प्रक्षेपण-मूल्य माप: Difference between revisions
(Created page with "{{Short description|Mathematical operator-value measure of interest in quantum mechanics and functional analysis}} गणित में, विशेष रूप से ...") |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Mathematical operator-value measure of interest in quantum mechanics and functional analysis}} | {{Short description|Mathematical operator-value measure of interest in quantum mechanics and functional analysis}} | ||
गणित में, विशेष रूप से [[कार्यात्मक विश्लेषण]] में, | गणित में, विशेष रूप से [[कार्यात्मक विश्लेषण]] में, प्रक्षेपण-मूल्य माप (पीवीएम) निश्चित सेट के कुछ उपसमुच्चय पर परिभाषि फलन है और जिसका मान निश्चित [[हिल्बर्ट स्थान]] पर स्व-सहायक [[प्रक्षेपण (गणित)]] हैं। प्रक्षेपण-मूल्यवान माप औपचारिक रूप से वास्तविक-मूल्यवान [[माप (गणित)]] के समान हैं, अतिरिक्त इसके कि उनके मूल्य वास्तविक संख्याओं के अतिरिक्त स्व-संयुक्त अनुमान हैं। सामान्य उपायों की तरह, पीवीएम के संबंध में जटिल-मूल्यवान कार्यों को एकीकृत करना संभव है; इस तरह के एकीकरण का परिणाम दिए गए हिल्बर्ट स्थान पर रैखिक ऑपरेटर है। | ||
प्रक्षेपण-मूल्यवान उपायों का उपयोग [[वर्णक्रमीय सिद्धांत]] में परिणाम व्यक्त करने के लिए किया जाता है, जैसे कि स्व-सहायक ऑपरेटरों के लिए महत्वपूर्ण वर्णक्रमीय प्रमेय। स्व-सहायक ऑपरेटरों के लिए बोरेल कार्यात्मक कैलकुलस का निर्माण पीवीएम के संबंध में इंटीग्रल्स का उपयोग करके किया गया है। [[क्वांटम यांत्रिकी]] में, पीवीएम [[क्वांटम माप]] का गणितीय विवरण हैं। | प्रक्षेपण-मूल्यवान उपायों का उपयोग [[वर्णक्रमीय सिद्धांत]] में परिणाम व्यक्त करने के लिए किया जाता है, जैसे कि स्व-सहायक ऑपरेटरों के लिए महत्वपूर्ण वर्णक्रमीय प्रमेय। स्व-सहायक ऑपरेटरों के लिए बोरेल कार्यात्मक कैलकुलस का निर्माण पीवीएम के संबंध में इंटीग्रल्स का उपयोग करके किया गया है। [[क्वांटम यांत्रिकी]] में, पीवीएम [[क्वांटम माप]] का गणितीय विवरण हैं। उन्हें [[POVM|पीओवीएम]] (पीओवीएम) द्वारा उसी अर्थ में सामान्यीकृत किया जाता है, जैसे [[मिश्रित अवस्था (भौतिकी)]] या [[घनत्व मैट्रिक्स|घनत्व आव्यूह]] [[शुद्ध अवस्था]] की धारणा को सामान्यीकृत करता है। | ||
== औपचारिक परिभाषा == | == औपचारिक परिभाषा == | ||
प्रक्षेपण-मूल्य माप <math>\pi</math> [[मापने योग्य स्थान]] पर <math>(X, M)</math>, जहाँ <math>M</math> के उपसमुच्चय का σ-बीजगणित <math>X</math> है, <math>M</math> से [[फ़ंक्शन (गणित)|फलन (गणित)]] है, हिल्बर्ट स्थान पर स्व-सहायक प्रक्षेपण ऑपरेटर के सेट पर <math>H</math> (अर्थात् ओर्थोगोनल अनुमान) जैसे कि | |||
: <math> | : <math> | ||
\pi(X) = \operatorname{id}_H \quad | \pi(X) = \operatorname{id}_H \quad | ||
</math> | </math> | ||
( | (जहां <math>\operatorname{id}_H</math> का [[पहचान संचालक]] <math>H</math> है) और प्रत्येक के लिए <math>\xi,\eta\in H</math>, निम्नलिखित फलन <math>M \to \mathbb C</math> | ||
:<math> | :<math> | ||
E \mapsto \langle \pi(E)\xi \mid \eta \rangle | E \mapsto \langle \pi(E)\xi \mid \eta \rangle | ||
</math> | </math> | ||
