आदर्श संख्या: Difference between revisions

From Vigyanwiki
(Created page with "संख्या सिद्धांत में एक आदर्श संख्या एक बीजगणितीय पूर्णांक है ज...")
 
No edit summary
 
(7 intermediate revisions by 3 users not shown)
Line 2: Line 2:


==उदाहरण==
==उदाहरण==
उदाहरण के लिए, चलो <math>y</math> की जड़ हो <math>y^2 + y + 6 = 0</math>, फिर क्षेत्र के पूर्णांकों का वलय <math>\mathbb{Q}(y)</math> है <math>\mathbb{Z}[y]</math>, जिसका अर्थ है सब कुछ <math>a + b \cdot y</math> साथ <math>a</math> और <math>b</math> पूर्णांक पूर्णांकों का वलय बनाते हैं। इस वलय में एक गैर-प्रमुख आदर्श का एक उदाहरण सभी का समुच्चय है <math>2 a + y \cdot b</math> कहाँ <math>a</math> और <math>b</math> पूर्णांक हैं; इस आदर्श का घन मूलधन है, और वास्तव में [[वर्ग समूह]] क्रम तीन का चक्रीय है। संबंधित वर्ग फ़ील्ड किसी तत्व को जोड़कर प्राप्त किया जाता है <math>w</math> संतुष्टि देने वाला <math>w^3 - w - 1 = 0</math> को <math>\mathbb{Q}(y)</math>, देना <math>\mathbb{Q}(y,w)</math>. गैर-प्रमुख आदर्श के लिए एक आदर्श संख्या <math>2 a + y \cdot b</math> है <math>\iota = (-8-16y-18w+12w^2+10yw+yw^2)/23</math>. चूँकि यह समीकरण को संतुष्ट करता है
उदाहरण के लिए, मान लीजिए  <math>y</math> की जड़ हो <math>y^2 + y + 6 = 0</math>, का मूल है, तो क्षेत्र <math>\mathbb{Q}(y)</math> के पूर्णांकों का वलय है <math>\mathbb{Z}[y]</math>, जिसका अर्थ है कि <math>a</math> और <math>b</math> पूर्णांक के साथ सभी  <math>a + b \cdot y</math> पूर्णांकों का वलय बनाते हैं। इस वलय में एक गैर-प्रमुख आदर्श का एक उदाहरण सभी <math>2 a + y \cdot b</math> का समुच्चय है जहाँ  <math>a</math> और <math>b</math> पूर्णांक हैं; इस आदर्श का घन मूलधन है, और वास्तव में [[वर्ग समूह]] क्रम तीन का चक्रीय है। संबंधित वर्ग क्षेत्र को एक तत्व को <math>w</math> से जोड़कर प्राप्त किया जाता है जो  <math>w^3 - w - 1 = 0</math> को संतुष्ट करता है।<math>\mathbb{Q}(y)</math>, <math>\mathbb{Q}(y,w)</math> गैर-प्रमुख आदर्श के लिए एक आदर्श संख्या <math>2 a + y \cdot b</math> है  
 
<math>\iota = (-8-16y-18w+12w^2+10yw+yw^2)/23</math>. चूँकि यह समीकरण को संतुष्ट करता है
 
<math>\iota^6-2\iota^5+13\iota^4-15\iota^3+16\iota^2+28\iota+8 = 0</math> यह एक बीजगणितीय पूर्णांक है.
<math>\iota^6-2\iota^5+13\iota^4-15\iota^3+16\iota^2+28\iota+8 = 0</math> यह एक बीजगणितीय पूर्णांक है.


