स्थिति (कार्यात्मक विश्लेषण): Difference between revisions

From Vigyanwiki
No edit summary
 
(22 intermediate revisions by 4 users not shown)
Line 1: Line 1:
[[कार्यात्मक विश्लेषण]] में, एक [[ऑपरेटर सिस्टम]] की स्थिति [[ऑपरेटर मानदंड]] का एक [[सकारात्मक रैखिक कार्यात्मक]] है। कार्यात्मक विश्लेषण सामान्यीकरण में राज्य क्वांटम यांत्रिकी में [[घनत्व मैट्रिक्स]] की धारणा है, जो क्वांटम राज्यों का प्रतिनिधित्व करते हैं, दोनों {{section link|quantum state|Mixed states|pure states|nopage=y}}. घनत्व मैट्रिसेस बदले में क्वांटम स्थिति को सामान्य करते हैं, जो केवल शुद्ध अवस्थाओं का प्रतिनिधित्व करते हैं। एम के लिए एक [[सी * - बीजगणित]] में पहचान के साथ एक ऑपरेटर सिस्टम, एम के सभी राज्यों का सेट, जिसे कभी-कभी एस (एम) द्वारा चिह्नित किया जाता है, उत्तल, कमजोर - * बनच दोहरी अंतरिक्ष एम में बंद होता है<sup>*</सुप>. इस प्रकार कमजोर-* टोपोलॉजी के साथ M की सभी अवस्थाओं का समुच्चय एक कॉम्पैक्ट हौसडॉर्फ स्पेस बनाता है, जिसे 'M का स्टेट स्पेस' कहा जाता है।
[[कार्यात्मक विश्लेषण|फलनिक विश्लेषण]] में, प्रचालक प्रणाली की '''अवस्था''' [[ऑपरेटर मानदंड]] का एक [[सकारात्मक रैखिक कार्यात्मक|धनात्मक रैखिक फलन]] है। फलनिक विश्लेषण सामान्यीकरण में स्थिति क्वांटम यांत्रिकी में [[घनत्व मैट्रिक्स|घनत्व आव्यूह]] की धारणा है, जो दोनों क्वांटम अवस्थाओं {{section link|quantum state|मिश्र अवस्था |शुद्ध अवस्था |nopage=y}} का प्रतिनिधित्व करते हैं। घनत्व आव्यूह इसके विरोध में क्वांटम अवस्था को सामान्य करते हैं, जो केवल शुद्ध अवस्थाओं का प्रतिनिधित्व करते हैं। M के लिए एक [[सी * - बीजगणित|C * - बीजगणित]] A में तत्समक के साथ एक प्रचालक प्रणाली, M के सभी अवस्थाओं का सम्मुचय, जिसे कभी-कभी S (''M'') द्वारा चिह्नित किया जाता है, उत्तल, मंद - * बैनक दुगनी स्थिति ''M'' में बंद होता है<sup>*</सुप>. इस प्रकार मंद-* संस्थिति के साथ M की सभी अवस्थाओं का समुच्चय एक सघन हौसडॉर्फ स्थल बनाता है, जिसे '<nowiki/>'''''M'' का अवस्था स्थान'''<nowiki/>' कहा जाता है।


क्वांटम यांत्रिकी के C*-बीजगणितीय सूत्रीकरण में, इस पिछले अर्थ में राज्य भौतिक अवस्थाओं के अनुरूप होते हैं, अर्थात भौतिक अवलोकनों (C*-बीजगणित के स्व-संलग्न तत्व) से उनके अपेक्षित माप परिणाम (वास्तविक संख्या) से मैपिंग।
क्वांटम यांत्रिकी के C*-बीजगणितीय सूत्रीकरण में, इस पिछले अर्थ में अवस्था भौतिक अवस्थाओं के अनुरूप होते हैं, अर्थात भौतिक अवलोकनों (C*-बीजगणित के स्व-संलग्न अवयव) से उनके अपेक्षित माप परिणाम (वास्तविक संख्या) से मापा जाता हैं।