पर | पर जटिल उपाय <math>M</math> है (अर्थात, जटिल-मान [[ सिग्मा additivity |गणनीय रूप से योगात्मक]] फलन)। | ||
हम इस माप को निरूपित करते हैं | हम इस माप को निरूपित करते हैं | ||
<math>\operatorname{S}_\pi(\xi, \eta)</math>. | <math>\operatorname{S}_\pi(\xi, \eta)</math>. | ||
ध्यान दें कि <math>\operatorname{S}_\pi(\xi, \xi)</math> | ध्यान दें कि <math>\operatorname{S}_\pi(\xi, \xi)</math> वास्तविक-मूल्यवान माप है, और संभाव्यता माप है जब <math>\xi</math> लंबाई है; | ||
यदि <math>\pi</math> प्रक्षेपण-मूल्य माप है और | |||
: <math> | : <math> | ||
Line 35: | Line 33: | ||
और वे आवागमन करते हैं। | और वे आवागमन करते हैं। | ||
उदाहरण। कल्पना करना <math>(X, M, \mu)</math> | उदाहरण। कल्पना करना <math>(X, M, \mu)</math> माप स्थान है। मान लीजिए, प्रत्येक मापने योग्य उपसमुच्चय के लिए <math>E</math> में <math>M</math>, | ||
:<math> | :<math> | ||
\pi(E) : L^2(\mu) \to L^2 (\mu): | \pi(E) : L^2(\mu) \to L^2 (\mu): | ||
\psi \mapsto \chi_E \psi | \psi \mapsto \chi_E \psi | ||
</math> | </math> | ||
''L''<sup>2</sup>(''X'') पर सूचक फलन <math>1_E</math> द्वारा गुणन का संचालिका बनें। तब <math>\pi</math> प्रक्षेपण-मूल्य माप है। उदाहरण के लिए, यदि <math>X = \mathbb{R}</math>, <math>E = (0,1)</math>, और <math>\phi,\psi \in L^2(\mathbb{R})</math> इसके बाद संबंधित जटिल उपाय <math>S_{(0,1)}(\phi,\psi)</math> है, जो मापने योग्य कार्य करता है <math>f: \mathbb{R} \to \mathbb{R}</math> और <math>S_{(0,1)}(\phi,\psi)(f) = \int_{(0,1)}f(x)\psi(x)\overline{\phi}(x)dx</math> देता है। | |||
== प्रक्षेपण-मूल्य माप, अभिन्न और वर्णक्रमीय प्रमेय का विस्तार == | == प्रक्षेपण-मूल्य माप, अभिन्न और वर्णक्रमीय प्रमेय का विस्तार == | ||
अगर {{pi}} मापने योग्य स्थान ( | अगर {{pi}} मापने योग्य स्थान (''X'', ''M'') पर प्रक्षेपण-मूल्य माप है, तो मानचित्र | ||
: <math> | : <math> | ||
\chi_E \mapsto \pi(E) | \chi_E \mapsto \pi(E) | ||
</math> | </math> | ||
X पर चरण कार्यों के वेक्टर स्थान पर रेखीय मानचित्र तक विस्तारित होता है। वास्तव में, यह जांचना आसान है कि यह मानचित्र [[वलय समरूपता]] है। यह मानचित्र X पर सभी बंधे हुए जटिल-मूल्य मापन योग्य कार्यों के लिए विहित विधियों से विस्तारित होता है, और हमारे पास निम्नलिखित हैं। | |||
'प्रमेय' | 'प्रमेय' X पर किसी भी परिबद्ध ''M''-मापने योग्य फलन ''f'' के लिए, अद्वितीय परिबद्ध रैखिक ऑपरेटर उपस्थित है | ||
:<math> | :<math> | ||
\mathrm T_\pi (f) : H \to H | \mathrm T_\pi (f) : H \to H | ||
Line 60: | Line 58: | ||
\int_X f \ d \operatorname{S}_\pi (\xi,\eta) | \int_X f \ d \operatorname{S}_\pi (\xi,\eta) | ||
</math> | </math> | ||
सभी के लिए <math> \xi,\eta \in H, </math> | सभी के लिए <math> \xi,\eta \in H, </math> जहाँ <math> \operatorname{S}_\pi (\xi,\eta)</math> जटिल माप को दर्शाता है | ||
:<math>E \mapsto \langle \pi(E)\xi \mid \eta \rangle </math> | :<math>E \mapsto \langle \pi(E)\xi \mid \eta \rangle </math> | ||
<math>\pi</math> की परिभाषा से, | |||
वो | वो मानचित्र | ||
: <math> \mathcal{BM}(X,M) \to \mathcal L(H): | : <math> \mathcal{BM}(X,M) \to \mathcal L(H): | ||