वर्ग क्षेत्र के पूर्णांकों की रिंग के सभी तत्व जिन्हें जब गुणा किया जाता है <math>\iota</math> में एक परिणाम दें <math>\mathbb{Z}[y]</math> स्वरूप के हैं <math>a \cdot \alpha + y \cdot \beta</math>, कहाँ
वर्ग क्षेत्र के पूर्णांकों की रिंग के सभी तत्व जिन्हें जब गुणा किया जाता है <math>\iota</math> में एक परिणाम दें <math>\mathbb{Z}[y]</math> स्वरूप के हैं <math>a \cdot \alpha + y \cdot \beta</math>, जहाँ


:<math>\alpha = (-7+9y-33w-24w^2+3yw-2yw^2)/23</math>
:<math>\alpha = (-7+9y-33w-24w^2+3yw-2yw^2)/23</math>
Line 20: Line 23:


==इतिहास==
==इतिहास==
कुमेर ने पहली बार 1844 में एक अस्पष्ट पत्रिका में [[साइक्लोटोमिक क्षेत्र]]ों में अद्वितीय गुणनखंडन की विफलता को प्रकाशित किया; इसे 1847 में जोसेफ़ लिउविल|लिउविल की पत्रिका में पुनर्मुद्रित किया गया था। 1846 और 1847 में बाद के पत्रों में उन्होंने अपना मुख्य प्रमेय, (वास्तविक और आदर्श) अभाज्यों में अद्वितीय गुणनखंडन प्रकाशित किया।
कुमेर ने पहली बार 1844 में एक अस्पष्ट पत्रिका में [[साइक्लोटोमिक क्षेत्र]]ों में अद्वितीय गुणनखंडन की विफलता को प्रकाशित किया; इसे 1847 में जोसेफ़ लिउविल की पत्रिका में पुनर्मुद्रित किया गया था। 1846 और 1847 में बाद के पत्रों में उन्होंने अपना मुख्य प्रमेय, (वास्तविक और आदर्श) अभाज्यों में अद्वितीय गुणनखंडन प्रकाशित किया।


