हॉसडॉर्फ़ आयाम: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 155: Line 155:


{{Dimension topics}}
{{Dimension topics}}
[[Category: भग्न]] [[Category: मीट्रिक ज्यामिति]] [[Category: आयाम सिद्धांत]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category:CS1 English-language sources (en)]]
[[Category: Machine Translated Page]]
[[Category:Collapse templates]]
[[Category:Created On 04/07/2023]]
[[Category:Created On 04/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia articles needing clarification from March 2015]]
[[Category:Wikipedia metatemplates]]
[[Category:आयाम सिद्धांत]]
[[Category:भग्न]]
[[Category:मीट्रिक ज्यामिति]]

Latest revision as of 18:30, 16 July 2023

गैर-पूर्णांक आयामों का उदाहरण. कोच बर्फ के टुकड़े के पसमाधाने चार पुनरावृत्तियाँ, जहाँ प्रत्येक पुनरावृत्ति के पश्चात, सभी मूल रेखा खंडों को चार से बदल दिया जाता है, प्रत्येक स्व-समान प्रतिलिपि है जो मूल की लंबाई का 1/3 है। हॉसडॉर्फ आयाम की औपचारिकता आयाम, डी की गणना करने के लिए स्केल फैक्टर (एस = 3) और स्व-समान वस्तुओं की संख्या (एन = 4) का उपयोग करती है, पसमाधाने पुनरावृत्ति के पश्चात डी = (लॉग एन)/(लॉग एस) = (लॉग 4)/(लॉग 3) ≈ 1.26।[1]

गणित में, हॉसडॉर्फ़ आयाम रफ़नेस, या अधिक विशेष रूप से, फ्रैक्टल आयाम का माप है, जिसे 1918 में गणितज्ञ फ़ेलिक्स हॉसडॉर्फ़ द्वारा प्रस्तुत किया गया था।[2] उदाहरण के लिए, बिंदु (ज्यामिति) का हॉसडॉर्फ आयाम शून्य है, रेखा खंड का 1 है, वर्ग का 2 है, और घन का 3 है। अर्थात, बिंदुओं के समुच्चय के लिए स्मूथ आकृति को परिभाषित करते हैं जिसमें कोनों की छोटी संख्या होती है- पारंपरिक ज्यामिति और विज्ञान के आकार- हॉसडॉर्फ आयाम पूर्णांक है जो आयाम की सामान्य भावना से सहमत होता है, जिसे आगमनात्मक आयाम के रूप में भी जाना जाता है। चूँकि, ऐसे सूत्र भी विकसित किए गए हैं जो अन्य कम सरल वस्तुओं के आयाम की गणना की अनुमति देते हैं, जहां, केवल स्केलिंग (ज्यामिति) और आत्म-समानता के गुणों के आधार पर, किसी को इस निष्कर्ष पर पहुंचाया जाता है कि विशेष वस्तुएं- जिनमें फ्रैक्टल भी सम्मिलित हैं- पूर्णांक हॉसडॉर्फ आयाम में कोई अंतर नहीं है। अत्यधिक अनियमित या "रफ" समुच्चयों के लिए आयामों की गणना की अनुमति देने वाले अब्राम समोइलोविच बेसिकोविच द्वारा की गई महत्वपूर्ण तकनीकी प्रगति के कारण, इस आयाम को सामान्यतः हॉसडॉर्फ-बेसिकोविच आयाम के रूप में भी जाना जाता है।

अधिक विशेष रूप से, हॉसडॉर्फ़ आयाम मीट्रिक समिष्ट से जुड़ी आयामी संख्या है, अर्थात समुच्चय जहां सभी सदस्यों के मध्य की दूरी परिभाषित की जाती है। आयाम विस्तारित वास्तविक संख्या रेखा से लिया गया है, , आयाम की अधिक सहज धारणा के विपरीत, जो सामान्य मीट्रिक रिक्त समिष्ट से संबद्ध नहीं है, और केवल गैर-नकारात्मक पूर्णांक में मान लेता है।