f \mapsto \operatorname{T}_\pi(f)</math> | f \mapsto \operatorname{T}_\pi(f)</math> | ||
वलय समरूपता है। | |||
अभिन्न संकेतन का प्रयोग प्रायः किसके लिए किया जाता है? <math>\operatorname{T}_\pi(f)</math>, के रूप में | |||
: <math>\operatorname{T}_\pi(f)=\int_X f(x) \, d \pi(x) = \int_X f \, d \pi.</math> | : <math>\operatorname{T}_\pi(f)=\int_X f(x) \, d \pi(x) = \int_X f \, d \pi.</math> | ||
प्रमेय असीमित मापनीय फलनों f के लिए भी सही है, लेकिन तब <math>\operatorname{T}_\pi(f)</math> हिल्बर्ट स्पेस | प्रमेय असीमित मापनीय फलनों f के लिए भी सही है, लेकिन तब <math>\operatorname{T}_\pi(f)</math> हिल्बर्ट स्पेस H पर असीमित रैखिक ऑपरेटर होगा। | ||
[[वर्णक्रमीय प्रमेय]] कहता है कि प्रत्येक स्व-सहायक संचालिका <math>A:H\to H</math> | [[वर्णक्रमीय प्रमेय]] कहता है कि प्रत्येक स्व-सहायक संचालिका <math>A:H\to H</math> संबद्ध प्रक्षेपण-मूल्य माप <math>\pi_A</math> है, वास्तविक अक्ष पर परिभाषित, जैसे कि | ||
:<math>A =\int_\mathbb{R} x \, d\pi_A(x).</math> | :<math>A =\int_\mathbb{R} x \, d\pi_A(x).</math> | ||
यह ऐसे ऑपरेटरों के लिए बोरेल कार्यात्मक कैलकुलस को परिभाषित करने की अनुमति देता है: यदि <math>g:\mathbb{R}\to\mathbb{C}</math> | यह ऐसे ऑपरेटरों के लिए बोरेल कार्यात्मक कैलकुलस को परिभाषित करने की अनुमति देता है: यदि <math>g:\mathbb{R}\to\mathbb{C}</math> मापने योग्य कार्य है, हम सेट करते हैं | ||
:<math>g(A) :=\int_\mathbb{R} g(x) \, d\pi_A(x).</math> | :<math>g(A) :=\int_\mathbb{R} g(x) \, d\pi_A(x).</math> | ||
Line 84: | Line 82: | ||
== प्रक्षेपण-मूल्य माप की संरचना == | == प्रक्षेपण-मूल्य माप की संरचना == | ||
सबसे पहले हम [[प्रत्यक्ष अभिन्न]] | सबसे पहले हम [[प्रत्यक्ष अभिन्न]] के आधार पर प्रक्षेपण-मूल्य माप का सामान्य उदाहरण प्रदान करते हैं। मान लीजिए (X, M, μ) माप स्थान है और मान लीजिए कि {H<sub>''x''</sub>}<sub>''x'' ∈ ''X''</sub> वियोज्य हिल्बर्ट रिक्त स्थान का μ-मापने योग्य परिवार बनें। प्रत्येक E ∈ M के लिए, मान लीजिए {{pi}}(''E'') से गुणा का संचालक 1<sub>''E''</sub> हिल्बर्ट स्थान पर | ||
:<math> \int_X^\oplus H_x \ d \mu(x). </math> | :<math> \int_X^\oplus H_x \ d \mu(x). </math> | ||
तब {{pi}} (X, M) पर | तब {{pi}} (X, M) पर प्रक्षेपण-मूल्य माप है। | ||
कल्पना करना {{pi}}, ρ | कल्पना करना {{pi}}, ρ H, के के अनुमानों में मूल्यों के साथ (X, M) पर प्रक्षेपण-मूल्य वाले उपाय हैं। {{pi}}, ρ एकात्मक रूप से समतुल्य हैं यदि और केवल यदि कोई एकात्मक संकारक ''U'':''H'' → ''K'' ऐसा हो कि | ||
:<math> \pi(E) = U^* \rho(E) U \quad </math> | :<math> \pi(E) = U^* \rho(E) U \quad </math> | ||
प्रत्येक E ∈ M के लिए। | प्रत्येक E ∈ M के लिए। | ||
'प्रमेय'. यदि (X, M) | 'प्रमेय'. यदि (X, M) बोरेल बीजगणित मानक बोरेल रिक्त स्थान और कुराटोस्की प्रमेय है, तो प्रत्येक प्रक्षेपण-मूल्य माप के लिए {{pi}} (X, M) पर अलग हिल्बर्ट स्थान के अनुमानों में मान लेते हुए, बोरेल माप μ और हिल्बर्ट रिक्त स्थान का μ-मापने योग्य परिवार है {''H<sub>x</sub>''}<sub>''x'' ∈ ''X'' </sub>, ऐसा है कि {{pi}} इकाई रूप से 1<sub>''E''</sub> से गुणा के बराबर है, हिल्बर्ट स्थान पर | ||