== जॉर्डन अपघटन ==
== जॉर्डन अपघटन ==


राज्यों को संभाव्यता उपायों के गैर-अनुवर्ती सामान्यीकरण के रूप में देखा जा सकता है। गेलफैंड निरूपण के अनुसार, प्रत्येक क्रमविनिमेय C*-बीजगणित A, C के रूप का है<sub>0</sub>(एक्स) कुछ स्थानीय रूप से कॉम्पैक्ट हौसडॉर्फ एक्स के लिए। इस मामले में, एस () में एक्स पर सकारात्मक रेडॉन उपाय शामिल हैं, और {{section link||pure states}} X पर मूल्यांकन कार्य हैं।
अवस्थाओं को संभाव्यता उपायों के अविनिमेय सामान्यीकरण के रूप में देखा जा सकता है। गेलफैंड निरूपण के अनुसार, प्रत्येक क्रमविनिमेय C*-बीजगणित A, C<sub>0</sub>(''X'') के रूप का कुछ स्थानीय रूप से सघन हौसडॉर्फ एक्स के लिए है। इस स्थिति में, S(''A'') में ''X'' पर धनात्मक रेडॉन विधि सम्मलितहैं, और {{section link||शुद्ध अवस्था  }} एक्स पर मूल्यांकन का कार्य करते हैं।


अधिक आम तौर पर, [[जीएनएस निर्माण]] से पता चलता है कि प्रत्येक राज्य एक उपयुक्त प्रतिनिधित्व चुनने के बाद, एक राज्य (कार्यात्मक विश्लेषण)#वेक्टर राज्य है।
अधिक साधारणतया, [[जीएनएस निर्माण]] से पता चलता है कि प्रत्येक अवस्था एक उपयुक्त निरूपण चुनने के बाद, सदिश अवस्था होते हैं।


सी *-बीजगणित पर एक परिबद्ध रैखिक कार्यात्मक को 'स्व-संबद्ध' कहा जाता है यदि यह के स्व-संलग्न तत्वों पर वास्तविक मूल्य है। स्व-संलग्न कार्यात्मक [[हस्ताक्षरित उपाय]]ों के गैर-अनुरूप हैं।
C *-बीजगणित A पर एक परिबद्ध रैखिक फलन को ''''स्व-संबद्ध'''<nowiki/>' कहा जाता है यदि यह A के स्व-संलग्न अवयवों का वास्तविक मान होता हैं। स्व-संलग्न फलनात्मक [[हस्ताक्षरित उपाय|सांकेतिक माप]] के अविनिमेय रूप हैं।


माप सिद्धांत में हैन अपघटन प्रमेय का कहना है कि प्रत्येक हस्ताक्षरित उपाय को अलग-अलग सेटों पर समर्थित दो सकारात्मक उपायों के अंतर के रूप में व्यक्त किया जा सकता है। इसे गैर-अनुक्रमिक सेटिंग तक बढ़ाया जा सकता है।
माप सिद्धांत में हैन अपघटन प्रमेय के अनुसार प्रत्येक सांकेतिक माप को अलग-अलग सम्मुचयो पर समर्थित दो धनात्मक मापो के अंतर के रूप में व्यक्त किया जा सकता है। इसे अविनिमेय समायोजन तक बढ़ाया जा सकता है।


{{math theorem|math_statement= Every self-adjoint ''f'' in ''A''<sup>*</sup> can be written as ''f'' = ''f''<sub>+</sub> − ''f''<sub>−</sub> where ''f''<sub>+</sub> and ''f''<sub>−</sub> are positive functionals and {{!!}}''f''{{!!}} = {{!!}}''f''<sub>+</sub>{{!!}} + {{!!}}''f''<sub>−</sub>{{!!}}.}}
{{math theorem|math_statement= "A" में प्रत्येक स्व संलग्न "F" <sup>*</sup> को "F"="F" लिखा जा सकता हैं <sub>+</sub> − "F"<sub>−</sub>जहाँ "F"<sub>+</sub> तथा "F"<sub>−</sub> धनात्मक फलन होते हैं तथा {{!!}}"F"{{!!}} = {{!!}}"F"<sub>+</sub>{{!!}} + {{!!}}"F"<sub>−</sub>{{!!}}}}