गणितीय शब्दों में, हॉसडॉर्फ़ आयाम वास्तविक सदिश समिष्ट के आयाम की धारणा को सामान्यीकृत करता है। अर्थात्, n-आयामी आंतरिक उत्पाद समिष्ट का हॉसडॉर्फ आयाम n के समान है। यह पूर्व के कथन को रेखांकित करता है कि बिंदु का हॉसडॉर्फ़ आयाम शून्य है, रेखा का एक है आदि, और अनियमित समुच्चय में अपूर्णांक हॉसडॉर्फ़ आयाम हो सकते हैं। उदाहरण के लिए, दाईं ओर दिखाया गया कोच स्नोफ्लेक समबाहु त्रिभुज से निर्मित है; प्रत्येक पुनरावृत्ति में, इसके घटक रेखा खंडों को इकाई लंबाई के 3 खंडों में विभाजित किया जाता है, नव निर्मित मध्य खंड का उपयोग नए समबाहु त्रिभुज के आधार के रूप में किया जाता है जो बाहर की ओर प्रदर्शित करता है, और इस आधार खंड को अंतिम वस्तु को छोड़ने के लिए विस्थापित कर दिया जाता है। 4 की इकाई लंबाई की पुनरावृत्ति[3] अर्थात्, पूर्व पुनरावृत्ति के पश्चात, प्रत्येक मूल रेखा खंड को N=4 से परिवर्तित कर दिया गया है, जहां प्रत्येक स्व-समान प्रतिलिपि मूल जितनी लंबी 1/S = 1/3 होती है।[1]दूसरी विधि से कहें तो, हमने यूक्लिडियन आयाम, D के साथ वस्तु प्राप्त की है, और प्रत्येक दिशा में इसके रैखिक पैमाने को 1/3 कम कर दिया है, जिससे इसकी लंबाई को N=SD तक बढ़ जाए।[4] इस समीकरण को D के लिए सरलता से समाधान किया जा सकता है, जिससे आंकड़ों में दिखने वाले लघुगणक (या प्राकृतिक लघुगणक) का अनुपात प्राप्त होता है, कोच और अन्य फ्रैक्टल स्तिथि में इन वस्तुओं के लिए अपूर्णांक आयाम प्राप्त होते हैं।

हॉसडॉर्फ़ आयाम सरल, किंतु सामान्यतः समतुल्य, बॉक्स-गिनती या मिन्कोव्स्की-बौलीगैंड आयाम का उत्तराधिकारी है।

अंतर्ज्ञान

ज्यामितीय वस्तु के आयाम की सहज अवधारणा चूँकि, दो पैरामीटर्स द्वारा निर्दिष्ट किसी भी बिंदु को इसके द्वारा निर्दिष्ट किया जा सकता है, क्योंकि वास्तविक तल की प्रमुखता वास्तविक रेखा की कार्डिनैलिटी के समान होती है (इसे एकल प्राप्त करने के लिए दो संख्याओं के अंकों को आपस में जोड़ने वाले तर्क द्वारा देखा जा सकता है) समान जानकारी को एन्कोड करने वाला एकल नंबर) समिष्ट-भरण वक्र के उदाहरण से ज्ञात होता है कि कोई वास्तविक रेखा को वास्तविक तल पर विशेष रूप से मानचित्रित कर सकता है (वास्तविक संख्या को वास्तविक संख्याओं की एक जोड़ी में इस प्रकार से लेना कि संख्याओं के सभी जोड़े कवर हो जाएं) और निरन्तर, जिससे आयामी वस्तु उच्च-आयामी वस्तु को पूर्ण रूप से उपयोग करती है।