:<math> \int_X^\oplus H_x \ d \mu(x). </math> | :<math> \int_X^\oplus H_x \ d \mu(x). </math> | ||
माप वर्ग{{clarify|reason=What is a measure class? A measure up to measure-preserving equivalence? Should the measure be completed?|date=May 2015}μ का } और बहुलता फलन x → dim H का माप तुल्यता वर्ग<sub>''x''</sub> एकात्मक तुल्यता तक प्रक्षेपण-मूल्य माप को पूरी तरह से चित्रित करें। | माप वर्ग{{clarify|reason=What is a measure class? A measure up to measure-preserving equivalence? Should the measure be completed?|date=May 2015}μ का } और बहुलता फलन x → dim H का माप तुल्यता वर्ग<sub>''x''</sub> एकात्मक तुल्यता तक प्रक्षेपण-मूल्य माप को पूरी तरह से चित्रित करें। | ||
प्रक्षेपण-मूल्य माप {{pi}} बहुलता n का सजातीय है यदि और केवल यदि बहुलता फलन का स्थिर मान n है। स्पष्ट रूप से, | |||
'प्रमेय'. कोई भी प्रक्षेपण-मूल्य माप {{pi}} वियोज्य हिल्बर्ट स्थान के अनुमानों में मान लेना सजातीय प्रक्षेपण-मूल्य मापों का | 'प्रमेय'. कोई भी प्रक्षेपण-मूल्य माप {{pi}} वियोज्य हिल्बर्ट स्थान के अनुमानों में मान लेना सजातीय प्रक्षेपण-मूल्य मापों का ऑर्थोगोनल प्रत्यक्ष योग है: | ||
:<math> \pi = \bigoplus_{1 \leq n \leq \omega} (\pi \mid H_n) </math> | :<math> \pi = \bigoplus_{1 \leq n \leq \omega} (\pi \mid H_n) </math> | ||
जहाँ | |||
:<math> H_n = \int_{X_n}^\oplus H_x \ d (\mu \mid X_n) (x) </math> | :<math> H_n = \int_{X_n}^\oplus H_x \ d (\mu \mid X_n) (x) </math> | ||
Line 114: | Line 112: | ||
==क्वांटम यांत्रिकी में अनुप्रयोग== | ==क्वांटम यांत्रिकी में अनुप्रयोग== | ||
क्वांटम यांत्रिकी में, हिल्बर्ट स्पेस | क्वांटम यांत्रिकी में, हिल्बर्ट स्पेस H पर निरंतर एंडोमोर्फिज्म के स्थान के लिए मापने योग्य स्थान X का प्रक्षेपण मूल्य माप दिया गया है, | ||
* हिल्बर्ट स्पेस एच के प्रक्षेप्य स्थान की व्याख्या क्वांटम प्रणाली के संभावित | * हिल्बर्ट स्पेस एच के प्रक्षेप्य स्थान की व्याख्या क्वांटम प्रणाली के संभावित अवस्थाों Φ के सेट के रूप में की जाती है, | ||
* मापने योग्य स्थान X | * मापने योग्य स्थान X प्रणाली की कुछ क्वांटम संपत्ति (अवलोकनीय) के लिए मूल्य स्थान है, | ||
* प्रक्षेपण-मूल्य माप {{pi}} इस संभावना को व्यक्त करता है कि अवलोकन योग्य विभिन्न मान लेता है। | * प्रक्षेपण-मूल्य माप {{pi}} इस संभावना को व्यक्त करता है कि अवलोकन योग्य विभिन्न मान लेता है। | ||
एक्स के लिए | एक्स के लिए सामान्य पसंद वास्तविक रेखा है, लेकिन यह भी हो सकती है | ||
* ' | * 'R'<sup>3</sup> (तीन आयामों में स्थिति या गति के लिए), | ||
* | * असतत सेट (कोणीय गति, बाध्य अवस्था की ऊर्जा, आदि के लिए), | ||
* Φ के बारे में | * Φ के बारे में मनमाने प्रस्ताव के सत्य-मूल्य के लिए 2-बिंदु सेट सही और गलत है। | ||
मान लीजिए कि E, मापने योग्य स्थान = 1. | मान लीजिए कि E, मापने योग्य स्थान = 1. अवस्था Φ में प्रणाली को देखते हुए, अवलोकन योग्य उपसमुच्चय E में अपना मान लेने की संभावना है | ||
:<math> | :<math> | ||
Line 132: | Line 130: | ||
जहां भौतिकी में बाद वाले अंकन को प्राथमिकता दी जाती है। | जहां भौतिकी में बाद वाले अंकन को प्राथमिकता दी जाती है। | ||