{{Math proof|drop=hidden|proof=  
{{Math proof|drop=hidden|proof=  
A proof can be sketched as follows:  
एक प्रमाण को निम्न रूप से अभिलिखित किया जा सकता हैं:  
Let Ω be the weak*-compact set of positive linear functionals on ''A'' with norm ≤ 1, and ''C''(Ω) be the continuous functions on Ω.
माना की Ωमंद हैं*- नॉर्म ≤ 1 के साथ "A" पर धनात्मक रैखिक फलन का सघन समुच्चय, तथा ''C''(Ω) Ω पर सतत फलन होता हैं।
''A'' can be viewed as a closed linear subspace of ''C''(Ω) (this is ''[[Richard V. Kadison|Kadison]]'s function representation'').
। "A" को "C"(Ω) के बंद रैखिक उपसमष्टि के प्रकार से दर्शाया जा सकता हैं ((यह ''[[रिचर्ड वि कैडीसन|कैडीसन]] फलन को दर्शाता हैं'')
By Hahn–Banach, ''f'' extends to a ''g'' in ''C''(Ω)* with ||g|| = ||f||.
हान-बैनक के द्वारा, ''F'' ''C''(Ω)*के साथ "g" तक बढ़ाया जाता हैं। ||g|||f||.


Using results from measure theory quoted above, one has
Using results from measure theory quoted above, one has
Line 34: Line 34:
}}
}}


उपरोक्त अपघटन से यह पता चलता है कि * राज्यों की रैखिक अवधि है।
उपरोक्त अपघटन से यह पता चलता है कि ''A''  * अवस्थाओं की रैखिक अवधि है।


== राज्यों के कुछ महत्वपूर्ण वर्ग ==
== अवस्थाओं के कुछ महत्वपूर्ण वर्ग ==


=== शुद्ध राज्य ===
=== शुद्ध अवस्था ===
केरेन-मिलमैन प्रमेय द्वारा, एम के राज्य स्थान में चरम बिंदु हैं{{clarify|date=September 2018}}. राज्य स्थान के चरम बिंदुओं को शुद्ध राज्य कहा जाता है और अन्य राज्यों को मिश्रित राज्यों के रूप में जाना जाता है।
केरेन-मिलमैन प्रमेय द्वारा, ''M'' के अवस्था स्थान में उच्तम बिंदु हैं। अवस्था स्थान में उच्तम बिंदुओं को '''शुद्ध अवस्था''' कहा जाता है और अन्य अवस्थाओं को '''मिश्रित अवस्थाओं''' के रूप में जाना जाता है।


