सामान्यीकरण (इमेज प्रोसेसिंग): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 34: Line 34:
==बाहरी संबंध==
==बाहरी संबंध==
*[http://homepages.inf.ed.ac.uk/rbf/HIPR2/stretch.htm Contrast Stretching]
*[http://homepages.inf.ed.ac.uk/rbf/HIPR2/stretch.htm Contrast Stretching]
[[Category: मूर्ति प्रोद्योगिकी]]


[[Category: Machine Translated Page]]
[[Category:Created On 09/06/2023]]
[[Category:Created On 09/06/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:मूर्ति प्रोद्योगिकी]]

Latest revision as of 09:10, 16 July 2023

छवि प्रसंस्करण में, सामान्यीकरण एक प्रक्रिया है जो पिक्सेल सघनता मान की सीमा को परिवर्तित करती है। उदाहरण के लिए, अनुप्रयोगों में सटीकता के कारण दोषपूर्ण विरोधाभास वाले फोटोग्राफर्स सम्मिलित हैं। सामान्यीकरण को कभी-कभी कंट्रास्ट स्ट्रेचिंग या हिस्टोग्राम स्ट्रेचिंग कहा जाता है। डेटा प्रसंस्करण के अधिक सामान्य क्षेत्रों में, जैसे कि डिजिटल संकेत प्रसंस्करण, इसे गतिशील सीमा विस्तार के रूप में जाना जाता है।[1]

सामान्य रूप से विभिन्न अनुप्रयोगों में गतिशील सीमा विस्तार का उद्देश्य सामान्यतः छवि, या अन्य प्रकार के संकेत को एक श्रेणी में लाना होता है, जो अधिक परिचित या सामान्य है, इसलिए सामान्यीकरण शब्द का उपयोग होता है, प्रायः, प्रेरणा मानसिक विकर्षण या थकान से बचने के लिए डेटा, संकेतों या छवियों के एक समूह के लिए गतिशील सीमा में स्थिरता प्राप्त करना है। विशेष रूप से, अखबार एक समस्या में सभी छवियों को बनाने का प्रयास करेगा, जो ग्रेस्केल की एक समान श्रेणी साझा करता है।

सामान्यीकरण एक n-आयामी ग्रेस्केल छवि को बदल देता है।

सीमा में सघनता मूल्यों के साथ , एक नई छवि में सीमा में सघनता मान के साथ ग्रे-स्केल डिजिटल छवि का रैखिक सामान्यीकरण सूत्र के अनुसार किया जाता है।

उदाहरण के लिए, यदि छवि की सघनता सीमा 50 से 180 है और वांछित सीमा 0 से 255 है, तो प्रक्रिया में पिक्सेल सघनता के प्रत्येक से 50 को घटाना पड़ता है, जिससे रेंज 0 से 130 हो जाती है. फिर प्रत्येक पिक्सेल सघनता को 255/130 से गुणा किया जाता है, जिससे रेंज 0 से 255 हो जाती है।

सामान्यीकरण भी गैर रेखीय हो सकता है, यह तब होता है जब और के बीच एक रैखिक संबंध नहीं होता है। गैर-रैखिक सामान्यीकरण का एक उदाहरण है जब सामान्यीकरण सिग्मॉइड फ़ंक्शन का अनुसरण करता है, उस स्थिति में, सामान्य छवि की गणना सूत्र के अनुसार की जाती है।

जहां निविष्ट सघनता सीमा की चौड़ाई को परिभाषित करता है, और उस सघनता को परिभाषित करता है जिसके चारों ओर सीमा केंद्रित है।[2] छवि प्रसंस्करण सॉफ्टवेयर में ऑटो-सामान्यीकरण सामान्यतः छवि फाइल प्रारूप में निर्दिष्ट संख्या प्रणाली की पूर्ण गतिशील सीमा को सामान्य करता है।

यह भी देखें

संदर्भ

  1. Rafael C. González, Richard Eugene Woods (2007). Digital Image Processing. Prentice Hall. p. 85. ISBN 978-0-13-168728-8.
  2. ITK Software Guide


बाहरी संबंध