हम इसे दो | हम इसे दो विधियों से पार्स कर सकते हैं। | ||
सबसे पहले, प्रत्येक निश्चित | सबसे पहले, प्रत्येक निश्चित E के लिए, प्रक्षेपण {{pi}}(E) H पर स्व-सहायक ऑपरेटर है जिसका 1-ईजेनस्पेस अवस्था Φ है जिसके लिए अवलोकन योग्य का मूल्य हमेशा E में निहित है, और जिसका 0-ईजेनस्पेस अवस्था Φ है जिसके लिए अवलोकन योग्य का मूल्य कभी झूठ नहीं बोलता है E में; | ||
दूसरा, प्रत्येक निश्चित सामान्यीकृत वेक्टर अवस्था के लिए <math>\psi</math>, संगठन | दूसरा, प्रत्येक निश्चित सामान्यीकृत वेक्टर अवस्था के लिए <math>\psi</math>, संगठन | ||
Line 142: | Line 140: | ||
E \mapsto \langle\psi\mid\pi(E)\psi\rangle | E \mapsto \langle\psi\mid\pi(E)\psi\rangle | ||
</math> | </math> | ||
X पर संभाव्यता माप है, जो अवलोकन योग्य के मानों को यादृच्छिक चर में बनाता है। | |||
माप जो प्रक्षेपण-मूल्य माप द्वारा किया जा सकता है, {{pi}} को प्रक्षेप्य माप कहा जाता है। | |||
यदि ''X'' वास्तविक संख्या रेखा है, तो इससे संबद्ध | यदि ''X'' वास्तविक संख्या रेखा है, तो इससे संबद्ध {{pi}} अस्तित्व उपस्थित है, हर्मिटियन ऑपरेटर A को H द्वारा परिभाषित किया गया है | ||
:<math>A(\varphi) = \int_{\mathbf{R}} \lambda \,d\pi(\lambda)(\varphi),</math> | :<math>A(\varphi) = \int_{\mathbf{R}} \lambda \,d\pi(\lambda)(\varphi),</math> | ||
Line 152: | Line 150: | ||
:<math>A(\varphi) = \sum_i \lambda_i \pi({\lambda_i})(\varphi)</math> | :<math>A(\varphi) = \sum_i \lambda_i \pi({\lambda_i})(\varphi)</math> | ||
यदि {{pi}} का समर्थन R का पृथक उपसमुच्चय है। | |||
उपरोक्त ऑपरेटर | उपरोक्त ऑपरेटर A को वर्णक्रमीय माप से जुड़ा अवलोकनीय कहा जाता है। | ||
इस प्रकार प्राप्त किसी भी ऑपरेटर को क्वांटम यांत्रिकी में अवलोकनीय कहा जाता है। | इस प्रकार प्राप्त किसी भी ऑपरेटर को क्वांटम यांत्रिकी में अवलोकनीय कहा जाता है। | ||
==सामान्यीकरण== | ==सामान्यीकरण== | ||
प्रक्षेपण-मूल्य माप के विचार को [[सकारात्मक ऑपरेटर-मूल्य माप]] (पीओवीएम) द्वारा सामान्यीकृत किया जाता है, जहां प्रक्षेपण ऑपरेटरों द्वारा निहित ऑर्थोगोनलिटी की आवश्यकता को ऑपरेटरों के | प्रक्षेपण-मूल्य माप के विचार को [[सकारात्मक ऑपरेटर-मूल्य माप]] (पीओवीएम) द्वारा सामान्यीकृत किया जाता है, जहां प्रक्षेपण ऑपरेटरों द्वारा निहित ऑर्थोगोनलिटी की आवश्यकता को ऑपरेटरों के सेट के विचार से प्रतिस्थापित किया जाता है, जो एकता का गैर-ऑर्थोगोनल विभाजन है, यह सामान्यीकरण [[क्वांटम सूचना सिद्धांत]] के अनुप्रयोगों से प्रेरित है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 173: | Line 171: | ||
* Mackey, G. W., ''The Theory of Unitary Group Representations'', The University of Chicago Press, 1976 | * Mackey, G. W., ''The Theory of Unitary Group Representations'', The University of Chicago Press, 1976 | ||
* [[Michael C. Reed|M. Reed]] and [[Barry Simon|B. Simon]], ''Methods of Mathematical Physics'', vols I–IV, Academic Press 1972. | * [[Michael C. Reed|M. Reed]] and [[Barry Simon|B. Simon]], ''Methods of Mathematical Physics'', vols I–IV, Academic Press 1972. | ||