यह व्यापक रूप से माना जाता है कि फ़र्मेट के अंतिम प्रमेय में उनकी रुचि के कारण कुमेर को उनके आदर्श जटिल संख्याओं की ओर प्रेरित किया गया था; यहां तक ​​कि एक कहानी भी अक्सर बताई जाती है कि गेब्रियल लैमे|लेमे की तरह कुमेर का मानना ​​था कि उन्होंने फ़र्मेट के अंतिम प्रमेय को सिद्ध कर लिया है, जब तक कि [[पीटर गुस्ताव लेज्यून डिरिचलेट]] ने उन्हें नहीं बताया कि उनका तर्क अद्वितीय गुणनखंडन पर निर्भर था; लेकिन यह कहानी सबसे पहले 1910 में कर्ट हेन्सल द्वारा बताई गई थी और सबूत यह संकेत देते हैं कि यह संभवतः हेन्सेल के किसी स्रोत के भ्रम से उत्पन्न हुई है। [[हेरोल्ड एडवर्ड्स (गणितज्ञ)]] का कहना है कि यह धारणा कि कुमेर मुख्य रूप से फ़र्मेट के अंतिम प्रमेय में रुचि रखते थे, निश्चित रूप से गलत है (एडवर्ड्स 1977, पृष्ठ 79)। कुमेर द्वारा अभाज्य संख्या को दर्शाने के लिए λ अक्षर का उपयोग, एकता के λवें मूल को निरूपित करने के लिए α, और अभाज्य संख्या के गुणनखंडन का उनका अध्ययन <math>p\equiv 1 \pmod{\lambda}</math> से बनी सम्मिश्र संख्याओं में <math>\lambda</math>एकता की सभी जड़ें सीधे [[कार्ल गुस्ताव जैकब जैकोबी]] के एक पेपर से निकलती हैं जो [[पारस्परिकता कानून]] से संबंधित है। कुमेर का 1844 का संस्मरण कोनिग्सबर्ग विश्वविद्यालय के जयंती समारोह के सम्मान में था और जैकोबी को श्रद्धांजलि के रूप में था। हालाँकि कुमेर ने 1830 के दशक में फ़र्मेट के अंतिम प्रमेय का अध्ययन किया था और शायद जानते थे कि उनके सिद्धांत का इसके अध्ययन पर प्रभाव पड़ेगा, यह अधिक संभावना है कि जैकोबी (और कार्ल फ्रेडरिक गॉस | गॉस) की रुचि का विषय, उच्च पारस्परिकता कानून, अधिक महत्व रखता है उसके लिए। कुमेर ने नियमित अभाज्य संख्याओं के लिए फ़र्मेट के अंतिम प्रमेय के अपने आंशिक प्रमाण को एक प्रमुख वस्तु के बजाय संख्या सिद्धांत की जिज्ञासा के रूप में और उच्च पारस्परिकता कानून (जिसे उन्होंने अनुमान के रूप में बताया) को प्रमुख विषय और समकालीन संख्या सिद्धांत के शिखर के रूप में संदर्भित किया। . दूसरी ओर, यह बाद की घोषणा तब की गई थी जब कुमेर अभी भी पारस्परिकता पर अपने काम की सफलता के बारे में उत्साहित थे और जब फ़र्मेट के अंतिम प्रमेय पर उनका काम समाप्त हो रहा था, इसलिए इसे शायद कुछ संदेह के साथ लिया जा सकता है।
यह व्यापक रूप से माना जाता है कि फ़र्मेट के अंतिम प्रमेय में उनकी रुचि के कारण कुमेर को उनके आदर्श जटिल संख्याओं की ओर प्रेरित किया गया था; यहां तक ​​कि एक कहानी भी अक्सर बताई जाती है कि गेब्रियल लैमे की तरह कुमेर का मानना ​​था कि उन्होंने फ़र्मेट के अंतिम प्रमेय को सिद्ध कर लिया है, जब तक कि [[पीटर गुस्ताव लेज्यून डिरिचलेट]] ने उन्हें नहीं बताया कि उनका तर्क अद्वितीय गुणनखंडन पर निर्भर था; लेकिन यह कहानी सबसे पहले 1910 में कर्ट हेन्सल द्वारा बताई गई थी और सबूत यह संकेत देते हैं कि यह संभवतः हेन्सेल के किसी स्रोत के भ्रम से उत्पन्न हुई है। [[हेरोल्ड एडवर्ड्स (गणितज्ञ)]] का कहना है कि यह धारणा कि कुमेर मुख्य रूप से फ़र्मेट के अंतिम प्रमेय में रुचि रखते थे, निश्चित रूप से गलत है (एडवर्ड्स 1977, पृष्ठ 79)। कुमेर द्वारा अभाज्य संख्या को दर्शाने के लिए λ अक्षर का उपयोग, एकता के λवें मूल को निरूपित करने के लिए α, और अभाज्य संख्या के गुणनखंडन का उनका अध्ययन <math>p\equiv 1 \pmod{\lambda}</math> से बनी सम्मिश्र संख्याओं में <math>\lambda</math>एकता की सभी जड़ें सीधे [[कार्ल गुस्ताव जैकब जैकोबी]] के एक पेपर से निकलती हैं जो [[पारस्परिकता कानून]] से संबंधित है। कुमेर का 1844 का संस्मरण कोनिग्सबर्ग विश्वविद्यालय के जयंती समारोह के सम्मान में था और जैकोबी को श्रद्धांजलि के रूप में था। हालाँकि कुमेर ने 1830 के दशक में फ़र्मेट के अंतिम प्रमेय का अध्ययन किया था और संभवतया जानते थे कि उनके सिद्धांत का इसके अध्ययन पर प्रभाव पड़ेगा, यह अधिक संभावना है कि जैकोबी (और कार्ल फ्रेडरिक गगॉस) की रुचि का विषय, उच्च पारस्परिकता कानून, उसके लिए अधिक महत्व रखता है कुमेर ने नियमित अभाज्य संख्याओं के लिए प्रारूप के अंतिम प्रमेय के अपने आंशिक प्रमाण को एक प्रमुख वस्तु के बजाय संख्या सिद्धांत की जिज्ञासा के रूप में और उच्च पारस्परिकता कानून (जिसे उन्होंने अनुमान के रूप में बताया) को प्रमुख विषय और समकालीन संख्या सिद्धांत के शिखर के रूप में संदर्भित किया। दूसरी ओर, यह बाद की घोषणा तब की गई थी जब कुमेर अभी भी पारस्परिकता पर अपने काम की सफलता के बारे में उत्साहित थे और जब प्रारूप के अंतिम प्रमेय पर उनका काम समाप्त हो रहा था, इसलिए इसे संभवतया कुछ संदेह के साथ लिया जा सकता है।