प्रत्येक समिष्ट-भरने वाला वक्र कुछ बिंदुओं पर कई बार टकराता है और इसमें निरंतर व्युत्क्रम नहीं होता है। दो आयामों को पर इस प्रकार से मानचित्रित करना असंभव है जो निरंतर विपरीत हो। टोपोलॉजिकल आयाम, जिसे लेबेस्ग्यू कवरिंग आयाम भी कहा जाता है, बताता है कि क्यों यह आयाम सबसे बड़ा पूर्णांक n है, जैसे कि छोटी संवृत गेंदों द्वारा X के प्रत्येक आवरण में कम से कम बिंदु होते है जहां n + 1 गेंदें ओवरलैप होती हैं। उदाहरण के लिए, जब कोई छोटे संवृत अंतराल के साथ रेखा को कवर करता है, तो कुछ बिंदुओं को दो बार कवर किया जाना चाहिए, जिससे आयाम n = 1 प्राप्त होता है।

किंतु टोपोलॉजिकल आयाम किसी समिष्ट के समिष्टीय आकार (बिंदु के निकट का आकार) का अधिक ही अपरिष्कृत माप है। वक्र जो लगभग समिष्ट भरता है, उसमें अभी भी टोपोलॉजिकल आयाम हो सकता है, भले ही वह किसी क्षेत्र के अधिकांश क्षेत्र को भरता हो। फ्रैक्टल में पूर्णांक टोपोलॉजिकल आयाम होता है, किंतु इसके द्वारा घेरे जाने वाले समिष्ट की मात्रा के संदर्भ में, यह उच्च-आयामी समिष्ट के जैसे व्यवहार करता है।

हॉसडॉर्फ़ आयाम बिंदुओं, मीट्रिक समिष्ट के मध्य की दूरी को ध्यान में रखते हुए किसी समिष्ट के समिष्टीय आकार को मापता है। X को पूर्ण रूप से कवर करने के लिए आवश्यक अधिकतम r त्रिज्या की गेंदों (गणित) की संख्या N(r) पर विचार करें। जब r अधिक छोटा होता है, तो N(r) 1/r के साथ बहुपद रूप से बढ़ता है। पर्याप्त रूप से उत्तम व्यवहार वाले X के लिए, हॉसडॉर्फ़ आयाम अद्वितीय संख्या d है जैसे कि N(r) 1/rd के रूप में बढ़ता है अधिक त्रुटिहीन रूप से, यह बॉक्स-गिनती आयाम को परिभाषित करता है, जो हॉसडॉर्फ आयाम के समान होता है जब मान d विकास दर के मध्य महत्वपूर्ण सीमा है जो समिष्ट को कवर करने के लिए अपर्याप्त है, और विकास दर जो अत्यधिक प्रचुर मात्रा में हैं।

उन आकृतियों के लिए जो स्मूथ हैं, या कम संख्या में कोने वाली आकृतियाँ हैं, पारंपरिक ज्यामिति और विज्ञान की आकृतियाँ, हॉसडॉर्फ आयाम टोपोलॉजिकल आयाम से सहमत पूर्णांक है। किंतु बेनोइट मैंडेलब्रोट ने देखा कि फ्रैक्टल, गैर-पूर्णांक हॉसडॉर्फ आयाम वाले समुच्चय, प्रकृति में सभी समिष्ट में पाए जाते हैं। उन्होंने देखा कि निकट दिखाई देने वाली अधिकांश रफ़नेस आकृतियों का उचित आदर्शीकरण स्मूथ आदर्शीकृत आकृतियों के संदर्भ में नहीं है, अन्यथा फ्रैक्टल आदर्शीकृत आकृतियों के संदर्भ में है:

बादल गोल नहीं हैं, पहाड़ शंकु नहीं हैं, समुद्र तट वृत्त नहीं हैं, और छाल स्मूथ नहीं है, न ही विद्युत् सीधी रेखा में प्रवाहित होती है।[5]

प्रकृति में होने वाले फ्रैक्टल्स के लिए, हॉसडॉर्फ और बॉक्स-गिनती आयाम युग्मित होते हैं। पैकिंग आयाम समान धारणा है जो कई आकृतियों के लिए समान मान देती है, किंतु उत्तम प्रकार से प्रलेखित अपवाद हैं जहां ये सभी आयाम भिन्न होते हैं।

