
यह देता है
इस श्रृंखला के अभिसरण की त्रिज्या है (लैंबर्ट फलन की मुख्य शाखा देते हुए)।
एक श्रृंखला जो बड़े पैमाने पर एकत्रित होती है z (हालाँकि सभी के लिए नहीं z) श्रृंखला व्युत्क्रम द्वारा भी प्राप्त किया जा सकता है। कार्यक्रम समीकरण को संतुष्ट करता है
तब एक घात श्रेणी में विस्तारित किया जा सकता है और उलटा किया जा सकता है।[9] यह के लिए एक श्रृंखला देता है
प्रतिस्थापित करके गणना की जा सकती है के लिए z उपरोक्त शृंखला में। उदाहरण के लिए, प्रतिस्थापित करना −1 के लिए z का मान देता है
बाइनरी पेड़
विचार करना[10] सेट बिना लेबल वाले बाइनरी पेड़ों की। का एक तत्व या तो शून्य आकार का एक पत्ता है, या दो उपवृक्षों वाला एक मूल नोड है। द्वारा निरूपित करें पर बाइनरी पेड़ों की संख्या नोड्स.
जड़ को हटाने से एक बाइनरी पेड़ छोटे आकार के दो पेड़ों में विभाजित हो जाता है। इससे जनरेटिंग फलन पर कार्यात्मक समीकरण प्राप्त होता है
दे , किसी के पास इस प्रकार है प्रमेय को साथ में लागू करना पैदावार
इससे पता चलता है कि है nवां कैटलन संख्या ।
अभिन्नों का स्पर्शोन्मुख सन्निकटन
लाप्लास-एर्डेली प्रमेय में जो लाप्लास-प्रकार के इंटीग्रल्स के लिए एसिम्प्टोटिक सन्निकटन देता है, फलन व्युत्क्रम को एक महत्वपूर्ण कदम के रूप में लिया जाता है।
यह भी देखें
- फ़ा डि ब्रूनो का सूत्र उन दो श्रृंखलाओं के गुणांकों के संदर्भ में दो औपचारिक घात श्रेणीओं की संरचना के गुणांक देता है। समान रूप से, यह एक समग्र फलन के nवें अवकलज के लिए एक सूत्र है।
- किसी अन्य प्रमेय के लिए लैग्रेंज प्रत्यावर्तन प्रमेय को कभी-कभी व्युत्क्रम प्रमेय भी कहा जाता है
- औपचारिक घात श्रेणी#लैग्रेंज व्युत्क्रम सूत्र
संदर्भ
- ↑ M. Abramowitz; I. A. Stegun, eds. (1972). "3.6.6. Lagrange's Expansion". सूत्रों, ग्राफ़ और गणितीय तालिकाओं के साथ गणितीय कार्यों की पुस्तिका. New York: Dover. p. 14.
- ↑ Lagrange, Joseph-Louis (1770). "Nouvelle méthode pour résoudre les équations littérales par le moyen des séries". Histoire de l'Académie Royale des Sciences et Belles-Lettres de Berlin: 251–326. https://archive.org/details/uvresdelagrange18natigoog/page/n13 (Note: Although Lagrange submitted this article in 1768, it was not published until 1770.)
- ↑ Bürmann, Hans Heinrich, "Essai de calcul fonctionnaire aux constantes ad-libitum," submitted in 1796 to the Institut National de France. For a summary of this article, see: Hindenburg, Carl Friedrich, ed. (1798). "Versuch einer vereinfachten Analysis; ein Auszug eines Auszuges von Herrn Bürmann" [Attempt at a simplified analysis; an extract of an abridgement by Mr. Bürmann]. Archiv der reinen und angewandten Mathematik [Archive of pure and applied mathematics]. Vol. 2. Leipzig, Germany: Schäferischen Buchhandlung. pp. 495–499.
- ↑ Bürmann, Hans Heinrich, "Formules du développement, de retour et d'integration," submitted to the Institut National de France. Bürmann's manuscript survives in the archives of the École Nationale des Ponts et Chaussées [National School of Bridges and Roads] in Paris. (See ms. 1715.)
- ↑ A report on Bürmann's theorem by Joseph-Louis Lagrange and Adrien-Marie Legendre appears in: "Rapport sur deux mémoires d'analyse du professeur Burmann," Mémoires de l'Institut National des Sciences et Arts: Sciences Mathématiques et Physiques, vol. 2, pages 13–17 (1799).
- ↑ E. T. Whittaker and G. N. Watson. A Course of Modern Analysis. Cambridge University Press; 4th edition (January 2, 1927), pp. 129–130
- ↑ Eqn (11.43), p. 437, C.A. Charalambides, Enumerative Combinatorics, Chapman & Hall / CRC, 2002
- ↑ Aguiar, Marcelo; Ardila, Federico (2017). "हॉपफ मोनोइड्स और सामान्यीकृत परमुटाहेड्रा". arXiv:1709.07504 [math.CO].
- ↑ Corless, Robert M.; Jeffrey, David J.; Knuth, Donald E. (July 1997). "लैम्बर्ट डब्ल्यू फ़ंक्शन के लिए श्रृंखला का एक क्रम". Proceedings of the 1997 international symposium on Symbolic and algebraic computation. pp. 197–204.
- ↑ Harris, John; Hirst, Jeffry L.; Mossinghoff, Michael (2008). कॉम्बिनेटरिक्स और ग्राफ़ सिद्धांत. Springer. p. 185-189. ISBN 978-0387797113.