सामान्य मामले में कुमेर के विचारों का विस्तार अगले चालीस वर्षों के दौरान क्रोनकर और डेडेकाइंड द्वारा स्वतंत्र रूप से पूरा किया गया। प्रत्यक्ष सामान्यीकरण में कठिन कठिनाइयों का सामना करना पड़ा, और इसने अंततः डेडेकाइंड को [[मॉड्यूल (गणित)]] और आदर्श (रिंग सिद्धांत) के सिद्धांत के निर्माण के लिए प्रेरित किया। क्रोनकर ने रूपों के सिद्धांत ([[द्विघात रूप]]ों का सामान्यीकरण) और विभाजक ([[बीजगणितीय ज्यामिति]]) के सिद्धांत को विकसित करके कठिनाइयों से निपटा। डेडेकाइंड का योगदान रिंग सिद्धांत और [[अमूर्त बीजगणित]] का आधार बन जाएगा, जबकि क्रोनकर का बीजगणितीय ज्यामिति में प्रमुख उपकरण बन जाएगा।
सामान्य घटना में कुमेर के विचारों का विस्तार अगले चालीस वर्षों के दौरान क्रोनकर और डेडेकाइंड द्वारा स्वतंत्र रूप से पूरा किया गया। प्रत्यक्ष सामान्यीकरण में कठिनाइयों का सामना करना पड़ा, और इसने अंततः डेडेकाइंड को [[मॉड्यूल (गणित)]] और आदर्श (रिंग सिद्धांत) के सिद्धांत के निर्माण के लिए प्रेरित किया। क्रोनकर ने रूपों के सिद्धांत ([[द्विघात रूप]]ों का सामान्यीकरण) और विभाजक ([[बीजगणितीय ज्यामिति]]) के सिद्धांत को विकसित करके कठिनाइयों से निपटा। डेडेकाइंड का योगदान रिंग सिद्धांत और [[अमूर्त बीजगणित]] का आधार बन जाएगा, जबकि क्रोनकर का बीजगणितीय ज्यामिति में प्रमुख उपकरण बन जाएगा।


==संदर्भ==
==संदर्भ==
*[[Nicolas Bourbaki]], ''Elements of the History of Mathematics.'' Springer-Verlag, NY, 1999.
*[[Nicolas Bourbaki|निकोलस बॉर्बकी]], गणित के इतिहास के तत्व. स्प्रिंगर-वेरलाग, एनवाई, 1999.
*[[Harold M. Edwards]], ''Fermat's Last Theorem. A genetic introduction to number theory.'' Graduate Texts in Mathematics vol. 50, Springer-Verlag, NY, 1977.
*[[Harold M. Edwards|हेरोल्ड एम. एडवर्ड्स]], फ़र्मेट का अंतिम प्रमेय. संख्या सिद्धांत का आनुवंशिक परिचय। गणित, वॉल्यूम में स्नातक विषय। 50, स्प्रिंगर-वेरलाग, एनवाई, 1977.
*C.G. Jacobi, ''Über die complexen Primzahlen, welche in der theori der Reste der 5ten, 8ten, und 12ten Potenzen zu betrachten sind,'' Monatsber. der. Akad. Wiss. Berlin (1839) 89-91.
*सी.जी. जैकोबी, उबेर डाई कॉम्प्लेक्सन प्राइमज़ाहलेन, वेल्चे इन डेर थियोरी डेर रेस्ट डेर डेर 5टेन, 8टेन, और 12टेन पोटेंज़ेन ज़ू बेट्रैचटेन सिंड, मोनाट्सबर। डेर. अकाद. विस. बर्लिन (1839) 89-91।
*E.E. Kummer, ''De numeris complexis, qui radicibus unitatis et numeris integris realibus constant,'' Gratulationschrift der Univ. Breslau zur Jubelfeier der Univ. Königsberg, 1844; reprinted in ''Jour. de Math.'' 12 (1847) 185-212.
*.. कुमेर, डी न्यूमेरिस कॉम्प्लेक्सिस, क्यूई रेडिसिबस यूनिटैटिस और न्यूमेरिस इंटीग्रिस रियलिबस कॉन्स्टैंट, ग्रैटुलेशनस्क्रिफ्ट डेर यूनिवर्सिटी। ब्रेस्लाउ ज़ूर जुबेलफ़ीयर डेर यूनिवर्सिटी। कोनिग्सबर्ग, 1844; जर्नल में पुनर्मुद्रित. डे मठ. 12 (1847) 185-212.
*E.E. Kummer, ''Über die Zerlegung der aus Wurzeln der Einheit gebildeten complexen Zahlen in ihre Primfactoren,'' Jour. für Math. (Crelle) 35 (1847) 327-367.
*.. कुमेर, उबेर डाई ज़ेरलेगंग डेर ऑस वुर्जेलन डेर एइनहाइट गेबिल्डेटेन कॉम्प्लेक्सन ज़हलेन इन इह्रे प्राइम्फैक्टोरेन, जर्नल। फर गणित. (क्रेल) 35 (1847) 327-367।
*[[John Stillwell]], introduction to ''Theory of Algebraic Integers'' by Richard Dedekind. Cambridge Mathematical Library, Cambridge University Press, Great Britain, 1996.
*[[John Stillwell|जॉन स्टिलवेल]], रिचर्ड डेडेकाइंड द्वारा बीजगणितीय पूर्णांकों के सिद्धांत का परिचय। कैम्ब्रिज गणितीय पुस्तकालय, कैम्ब्रिज यूनिवर्सिटी प्रेस, ग्रेट ब्रिटेन, 1996।
 