* {{Narici Beckenstein Topological Vector Spaces|edition=2}} | * {{Narici Beckenstein Topological Vector Spaces|edition=2}} | ||
* {{Schaefer Wolff Topological Vector Spaces|edition=2}} | * {{Schaefer Wolff Topological Vector Spaces|edition=2}} | ||
* [[Gerald Teschl|G. Teschl]], ''Mathematical Methods in Quantum Mechanics with Applications to Schrödinger Operators'', https://www.mat.univie.ac.at/~gerald/ftp/book-schroe/, American Mathematical Society, 2009. | * [[Gerald Teschl|G. Teschl]], ''Mathematical Methods in Quantum Mechanics with Applications to Schrödinger Operators'', https://www.mat.univie.ac.at/~gerald/ftp/book-schroe/, American Mathematical Society, 2009. | ||
* {{Trèves François Topological vector spaces, distributions and kernels}} | * {{Trèves François Topological vector spaces, distributions and kernels}} | ||
* Varadarajan, V. S., ''Geometry of Quantum Theory'' V2, Springer Verlag, 1970. | * Varadarajan, V. S., ''Geometry of Quantum Theory'' V2, Springer Verlag, 1970. | ||
Line 183: | Line 181: | ||
{{Functional analysis}} | {{Functional analysis}} | ||
{{Analysis in topological vector spaces}} | {{Analysis in topological vector spaces}} | ||
[[Category: | [[Category:Collapse templates]] | ||
[[Category:Created On 03/07/2023]] | [[Category:Created On 03/07/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:उपाय (माप सिद्धांत)]] | |||
[[Category:लीनियर अलजेब्रा]] | |||
[[Category:वर्णक्रमीय सिद्धांत]] |
Latest revision as of 17:19, 16 July 2023
गणित में, विशेष रूप से कार्यात्मक विश्लेषण में, प्रक्षेपण-मूल्य माप (पीवीएम) निश्चित सेट के कुछ उपसमुच्चय पर परिभाषि फलन है और जिसका मान निश्चित हिल्बर्ट स्थान पर स्व-सहायक प्रक्षेपण (गणित) हैं। प्रक्षेपण-मूल्यवान माप औपचारिक रूप से वास्तविक-मूल्यवान माप (गणित) के समान हैं, अतिरिक्त इसके कि उनके मूल्य वास्तविक संख्याओं के अतिरिक्त स्व-संयुक्त अनुमान हैं। सामान्य उपायों की तरह, पीवीएम के संबंध में जटिल-मूल्यवान कार्यों को एकीकृत करना संभव है; इस तरह के एकीकरण का परिणाम दिए गए हिल्बर्ट स्थान पर रैखिक ऑपरेटर है।
प्रक्षेपण-मूल्यवान उपायों का उपयोग वर्णक्रमीय सिद्धांत में परिणाम व्यक्त करने के लिए किया जाता है, जैसे कि स्व-सहायक ऑपरेटरों के लिए महत्वपूर्ण वर्णक्रमीय प्रमेय। स्व-सहायक ऑपरेटरों के लिए बोरेल कार्यात्मक कैलकुलस का निर्माण पीवीएम के संबंध में इंटीग्रल्स का उपयोग करके किया गया है। क्वांटम यांत्रिकी में, पीवीएम क्वांटम माप का गणितीय विवरण हैं। उन्हें पीओवीएम (पीओवीएम) द्वारा उसी अर्थ में सामान्यीकृत किया जाता है, जैसे मिश्रित अवस्था (भौतिकी) या घनत्व आव्यूह शुद्ध अवस्था की धारणा को सामान्यीकृत करता है।
औपचारिक परिभाषा
प्रक्षेपण-मूल्य माप मापने योग्य स्थान पर , जहाँ के उपसमुच्चय का σ-बीजगणित है, से फलन (गणित) है, हिल्बर्ट स्थान पर स्व-सहायक प्रक्षेपण ऑपरेटर के सेट पर (अर्थात् ओर्थोगोनल अनुमान) जैसे कि
(जहां का पहचान संचालक है) और प्रत्येक के लिए , निम्नलिखित फलन
पर जटिल उपाय है (अर्थात, जटिल-मान गणनीय रूप से योगात्मक फलन)।
हम इस माप को निरूपित करते हैं
.