=== वेक्टर राज्य ===
=== सदिश अवस्था ===
हिल्बर्ट स्पेस एच और एच में एक वेक्टर एक्स के लिए, समीकरण ω<sub>''x''</sub>() := ⟨Ax,x⟩ (के लिए बी(एच) में), बी(एच) पर एक सकारात्मक रैखिक कार्यात्मक परिभाषित करता है। चूँकि ω<sub>''x''</sub>(1)=||x||<sup>2</sup>, ओह<sub>''x''</sub> एक अवस्था है यदि ||x||=1. यदि A, B(H) का C*-सबलजेब्रा है और A में M एक ऑपरेटर सिस्टम है, तो ω का प्रतिबंध<sub>''x''</sub> एम से एम पर एक सकारात्मक रैखिक कार्यात्मक परिभाषित करता है। एम के राज्य जो इस तरह से उत्पन्न होते हैं, एच में यूनिट वैक्टर से, एम के 'वेक्टर राज्य' कहलाते हैं।
हिल्बर्ट स्थान ''H'' और ''H'' में वेक्टर ''x'' के लिए, समीकरण ω<sub>''x''</sub>(''A'') := ⟨Ax,x⟩ (''A'' के लिए ''B(H)'' में), B(H) पर धनात्मक रैखिक फलन को परिभाषित करता है। चूँकि ω<sub>''x''</sub>(1)=||x||<sup>2</sup>, यदि ||x||=1हो तो ω<sub>''x''</sub> एक अवस्था है। यदि ''A'', ''B(H)'' का C*-उप बीजगणित है और ''A'' में ''M'' एक प्रचालक प्रणाली है, तो ω<sub>''x''</sub> का प्रतिबंध ''M'' से ''M'' पर धनात्मक रैखिक फलन परिभाषित करता है। ''M'' के अवस्था जो इस प्रकार से उत्पन्न होते हैं, ''H'' में मात्रक सदिश से, ''M'' के ''''सदिश अवस्था'''<nowiki/>' कहलाते हैं।


=== वफादार राज्य ===
=== दृढ अवस्था ===
एक राज्य <math>\tau</math> विश्वासयोग्य है, यदि यह सकारात्मक तत्वों पर आधारित है, अर्थात, <math>\tau(a^* a) = 0</math> तात्पर्य <math>a = 0</math>.
एक अवस्था <math>\tau</math> '''दृढ''' है, यदि यह धनात्मक अवयवों अर्थात, <math>\tau(a^* a) = 0</math> तात्पर्य <math>a = 0</math> पर आधारित है।


=== सामान्य स्थिति ===
=== सामान्य अवस्था ===
एक राज्य <math>\tau</math> सामान्य कहा जाता है, प्रत्येक मोनोटोन के लिए iff, बढ़ता नेट (गणित) <math>H_\alpha</math> कम से कम ऊपरी सीमा वाले ऑपरेटरों की <math>H</math>,  <math>\tau(H_\alpha)\;</math> में विलीन हो जाता है <math>\tau(H)\;</math>.
एक अवस्था <math>\tau</math> '''सामान्य''' कहा जाता है, यदि प्रत्येक मोनोटोन के लिए, बढ़ता नेट (गणित) <math>H_\alpha</math> निम्नतम ऊपरी सीमा वाले प्रचालको की <math>H</math>,  <math>\tau(H_\alpha)\;</math>, <math>\tau(H)\;</math>में विलीन हो जाता है।


===ट्रेशियल स्टेट्स ===
===ट्रेशियल अवस्था ===
एक ट्रेसियल राज्य एक राज्य है <math>\tau</math> ऐसा है कि
'''ट्रेसियल अवस्था''' एक अवस्था <math>\tau</math> है जैसे की


:<math>\tau(AB)=\tau (BA)\;.</math>
:<math>\tau(AB)=\tau (BA)\;.</math>
किसी भी वियोज्य सी*-बीजगणित के लिए, ट्रेसियल राज्यों का सेट एक चॉकेट सिद्धांत है।
किसी भी वियोज्य C*-बीजगणित के लिए, ट्रेसियल अवस्थाओं का सम्मुचय एक चॉक्वेट सिम्प्लेक्स है।


=== फैक्टोरियल स्टेट्स ===
=== क्रमगुणित अवस्था ===
C*-बीजगणित ''A'' की एक फैक्टोरियल अवस्था एक ऐसी अवस्था है, जिसमें ''A'' के संबंधित GNS प्रतिनिधित्व का कम्यूटेंट एक वॉन न्यूमैन बीजगणित#Factors है।
C*-बीजगणित ''A'' की '''क्रमगुणित अवस्था''' एक ऐसी अवस्था है, जिसमें ''A'' के संबंधित जीएनएस प्रतिनिधित्व का न्यूनीकरण क्रमगुणन हैं।


