अल्ट्राकनेक्टेड स्पेस: Difference between revisions
From Vigyanwiki
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 22: | Line 22: | ||
* {{PlanetMath attribution|id=5814|title=Ultraconnected space}} | * {{PlanetMath attribution|id=5814|title=Ultraconnected space}} | ||
* Lynn Arthur Steen and J. Arthur Seebach, Jr., ''[[Counterexamples in Topology]]''. Springer-Verlag, New York, 1978. Reprinted by Dover Publications, New York, 1995. {{ISBN|0-486-68735-X}} (Dover edition). | * Lynn Arthur Steen and J. Arthur Seebach, Jr., ''[[Counterexamples in Topology]]''. Springer-Verlag, New York, 1978. Reprinted by Dover Publications, New York, 1995. {{ISBN|0-486-68735-X}} (Dover edition). | ||
[[Category:Created On 08/07/2023]] | [[Category:Created On 08/07/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Machine Translated Page]] | ||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Wikipedia articles incorporating text from PlanetMath|अल्ट्राकनेक्टेड स्पेस]] | |||
[[Category:टोपोलॉजिकल रिक्त स्थान के गुण]] |
Latest revision as of 21:19, 15 July 2023
गणित में, टोपोलॉजिकल समिष्ट को अल्ट्राकनेक्टेड कहा जाता है यदि कोई भी दो गैर-रिक्त विवृत समुच्चय असंयुक्त (समुच्चय) नहीं हैं।[1] सामान्यतः, समिष्ट अल्ट्राकनेक्टेड होता है यदि और केवल तभी जब दो अलग-अलग बिंदुओं के विवृत होने पर सदैव गैर-सामान्य प्रतिच्छेदन होता है। इसलिए, कोई T1 समिष्ट नहीं है | इस प्रकार T1 से अधिक बिंदुओं वाला समिष्ट अल्ट्राकनेक्टेड होता है।[2]
गुण
प्रत्येक अल्ट्राकनेक्टेड समिष्ट पथ कनेक्टेड है (किन्तु आवश्यक नहीं कि आर्क कनेक्टेड हो)। इस प्रकार यदि और के दो बिंदु हैं और द्वारा परिभाषित प्रतिच्छेदन पर बिंदु है , यदि और , और के बीच एक सतत पथ और है [2]
प्रत्येक अल्ट्राकनेक्टेड समिष्ट सामान्य समिष्ट, सीमा बिंदु सघन और स्यूडोकॉम्पैक्ट समिष्ट है।[1]
उदाहरण
निम्नलिखित अल्ट्राकनेक्टेड टोपोलॉजिकल समिष्ट के उदाहरण हैं।
- अविवेकी टोपोलॉजी वाला समुच्चय।
- सिएरपिंस्की समिष्ट।
- बहिष्कृत बिंदु टोपोलॉजी वाला समुच्चय।
- वास्तविक रेखा पर सही क्रम टोपोलॉजी।[3]
यह भी देखें
टिप्पणियाँ
संदर्भ
- This article incorporates material from Ultraconnected space on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.
- Lynn Arthur Steen and J. Arthur Seebach, Jr., Counterexamples in Topology. Springer-Verlag, New York, 1978. Reprinted by Dover Publications, New York, 1995. ISBN 0-486-68735-X (Dover edition).