प्रभाग बीजगणित: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 65: Line 65:
==बाहरी संबंध==
==बाहरी संबंध==
* {{springer|title=Division algebra|id=p/d033680}}
* {{springer|title=Division algebra|id=p/d033680}}
[[Category: अल्जेब्रास]] [[Category: वलय सिद्धांत]]


[[Category: Machine Translated Page]]
[[Category:Created On 01/07/2023]]
[[Category:Created On 01/07/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:अल्जेब्रास]]
[[Category:वलय सिद्धांत]]

Latest revision as of 17:41, 16 July 2023

गणित के क्षेत्र में जिसे अमूर्त बीजगणित कहा जाता है, प्रभाग बीजगणित, साधारणतया कहा जाए तो, क्षेत्र पर बीजगणित है जिसमें प्रभाग (गणित), शून्य को छोड़कर, सदैव संभव होता है।

परिभाषाएँ

अतः औपचारिक रूप से, हम शून्य वस्तु (बीजगणित) D पर क्षेत्र (गणित) पर गैर-शून्य बीजगणित से प्रारंभ करते हैं। इस प्रकार से हम D को 'प्रभाग बीजगणित' कहते हैं यदि D में किसी भी अवयव a और D में किसी भी गैर-शून्य अवयव b के लिए D में a= bx के साथ यथार्थ रूप से एक अवयव x स्थित है और D में ठीक एक अवयव y स्थित है जैसे कि a = yb

इस प्रकार से साहचर्य बीजगणित के लिए, परिभाषा को निम्नानुसार सरल बनाया जा सकता है: अतः क्षेत्र पर गैर-शून्य साहचर्य बीजगणित प्रभाग बीजगणित है यदि और मात्र यदि इसमें गुणक तत्समक अवयव 1 है और प्रत्येक गैर-शून्य अवयव A में गुणक व्युत्क्रम है (अर्थात एक अवयव x,जिसका ax = xa = 1)।

साहचर्य प्रभाग बीजगणित

अतः साहचर्य प्रभाग बीजगणित के सबसे प्रसिद्ध उदाहरण परिमित-विमीय वास्तविक हैं (अर्थात, वास्तविक संख्याओं के क्षेत्र R पर बीजगणित, जो वास्तविक पर सदिश समष्टि के रूप में परिमित-हैमेल विमा हैं)। इस प्रकार से फ्रोबेनियस प्रमेय (वास्तविक प्रभाग बीजगणित) बताता है कि समरूपता तक तीन ऐसे बीजगणित हैं: वास्तविक स्वयं (विमा 1), जटिल संख्याओं का क्षेत्र (विमा 2), और चतुर्भुज (विमा 4)।

इस प्रकार से वेडरबर्न के छोटे प्रमेय में कहा गया है कि यदि D सीमित प्रभाग बीजगणित है, तो D सीमित क्षेत्र है।[1]

अतः इस प्रकार से बीजगणितीय रूप से संवृत क्षेत्र K (उदाहरण के लिए जटिल संख्या 'C') पर, K को छोड़कर, कोई परिमित-विमीय साहचर्य प्रभाग बीजगणित नहीं है।[2]

साहचर्य प्रभाग बीजगणित में कोई शून्य भाजक नहीं होता है। परिमित-विमीय इकाई बीजगणित साहचर्य बीजगणित (किसी भी क्षेत्र पर) प्रभाग बीजगणित है यदि और मात्र तभी जब इसमें कोई शून्य विभाजक न हो।

अतः जब भी A क्षेत्र (गणित) F पर सहयोगी इकाई बीजगणित है और S, A पर सरल मॉड्यूल है, तो S की अंतःरूपता वलय F पर प्रभाग बीजगणित है; F पर प्रत्येक साहचर्य प्रभाग बीजगणित इसी प्रकार उत्पन्न होता है।

इस प्रकार से क्षेत्र K पर साहचर्य प्रभाग बीजगणित D का केंद्र (वलय सिद्धांत) K युक्त क्षेत्र है। अतः ऐसे बीजगणित का उसके केंद्र पर आयाम, यदि परिमित है, एक पूर्ण वर्ग संख्या है: यह केंद्र पर D के अधिकतम उपक्षेत्र के विमा के वर्ग के बराबर है। क्षेत्र F को देखते हुए, सरल (मात्र साधारण दो-पक्षीय आदर्शों वाले) साहचर्य प्रभाग बीजगणित के ब्रौएर समतुल्य वर्ग, जिनका केंद्र F है और जो F पर परिमित-विमीय हैं, को समूह में बदल दिया जा सकता है, क्षेत्र F का ब्रौएर समूह है।

इस प्रकार से यादृच्छिक क्षेत्रों पर परिमित-विमीय सहयोगी प्रभाग बीजगणित का निर्माण करने की विधि चार का समुदाय बीजगणित द्वारा दिया गया है (क्वाटरनियन भी देखें)।

अतः अनंत-विमीय साहचर्य प्रभाग बीजगणित के लिए, सबसे महत्वपूर्ण स्थित वे हैं जहां स्थान में कुछ उचित टोपोलॉजी है। इस प्रकार से उदाहरण के लिए मानक प्रभाग बीजगणित और बानाच बीजगणित देखें।