== यह भी देखें ==
== यह भी देखें ==
Line 64: Line 64:
*[[क्वांटम यांत्रिकी]]
*[[क्वांटम यांत्रिकी]]
** क्वांटम स्थिति
** क्वांटम स्थिति
** घनत्व मैट्रिक्स
** घनत्व आव्यूह


==संदर्भ==
==संदर्भ==
Line 70: Line 70:
* {{citation|first=H.|last= Lin|title=An Introduction to the Classification of Amenable C*-algebras|publisher=World Scientific|year=2001}}
* {{citation|first=H.|last= Lin|title=An Introduction to the Classification of Amenable C*-algebras|publisher=World Scientific|year=2001}}


{{Functional analysis}}
{{Hilbert space}}
{{Ordered topological vector spaces}}
[[Category: कार्यात्मक विश्लेषण]] [[Category: सी * - बीजगणित]]
[[Category: Machine Translated Page]]
[[Category:Created On 03/06/2023]]
[[Category:Created On 03/06/2023]]
[[Category:Machine Translated Page]]
[[Category:Templates Vigyan Ready]]
[[Category:कार्यात्मक विश्लेषण]]
[[Category:सी * - बीजगणित]]

Latest revision as of 17:38, 16 July 2023

फलनिक विश्लेषण में, प्रचालक प्रणाली की अवस्था ऑपरेटर मानदंड का एक धनात्मक रैखिक फलन है। फलनिक विश्लेषण सामान्यीकरण में स्थिति क्वांटम यांत्रिकी में घनत्व आव्यूह की धारणा है, जो दोनों क्वांटम अवस्थाओं §§ मिश्र अवस्था​ and शुद्ध अवस्था का प्रतिनिधित्व करते हैं। घनत्व आव्यूह इसके विरोध में क्वांटम अवस्था को सामान्य करते हैं, जो केवल शुद्ध अवस्थाओं का प्रतिनिधित्व करते हैं। M के लिए एक C * - बीजगणित A में तत्समक के साथ एक प्रचालक प्रणाली, M के सभी अवस्थाओं का सम्मुचय, जिसे कभी-कभी S (M) द्वारा चिह्नित किया जाता है, उत्तल, मंद - * बैनक दुगनी स्थिति M में बंद होता है*</सुप>. इस प्रकार मंद-* संस्थिति के साथ M की सभी अवस्थाओं का समुच्चय एक सघन हौसडॉर्फ स्थल बनाता है, जिसे 'M का अवस्था स्थान' कहा जाता है।

क्वांटम यांत्रिकी के C*-बीजगणितीय सूत्रीकरण में, इस पिछले अर्थ में अवस्था भौतिक अवस्थाओं के अनुरूप होते हैं, अर्थात भौतिक अवलोकनों (C*-बीजगणित के स्व-संलग्न अवयव) से उनके अपेक्षित माप परिणाम (वास्तविक संख्या) से मापा जाता हैं।

जॉर्डन अपघटन

अवस्थाओं को संभाव्यता उपायों के अविनिमेय सामान्यीकरण के रूप में देखा जा सकता है। गेलफैंड निरूपण के अनुसार, प्रत्येक क्रमविनिमेय C*-बीजगणित A, C0(X) के रूप का कुछ स्थानीय रूप से सघन हौसडॉर्फ एक्स के लिए है। इस स्थिति में, S(A) में X पर धनात्मक रेडॉन विधि सम्मलितहैं, और § शुद्ध अवस्था एक्स पर मूल्यांकन का कार्य करते हैं।

अधिक साधारणतया, जीएनएस निर्माण से पता चलता है कि प्रत्येक अवस्था एक उपयुक्त निरूपण चुनने के बाद, सदिश अवस्था होते हैं।

C *-बीजगणित A पर एक परिबद्ध रैखिक फलन को 'स्व-संबद्ध' कहा जाता है यदि यह A के स्व-संलग्न अवयवों का वास्तविक मान होता हैं। स्व-संलग्न फलनात्मक सांकेतिक माप के अविनिमेय रूप हैं।