औपचारिक परिभाषा

हॉसडॉर्फ़ आयाम की औपचारिक परिभाषा हॉसडॉर्फ़ माप को परिभाषित करके प्राप्त की जाती है, जो लेब्सग्यू माप का आंशिक-आयाम एनालॉग है। सबसे पहले, बाहरी माप का निर्माण किया जाता है: मान लीजिये समिष्ट हो, यदि और है,

जहां सभी गणनीय कवरों पर अनंत लिया जाता है का हॉसडॉर्फ़ बाहरी माप को तब परिभाषित किया गया है, जब , मापने योग्य पर मानचित्र का प्रतिबंध समुच्चयइसे माप के रूप में उचित माना जाता है, जिसे -आयामी हॉसडॉर्फ माप कहा जाता है ।[6]

हौसडॉर्फ़ आयाम

हॉसडॉर्फ़ आयाम का द्वारा परिभाषित किया गया है:

यह समुच्चय के सर्वोच्च के समान है ऐसे कि -आयामी हॉसडॉर्फ माप अनंत है (अतिरिक्त इसके कि जब संख्याओं का यह पश्चात वाला समुच्चय हो तो रिक्त है हॉसडॉर्फ आयाम शून्य है)।

हॉसडॉर्फ़ सामग्री

आयामी असीमित हॉसडॉर्फ सामग्री द्वारा परिभाषित किया गया है:

दूसरे शब्दों में, में हॉसडॉर्फ माप का निर्माण किया गया है जहां कवरिंग समुच्चय को रूप से बड़े आकार की अनुमति है (यहां, हम मानक सम्मेलन का उपयोग करते हैं)[7] हॉसडॉर्फ़ माप और हॉसडॉर्फ़ सामग्री दोनों का उपयोग किसी समुच्चय के आयाम को निर्धारित करने के लिए किया जा सकता है, किंतु यदि समुच्चय का माप अशून्य है, तो उनके वास्तविक मान भिन्न हो सकते हैं।

उदाहरण

और भग्न उदाहरण का आयाम. सिएरपिंस्की त्रिकोण, लॉग(3)/लॉग(2)≈1.58 के हॉसडॉर्फ आयाम वाली वस्तु।[4]

* गणनीय समुच्चयों का हॉसडॉर्फ आयाम 0 है।[8]

  • यूक्लिडियन समिष्ट हॉसडॉर्फ आयाम है , और वृत्त का हॉसडॉर्फ़ आयाम 1 है।[8]
  • फ्रैक्टल प्रायः ऐसे समिष्ट होते हैं जिनका हॉसडॉर्फ आयाम जटिलता से टोपोलॉजिकल आयाम से अधिक होता है।[5]उदाहरण के लिए, कैंटर समुच्चय, शून्य-आयामी टोपोलॉजिकल समिष्ट, स्वयं की दो प्रतियों का संघ है, प्रत्येक प्रतिलिपि कारक 1/3 द्वारा संकुचित है; इसलिए, यह दिखाया जा सकता है कि इसका हॉसडॉर्फ आयाम ln(2)/ln(3) ≈ 0.63 है।[9] सिएरपिंस्की त्रिकोण स्वयं की तीन प्रतियों का संघ है, प्रत्येक प्रति 1/2 के कारक से संकुचित है; इससे ln(3)/ln(2) ≈ 1.58 का हॉसडॉर्फ आयाम प्राप्त होता है।[1]ये हॉसडॉर्फ आयाम एल्गोरिदम के विश्लेषण में पुनरावृत्ति संबंध को समाधान करने के लिए मास्टर प्रमेय (एल्गोरिदम का विश्लेषण) के महत्वपूर्ण प्रतिपादक से संबंधित हैं।
  • पीनो वक्र जैसे समिष्ट-भरने वाले वक्रों का हौसडॉर्फ़ आयाम उनके द्वारा भरे जाने वाले समिष्ट के समान ही होता है।
  • आयाम 2 और उससे ऊपर में ब्राउनियन गति का प्रक्षेपवक्र हॉसडॉर्फ आयाम 2 होने का अनुमान लगाया गया है।[10]
  • लुईस फ्राई रिचर्डसन ने विभिन्न समुद्र तटों के लिए अनुमानित हॉसडॉर्फ आयाम को मापने के लिए विस्तृत प्रयोग किए हैं। उनके परिणाम दक्षिण अफ्रीका के समुद्र तट के लिए 1.02 से लेकर ग्रेट ब्रिटेन के पश्चिमी तट के लिए 1.25 तक भिन्न हैं।[5]