ध्यान दें कि वास्तविक-मूल्यवान माप है, और संभाव्यता माप है जब लंबाई है;
यदि प्रक्षेपण-मूल्य माप है और
फिर छवियाँ , एक दूसरे के लिए ओर्थोगोनल हैं। इससे यह निष्कर्ष निकलता है कि सामान्यतः,
और वे आवागमन करते हैं।
उदाहरण। कल्पना करना माप स्थान है। मान लीजिए, प्रत्येक मापने योग्य उपसमुच्चय के लिए में ,
L2(X) पर सूचक फलन द्वारा गुणन का संचालिका बनें। तब प्रक्षेपण-मूल्य माप है। उदाहरण के लिए, यदि , , और इसके बाद संबंधित जटिल उपाय है, जो मापने योग्य कार्य करता है और देता है।
प्रक्षेपण-मूल्य माप, अभिन्न और वर्णक्रमीय प्रमेय का विस्तार
अगर π मापने योग्य स्थान (X, M) पर प्रक्षेपण-मूल्य माप है, तो मानचित्र
X पर चरण कार्यों के वेक्टर स्थान पर रेखीय मानचित्र तक विस्तारित होता है। वास्तव में, यह जांचना आसान है कि यह मानचित्र वलय समरूपता है। यह मानचित्र X पर सभी बंधे हुए जटिल-मूल्य मापन योग्य कार्यों के लिए विहित विधियों से विस्तारित होता है, और हमारे पास निम्नलिखित हैं।
'प्रमेय' X पर किसी भी परिबद्ध M-मापने योग्य फलन f के लिए, अद्वितीय परिबद्ध रैखिक ऑपरेटर उपस्थित है
ऐसा है कि
सभी के लिए जहाँ जटिल माप को दर्शाता है
की परिभाषा से,
वो मानचित्र
वलय समरूपता है।
अभिन्न संकेतन का प्रयोग प्रायः किसके लिए किया जाता है? , के रूप में
प्रमेय असीमित मापनीय फलनों f के लिए भी सही है, लेकिन तब हिल्बर्ट स्पेस H पर असीमित रैखिक ऑपरेटर होगा।
वर्णक्रमीय प्रमेय कहता है कि प्रत्येक स्व-सहायक संचालिका संबद्ध प्रक्षेपण-मूल्य माप है, वास्तविक अक्ष पर परिभाषित, जैसे कि
यह ऐसे ऑपरेटरों के लिए बोरेल कार्यात्मक कैलकुलस को परिभाषित करने की अनुमति देता है: यदि मापने योग्य कार्य है, हम सेट करते हैं
प्रक्षेपण-मूल्य माप की संरचना
सबसे पहले हम प्रत्यक्ष अभिन्न के आधार पर प्रक्षेपण-मूल्य माप का सामान्य उदाहरण प्रदान करते हैं। मान लीजिए (X, M, μ) माप स्थान है और मान लीजिए कि {Hx}x ∈ X वियोज्य हिल्बर्ट रिक्त स्थान का μ-मापने योग्य परिवार बनें। प्रत्येक E ∈ M के लिए, मान लीजिए π(E) से गुणा का संचालक 1E हिल्बर्ट स्थान पर
तब π (X, M) पर प्रक्षेपण-मूल्य माप है।
कल्पना करना π, ρ H, के के अनुमानों में मूल्यों के साथ (X, M) पर प्रक्षेपण-मूल्य वाले उपाय हैं। π, ρ एकात्मक रूप से समतुल्य हैं यदि और केवल यदि कोई एकात्मक संकारक U:H → K ऐसा हो कि
प्रत्येक E ∈ M के लिए।
'प्रमेय'. यदि (X, M) बोरेल बीजगणित मानक बोरेल रिक्त स्थान और कुराटोस्की प्रमेय है, तो प्रत्येक प्रक्षेपण-मूल्य माप के लिए π (X, M) पर अलग हिल्बर्ट स्थान के अनुमानों में मान लेते हुए, बोरेल माप μ और हिल्बर्ट रिक्त स्थान का μ-मापने योग्य परिवार है {Hx}x ∈ X , ऐसा है कि π इकाई रूप से 1E से गुणा के बराबर है, हिल्बर्ट स्थान पर
माप वर्ग{{clarify|reason=What is a measure class? A measure up to measure-preserving equivalence? Should the measure be completed?|date=May 2015}μ का } और बहुलता फलन x → dim H का माप तुल्यता वर्गx एकात्मक तुल्यता तक प्रक्षेपण-मूल्य माप को पूरी तरह से चित्रित करें।
प्रक्षेपण-मूल्य माप π बहुलता n का सजातीय है यदि और केवल यदि बहुलता फलन का स्थिर मान n है। स्पष्ट रूप से,
'प्रमेय'. कोई भी प्रक्षेपण-मूल्य माप π वियोज्य हिल्बर्ट स्थान के अनुमानों में मान लेना सजातीय प्रक्षेपण-मूल्य मापों का ऑर्थोगोनल प्रत्यक्ष योग है:
जहाँ
और
क्वांटम यांत्रिकी में अनुप्रयोग
क्वांटम यांत्रिकी में, हिल्बर्ट स्पेस H पर निरंतर एंडोमोर्फिज्म के स्थान के लिए मापने योग्य स्थान X का प्रक्षेपण मूल्य माप दिया गया है,