 
==बाहरी संबंध==
==बाहरी संबंध==
* [http://fermatslasttheorem.blogspot.com/2006/07/cyclotomic-integers-ideal-numbers_25.html Ideal Numbers], Proof that the theory of ideal numbers saves unique factorization for cyclotomic integers at [http://fermatslasttheorem.blogspot.com Fermat's Last Theorem Blog].
* [http://fermatslasttheorem.blogspot.com/2006/07/cyclotomic-integers-ideal-numbers_25.html आदर्श संख्याएँ], प्रमाण है कि आदर्श संख्याओं का सिद्धांत साइक्लोटोमिक पूर्णांकों के लिए अद्वितीय गुणनखंडन को बचाता है [http://fermatslasttheorem.blogspot.com फ़र्मेट का अंतिम प्रमेय ब्लॉग].
[[Category: संख्या सिद्धांत]] [[Category: नंबर]]
 
 


[[Category: Machine Translated Page]]
[[Category:Created On 01/07/2023]]
[[Category:Created On 01/07/2023]]
[[Category:Machine Translated Page]]
[[Category:नंबर]]
[[Category:संख्या सिद्धांत]]

Latest revision as of 20:44, 15 July 2023

संख्या सिद्धांत में एक आदर्श संख्या एक बीजगणितीय पूर्णांक है जो एक संख्या क्षेत्र के पूर्णांकों की रिंग (गणित) में एक आदर्श (रिंग सिद्धांत) का प्रतिनिधित्व करता है; यह विचार गंभीर दुःख द्वारा विकसित किया गया था, और रिचर्ड डेडेकाइंड की रिंगों के लिए आदर्श (रिंग सिद्धांत) की परिभाषा को जन्म दिया। बीजगणितीय संख्या क्षेत्र के पूर्णांकों के वलय में एक आदर्श प्रधान होता है यदि इसमें वलय के एक ही तत्व के गुणज होते हैं, और अन्यथा गैरप्रधान होता है। प्रमुख आदर्श प्रमेय के अनुसार हिल्बर्ट वर्ग क्षेत्र के एक आदर्श तक विस्तारित होने पर कोई भी गैर-प्रमुख आदर्श प्रमुख बन जाता है। इसका मतलब यह है कि हिल्बर्ट वर्ग क्षेत्र के पूर्णांकों के वलय का एक तत्व है, जो एक आदर्श संख्या है, जैसे कि मूल गैर-प्रमुख आदर्श पूर्णांकों के इस वलय के तत्वों द्वारा इस आदर्श संख्या के सभी गुणकों के संग्रह के बराबर है। पूर्णांकों के मूल क्षेत्र के वलय में स्थित है।