हौसडॉर्फ़ आयाम के गुण

हॉसडॉर्फ आयाम और आगमनात्मक आयाम

मान लीजिए कि X वियोज्य समिष्ट मीट्रिक समिष्ट है। X के लिए आगमनात्मक आयाम की टोपोलॉजिकल धारणा है जिसे पुनरावर्ती रूप से परिभाषित किया गया है। यह सदैव पूर्णांक (या +∞) होता है और इसे छोटा ind(X) रूप में दर्शाया जाता है।

'प्रमेय': मान लीजिए कि X अरिक्त है। तब

इसके अतिरिक्त,

जहां Y मीट्रिक रिक्त समिष्ट से लेकर X तक होम्योमॉर्फिक है। दूसरे शब्दों में, X और Y के निकट बिंदुओं का अंतर्निहित समुच्चय है Y का मीट्रिक dY स्थलीय रूप से dX के समतुल्य है।

ये परिणाम मूल रूप से एडवर्ड स्ज़पिलराजन (1907-1976) द्वारा स्थापित किए गए थे, उदाहरण के लिए, ह्यूरेविक्ज़ और वॉलमैन, अध्याय VII देखें।

हॉसडॉर्फ आयाम और मिन्कोव्स्की आयाम

मिन्कोव्स्की आयाम हॉसडॉर्फ आयाम के समान है, और कम से कम उतना ही बड़ा है, और वे कई स्थितियों में समान हैं। चूँकि, [0, 1] में तर्कसंगत बिंदुओं के समुच्चय में हॉसडॉर्फ आयाम शून्य और मिन्कोव्स्की आयाम है। ऐसे कॉम्पैक्ट समुच्चय भी हैं जिनके लिए मिन्कोव्स्की आयाम हॉसडॉर्फ आयाम से जटिलता से बड़ा है।

हॉसडॉर्फ आयाम और फ्रॉस्टमैन माप

यदि कोई माप (गणित) μ है तो बोरेल माप द्वारा परिभाषित किया गया है, जो मीट्रिक स्पेस rs कुछ स्थिरांक s > 0 और प्रत्येक गेंद B(x, r) के लिए X में रखता है, फिर dimHaus(X) ≥ s फ्रॉस्टमैन के लेम्मा द्वारा आंशिक सम्बन्ध प्रदान किया जाता है।[11]

यूनियनों और उत्पादों के अंतर्गत व्यवहार

यदि तो, यह परिमित या गणनीय संघ है:

इसे सरलता पूर्वक परिभाषा से सत्यापित किया जा सकता है।

यदि X और Y अरिक्त मीट्रिक समिष्ट हैं, तो उनके उत्पाद को हॉसडॉर्फ आयाम संतुष्ट करता है।[12]

यह असमानता जटिल हो सकत है आयाम 0 के दो समुच्चय का परिक्षण करना संभव है जिनके उत्पाद का आयाम 1 है।[13] विपरीत दिशा में, यह ज्ञात होता है कि जब X और Y 'Rn' के बोरेल उप-समुच्चय हैं, तो X × Y का हॉसडॉर्फ़ आयाम ऊपर से X के हॉसडॉर्फ़ आयाम और Y के पैकिंग आयाम से घिरा है। इन तथ्यों पर मटिला (1995) में वर्णन किया गया है।