माप सिद्धांत में हैन अपघटन प्रमेय के अनुसार प्रत्येक सांकेतिक माप को अलग-अलग सम्मुचयो पर समर्थित दो धनात्मक मापो के अंतर के रूप में व्यक्त किया जा सकता है। इसे अविनिमेय समायोजन तक बढ़ाया जा सकता है।

Theorem — "A" में प्रत्येक स्व संलग्न "F" * को "F"="F" लिखा जा सकता हैं + − "F"जहाँ "F"+ तथा "F" धनात्मक फलन होते हैं तथा ||"F"|| = ||"F"+|| + ||"F"||।

Proof

एक प्रमाण को निम्न रूप से अभिलिखित किया जा सकता हैं: माना की Ωमंद हैं*- नॉर्म ≤ 1 के साथ "A" पर धनात्मक रैखिक फलन का सघन समुच्चय, तथा C(Ω) Ω पर सतत फलन होता हैं। । "A" को "C"(Ω) के बंद रैखिक उपसमष्टि के प्रकार से दर्शाया जा सकता हैं ((यह कैडीसन फलन को दर्शाता हैं)। हान-बैनक के द्वारा, F C(Ω)*के साथ "g" तक बढ़ाया जाता हैं।

उपरोक्त अपघटन से यह पता चलता है कि A * अवस्थाओं की रैखिक अवधि है।

अवस्थाओं के कुछ महत्वपूर्ण वर्ग

शुद्ध अवस्था

केरेन-मिलमैन प्रमेय द्वारा, M के अवस्था स्थान में उच्तम बिंदु हैं। अवस्था स्थान में उच्तम बिंदुओं को शुद्ध अवस्था कहा जाता है और अन्य अवस्थाओं को मिश्रित अवस्थाओं के रूप में जाना जाता है।

सदिश अवस्था

हिल्बर्ट स्थान H और H में वेक्टर x के लिए, समीकरण ωx(A) := ⟨Ax,x⟩ (A के लिए B(H) में), B(H) पर धनात्मक रैखिक फलन को परिभाषित करता है। चूँकि ωx(1)=||x||2, यदि ||x||=1हो तो ωx एक अवस्था है। यदि A, B(H) का C*-उप बीजगणित है और A में M एक प्रचालक प्रणाली है, तो ωx का प्रतिबंध M से M पर धनात्मक रैखिक फलन परिभाषित करता है। M के अवस्था जो इस प्रकार से उत्पन्न होते हैं, H में मात्रक सदिश से, M के 'सदिश अवस्था' कहलाते हैं।

दृढ अवस्था

एक अवस्था दृढ है, यदि यह धनात्मक अवयवों अर्थात, तात्पर्य पर आधारित है।

सामान्य अवस्था

एक अवस्था सामान्य कहा जाता है, यदि प्रत्येक मोनोटोन के लिए, बढ़ता नेट (गणित) निम्नतम ऊपरी सीमा वाले प्रचालको की , , में विलीन हो जाता है।

ट्रेशियल अवस्था

ट्रेसियल अवस्था एक अवस्था है जैसे की

किसी भी वियोज्य C*-बीजगणित के लिए, ट्रेसियल अवस्थाओं का सम्मुचय एक चॉक्वेट सिम्प्लेक्स है।

क्रमगुणित अवस्था

C*-बीजगणित A की क्रमगुणित अवस्था एक ऐसी अवस्था है, जिसमें A के संबंधित जीएनएस प्रतिनिधित्व का न्यूनीकरण क्रमगुणन हैं।

यह भी देखें

  • क्वांटम अवस्था
  • गेलफैंड-नैमार्क-सेगल निर्माण
  • क्वांटम यांत्रिकी
    • क्वांटम स्थिति
    • घनत्व आव्यूह

संदर्भ

  • Lin, H. (2001), An Introduction to the Classification of Amenable C*-algebras, World Scientific