- हिल्बर्ट स्पेस एच के प्रक्षेप्य स्थान की व्याख्या क्वांटम प्रणाली के संभावित अवस्थाों Φ के सेट के रूप में की जाती है,
- मापने योग्य स्थान X प्रणाली की कुछ क्वांटम संपत्ति (अवलोकनीय) के लिए मूल्य स्थान है,
- प्रक्षेपण-मूल्य माप π इस संभावना को व्यक्त करता है कि अवलोकन योग्य विभिन्न मान लेता है।
एक्स के लिए सामान्य पसंद वास्तविक रेखा है, लेकिन यह भी हो सकती है
- 'R'3 (तीन आयामों में स्थिति या गति के लिए),
- असतत सेट (कोणीय गति, बाध्य अवस्था की ऊर्जा, आदि के लिए),
- Φ के बारे में मनमाने प्रस्ताव के सत्य-मूल्य के लिए 2-बिंदु सेट सही और गलत है।
मान लीजिए कि E, मापने योग्य स्थान = 1. अवस्था Φ में प्रणाली को देखते हुए, अवलोकन योग्य उपसमुच्चय E में अपना मान लेने की संभावना है
जहां भौतिकी में बाद वाले अंकन को प्राथमिकता दी जाती है।
हम इसे दो विधियों से पार्स कर सकते हैं।
सबसे पहले, प्रत्येक निश्चित E के लिए, प्रक्षेपण π(E) H पर स्व-सहायक ऑपरेटर है जिसका 1-ईजेनस्पेस अवस्था Φ है जिसके लिए अवलोकन योग्य का मूल्य हमेशा E में निहित है, और जिसका 0-ईजेनस्पेस अवस्था Φ है जिसके लिए अवलोकन योग्य का मूल्य कभी झूठ नहीं बोलता है E में;
दूसरा, प्रत्येक निश्चित सामान्यीकृत वेक्टर अवस्था के लिए , संगठन
X पर संभाव्यता माप है, जो अवलोकन योग्य के मानों को यादृच्छिक चर में बनाता है।
माप जो प्रक्षेपण-मूल्य माप द्वारा किया जा सकता है, π को प्रक्षेप्य माप कहा जाता है।
यदि X वास्तविक संख्या रेखा है, तो इससे संबद्ध π अस्तित्व उपस्थित है, हर्मिटियन ऑपरेटर A को H द्वारा परिभाषित किया गया है
जो अधिक पठनीय रूप लेता है
यदि π का समर्थन R का पृथक उपसमुच्चय है।
उपरोक्त ऑपरेटर A को वर्णक्रमीय माप से जुड़ा अवलोकनीय कहा जाता है।
इस प्रकार प्राप्त किसी भी ऑपरेटर को क्वांटम यांत्रिकी में अवलोकनीय कहा जाता है।
सामान्यीकरण
प्रक्षेपण-मूल्य माप के विचार को सकारात्मक ऑपरेटर-मूल्य माप (पीओवीएम) द्वारा सामान्यीकृत किया जाता है, जहां प्रक्षेपण ऑपरेटरों द्वारा निहित ऑर्थोगोनलिटी की आवश्यकता को ऑपरेटरों के सेट के विचार से प्रतिस्थापित किया जाता है, जो एकता का गैर-ऑर्थोगोनल विभाजन है, यह सामान्यीकरण क्वांटम सूचना सिद्धांत के अनुप्रयोगों से प्रेरित है।
यह भी देखें
- वर्णक्रमीय प्रमेय
- कॉम्पैक्ट ऑपरेटरों का वर्णक्रमीय सिद्धांत
- सामान्य C*-बीजगणित का वर्णक्रमीय सिद्धांत
संदर्भ
- Moretti, V. (2018), Spectral Theory and Quantum Mechanics Mathematical Foundations of Quantum Theories, Symmetries and Introduction to the Algebraic Formulation, vol. 110, Springer, ISBN 978-3-319-70705-1
- Hall, B.C. (2013), Quantum Theory for Mathematicians, Graduate Texts in Mathematics, vol. 267, Springer, ISBN 978-1461471158
- Mackey, G. W., The Theory of Unitary Group Representations, The University of Chicago Press, 1976
- M. Reed and B. Simon, Methods of Mathematical Physics, vols I–IV, Academic Press 1972.
- Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
- Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
- G. Teschl, Mathematical Methods in Quantum Mechanics with Applications to Schrödinger Operators, https://www.mat.univie.ac.at/~gerald/ftp/book-schroe/, American Mathematical Society, 2009.
- Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
- Varadarajan, V. S., Geometry of Quantum Theory V2, Springer Verlag, 1970.