उदाहरण

उदाहरण के लिए, मान लीजिए की जड़ हो , का मूल है, तो क्षेत्र के पूर्णांकों का वलय है , जिसका अर्थ है कि और पूर्णांक के साथ सभी पूर्णांकों का वलय बनाते हैं। इस वलय में एक गैर-प्रमुख आदर्श का एक उदाहरण सभी का समुच्चय है जहाँ और पूर्णांक हैं; इस आदर्श का घन मूलधन है, और वास्तव में वर्ग समूह क्रम तीन का चक्रीय है। संबंधित वर्ग क्षेत्र को एक तत्व को से जोड़कर प्राप्त किया जाता है जो को संतुष्ट करता है।, गैर-प्रमुख आदर्श के लिए एक आदर्श संख्या है

. चूँकि यह समीकरण को संतुष्ट करता है

यह एक बीजगणितीय पूर्णांक है.

वर्ग क्षेत्र के पूर्णांकों की रिंग के सभी तत्व जिन्हें जब गुणा किया जाता है में एक परिणाम दें स्वरूप के हैं , जहाँ

और

गुणांक α और β भी बीजगणितीय पूर्णांक हैं, जो संतोषजनक हैं

और

क्रमश। गुणा आदर्श संख्या से देता है , जो गैर-प्रमुख आदर्श है।

इतिहास

कुमेर ने पहली बार 1844 में एक अस्पष्ट पत्रिका में साइक्लोटोमिक क्षेत्रों में अद्वितीय गुणनखंडन की विफलता को प्रकाशित किया; इसे 1847 में जोसेफ़ लिउविल की पत्रिका में पुनर्मुद्रित किया गया था। 1846 और 1847 में बाद के पत्रों में उन्होंने अपना मुख्य प्रमेय, (वास्तविक और आदर्श) अभाज्यों में अद्वितीय गुणनखंडन प्रकाशित किया।

यह व्यापक रूप से माना जाता है कि फ़र्मेट के अंतिम प्रमेय में उनकी रुचि के कारण कुमेर को उनके आदर्श जटिल संख्याओं की ओर प्रेरित किया गया था; यहां तक ​​कि एक कहानी भी अक्सर बताई जाती है कि गेब्रियल लैमे की तरह कुमेर का मानना ​​था कि उन्होंने फ़र्मेट के अंतिम प्रमेय को सिद्ध कर लिया है, जब तक कि पीटर गुस्ताव लेज्यून डिरिचलेट ने उन्हें नहीं बताया कि उनका तर्क अद्वितीय गुणनखंडन पर निर्भर था; लेकिन यह कहानी सबसे पहले 1910 में कर्ट हेन्सल द्वारा बताई गई थी और सबूत यह संकेत देते हैं कि यह संभवतः हेन्सेल के किसी स्रोत के भ्रम से उत्पन्न हुई है। हेरोल्ड एडवर्ड्स (गणितज्ञ) का कहना है कि यह धारणा कि कुमेर मुख्य रूप से फ़र्मेट के अंतिम प्रमेय में रुचि रखते थे, निश्चित रूप से गलत है (एडवर्ड्स 1977, पृष्ठ 79)। कुमेर द्वारा अभाज्य संख्या को दर्शाने के लिए λ अक्षर का उपयोग, एकता के λवें मूल को निरूपित करने के लिए α, और अभाज्य संख्या के गुणनखंडन का उनका अध्ययन से बनी सम्मिश्र संख्याओं में एकता की सभी जड़ें सीधे कार्ल गुस्ताव जैकब जैकोबी के एक पेपर से निकलती हैं जो पारस्परिकता कानून से संबंधित है। कुमेर का 1844 का संस्मरण कोनिग्सबर्ग विश्वविद्यालय के जयंती समारोह के सम्मान में था और जैकोबी को श्रद्धांजलि के रूप में था। हालाँकि कुमेर ने 1830 के दशक में फ़र्मेट के अंतिम प्रमेय का अध्ययन किया था और संभवतया जानते थे कि उनके सिद्धांत का इसके अध्ययन पर प्रभाव पड़ेगा, यह अधिक संभावना है कि जैकोबी (और कार्ल फ्रेडरिक गगॉस) की रुचि का विषय, उच्च पारस्परिकता कानून, उसके लिए अधिक महत्व रखता है । कुमेर ने नियमित अभाज्य संख्याओं के लिए प्रारूप के अंतिम प्रमेय के अपने आंशिक प्रमाण को एक प्रमुख वस्तु के बजाय संख्या सिद्धांत की जिज्ञासा के रूप में और उच्च पारस्परिकता कानून (जिसे उन्होंने अनुमान के रूप में बताया) को प्रमुख विषय और समकालीन संख्या सिद्धांत के शिखर के रूप में संदर्भित किया। दूसरी ओर, यह बाद की घोषणा तब की गई थी जब कुमेर अभी भी पारस्परिकता पर अपने काम की सफलता के बारे में उत्साहित थे और जब प्रारूप के अंतिम प्रमेय पर उनका काम समाप्त हो रहा था, इसलिए इसे संभवतया कुछ संदेह के साथ लिया जा सकता है।