आवश्यक नहीं कि साहचर्य प्रभाग बीजगणित

यदि प्रभाग बीजगणित को साहचर्य नहीं माना जाता है, तो सामान्यतः इसके अतिरिक्त कुछ दुर्बल स्थिति (जैसे वैकल्पिकता या घात साहचर्य) लगाई जाती है। ऐसी स्थितियों की सूची के लिए किसी क्षेत्र पर बीजगणित देखें।

इस प्रकार से वास्तविकताओं पर (समरूपता तक) मात्र दो एकात्मक क्रम-विनिमेय परिमित-विमीय प्रभाग बीजगणित हैं: स्वयं वास्तविक, और जटिल संख्याएँ। निःसंदेह ये दोनों सहयोगी हैं। अतः गैर-सहयोगी उदाहरण के लिए, सामान्य गुणन के जटिल संयुग्म को लेकर परिभाषित गुणन वाली जटिल संख्याओं पर विचार करें:

इस प्रकार से एक गैर-सहयोगी बीजगणित का उदाहरण वास्तविकताओं पर विमा 2 का क्रमविनिमेय, गैर-सहयोगी प्रभाग बीजगणित है, और इसमें कोई इकाई अवयव नहीं है। अनंत रूप से कई अन्य गैर-समरूपी क्रमविनिमेय, गैर-सहयोगी, परिमित-विमीय वास्तविक प्रभागीय बीजगणित हैं, परन्तु उन सभी की विमा 2 है।

वस्तुतः, प्रत्येक परिमित-विमीय वास्तविक क्रमविनिमेय प्रभाग बीजगणित या तो 1- या 2-विमीय होता है। अतः इसे हेंज होपफ प्रमेय के रूप में जाना जाता है, और 1940 में सिद्ध किया गया था। प्रमाण टोपोलॉजी की विधियों का उपयोग करता है। यद्यपि बाद में बीजगणितीय ज्यामिति का उपयोग करते हुए प्रमाण पाया गया, परन्तु कोई प्रत्यक्ष बीजगणितीय प्रमाण ज्ञात नहीं है। बीजगणित का मौलिक प्रमेय हॉपफ के प्रमेय का परिणाम है।

इस प्रकार से क्रमविनिमेयता की आवश्यकता को त्यागते हुए, हॉपफ ने अपने परिणाम को सामान्यीकृत किया: किसी भी परिमित-विमीय वास्तविक प्रभाग बीजगणित की विमा 2 की घात होनी चाहिए।

अतः बाद के कार्य से पता चला कि वस्तुतः, किसी भी परिमित-विमीय वास्तविक प्रभाग बीजगणित की विमा 1, 2, 4, या 8 होना चाहिए। इसे 1958 में मिशेल केर्वैरे और जॉन मिल्नोर ने स्वतंत्र रूप से सिद्ध किया था, विशेष रूप से K-सिद्धांत में बीजगणितीय टोपोलॉजी की तकनीकों का उपयोग करके। इस प्रकार से एडॉल्फ हर्विट्ज़ ने 1898 में दिखाया था कि तत्समक मात्र विमा 1, 2, 4 और 8 के लिए है।[3] (हर्विट्ज़ की प्रमेय (मानक प्रभाग बीजगणित) देखें।) तीन विमाओं के प्रभाग बीजगणित के निर्माण के आक्षेप को कई प्रारंभिक गणितज्ञों द्वारा निपटाया गया था। केनेथ ओ. मे ने 1966 में इन प्रयासों का सर्वेक्षण किया था।[4]

इस प्रकार से किसी भी वास्तविक परिमित-विमीय प्रभाग बीजगणित को वास्तविकताओं पर होना चाहिए

  • R या C के समरूपी यदि एकात्मक और क्रमविनिमेय (समतुल्य: साहचर्य और क्रमविनिमेय)
  • चतुष्कोणों के लिए समरूपी यदि गैर-विनिमेय परन्तु साहचर्य
  • यदि गैर-सहयोगी परन्तु वैकल्पिक बीजगणित है तो अष्टकैक के लिए समरूपी।

इस प्रकार से क्षेत्र K पर परिमित-विमीय प्रभाग बीजगणित A के विमा के विषय में निम्नलिखित ज्ञात है:

  • दुर्बल A = 1 यदि के बीजगणितीय रूप से संवृत है,
  • दुर्बल A = 1, 2, 4 या 8 यदि K वस्तुतः संवृत है, और
  • यदि K न तो बीजगणितीय रूप से और न ही वास्तविक रूप से संवृत है, तो ऐसे अनंत कई विमा हैं जिनमें K पर प्रभाग बीजगणित स्थित हैं।

यह भी देखें

टिप्पणियाँ

  1. Lam (2001), p. 203
  2. Cohn (2003), Proposition 5.4.5, p. 150
  3. Roger Penrose (2005). वास्तविकता की राह. Vintage. ISBN 0-09-944068-7., p.202
  4. Kenneth O. May (1966) "The Impossiblility of a Division Algebra of Vectors in Three Dimensional Space", American Mathematical Monthly 73(3): 289–91 doi:10.2307/2315349

संदर्भ

बाहरी संबंध