सामान्य घटना में कुमेर के विचारों का विस्तार अगले चालीस वर्षों के दौरान क्रोनकर और डेडेकाइंड द्वारा स्वतंत्र रूप से पूरा किया गया। प्रत्यक्ष सामान्यीकरण में कठिनाइयों का सामना करना पड़ा, और इसने अंततः डेडेकाइंड को मॉड्यूल (गणित) और आदर्श (रिंग सिद्धांत) के सिद्धांत के निर्माण के लिए प्रेरित किया। क्रोनकर ने रूपों के सिद्धांत (द्विघात रूपों का सामान्यीकरण) और विभाजक (बीजगणितीय ज्यामिति) के सिद्धांत को विकसित करके कठिनाइयों से निपटा। डेडेकाइंड का योगदान रिंग सिद्धांत और अमूर्त बीजगणित का आधार बन जाएगा, जबकि क्रोनकर का बीजगणितीय ज्यामिति में प्रमुख उपकरण बन जाएगा।

संदर्भ

  • निकोलस बॉर्बकी, गणित के इतिहास के तत्व. स्प्रिंगर-वेरलाग, एनवाई, 1999.
  • हेरोल्ड एम. एडवर्ड्स, फ़र्मेट का अंतिम प्रमेय. संख्या सिद्धांत का आनुवंशिक परिचय। गणित, वॉल्यूम में स्नातक विषय। 50, स्प्रिंगर-वेरलाग, एनवाई, 1977.
  • सी.जी. जैकोबी, उबेर डाई कॉम्प्लेक्सन प्राइमज़ाहलेन, वेल्चे इन डेर थियोरी डेर रेस्ट डेर डेर 5टेन, 8टेन, और 12टेन पोटेंज़ेन ज़ू बेट्रैचटेन सिंड, मोनाट्सबर। डेर. अकाद. विस. बर्लिन (1839) 89-91।
  • ई.ई. कुमेर, डी न्यूमेरिस कॉम्प्लेक्सिस, क्यूई रेडिसिबस यूनिटैटिस और न्यूमेरिस इंटीग्रिस रियलिबस कॉन्स्टैंट, ग्रैटुलेशनस्क्रिफ्ट डेर यूनिवर्सिटी। ब्रेस्लाउ ज़ूर जुबेलफ़ीयर डेर यूनिवर्सिटी। कोनिग्सबर्ग, 1844; जर्नल में पुनर्मुद्रित. डे मठ. 12 (1847) 185-212.
  • ई.ई. कुमेर, उबेर डाई ज़ेरलेगंग डेर ऑस वुर्जेलन डेर एइनहाइट गेबिल्डेटेन कॉम्प्लेक्सन ज़हलेन इन इह्रे प्राइम्फैक्टोरेन, जर्नल। फर गणित. (क्रेल) 35 (1847) 327-367।
  • जॉन स्टिलवेल, रिचर्ड डेडेकाइंड द्वारा बीजगणितीय पूर्णांकों के सिद्धांत का परिचय। कैम्ब्रिज गणितीय पुस्तकालय, कैम्ब्रिज यूनिवर्सिटी प्रेस, ग्रेट ब्रिटेन, 1996।

बाहरी संबंध