स्वयं-समान समुच्चय

स्व-समानता स्थिति द्वारा परिभाषित कई समुच्चयों में आयाम होते हैं जिन्हें स्पष्ट रूप से निर्धारित किया जा सकता है। सामान्यतः समुच्चय E स्व-समान है यदि यह समुच्चय-मान परिवर्तन ψ का निश्चित बिंदु है, अर्थात ψ(E) = E, चूँकि त्रुटिहीन परिभाषा नीचे दी गई है।

'प्रमेय': कल्पना करना

Rn पर संकुचन स्थिरांक rj < 1 के साथ संकुचनशील मानचित्रित हैं। फिर अद्वितीय अरिक्त कॉम्पैक्ट समुच्चय A है जैसे कि:

यह प्रमेय स्टीफ़न बानाच के संविदात्मक मानचित्रण निश्चित बिंदु प्रमेय से अनुसरण करता है जो हॉसडॉर्फ दूरी के साथ Rn के अरिक्त कॉम्पैक्ट उपसमुच्चय के पूर्ण मीट्रिक समिष्ट पर प्रारम्भ होता है।[14]

संवृत समुच्चय की स्थिति

स्व-समान समुच्चय A (कुछ स्तिथि में) के आयाम को निर्धारित करने के लिए, हमें संकुचन ψi के अनुक्रम पर संवृत समुच्चय (ओएससी) नामक तकनीकी स्थिति की आवश्यकता होती है।

अपेक्षाकृत कॉम्पैक्ट संवृत समुच्चय V ऐसा है कि

जहां बायीं ओर संयुक्त समुच्चय जोड़ीवार असंयुक्त समुच्चय हैं।

संवृत समुच्चय स्थिति ऐसी पृथक्करण स्थिति है जो छवियों को सुनिश्चित करती है कि छवियाँ ψi(V) अधिक ओवरलैप न हों।

'प्रमेय': मान लीजिए कि संवृत का समुच्चय स्थिर है और प्रत्येक ψi समानता है, जो किसी बिंदु के चारों ओर आइसोमेट्री और विस्तारित (मीट्रिक समिष्ट) की संरचना है। फिर ψ का अद्वितीय निश्चित बिंदु समुच्चय है जिसका हॉसडॉर्फ आयाम s है जहां s का अद्वितीय समाधान है:[15]

समरूपता का संकुचन गुणांक विस्तारित का परिमाण है।

सामान्यतः समुच्चय E जो मानचित्र का निश्चित बिंदु है:

स्व-समान है यदि केवल प्रतिच्छेदन है:

जहां s, E और H का हॉसडॉर्फ आयाम है और Hs हॉसडॉर्फ माप को दर्शाता है। यह सीरपिंस्की गैसकेट की स्तिथि में स्पष्ट है, किंतु यह सामान्यतः सत्य है:

'प्रमेय': पूर्व प्रमेय के समान नियमों के अंतर्गत, ψ का अद्वितीय निश्चित बिंदु स्व-समान है।

यह भी देखें

  • हॉसडॉर्फ आयाम द्वारा फ्रैक्टल्स की सूची नियतात्मक फ्रैक्टल्स, यादृच्छिक और प्राकृतिक फ्रैक्टल्स के उदाहरण।
  • असौद आयाम, फ्रैक्टल आयाम का रूपांतर, जो हॉसडॉर्फ आयाम के जैसे, गेंदों द्वारा कवरिंग का उपयोग करके परिभाषित किया गया है
  • आंतरिक आयाम
  • पैकिंग आयाम
  • फ्रैक्टल आयाम

संदर्भ

  1. 1.0 1.1 1.2 MacGregor Campbell, 2013, "5.6 Scaling and the Hausdorff Dimension," at Annenberg Learner:MATHematics illuminated, see [1], accessed 5 March 2015.
  2. Gneiting, Tilmann; Ševčíková, Hana; Percival, Donald B. (2012). "Estimators of Fractal Dimension: Assessing the Roughness of Time Series and Spatial Data". Statistical Science. 27 (2): 247–277. arXiv:1101.1444. doi:10.1214/11-STS370. S2CID 88512325.
  3. Larry Riddle, 2014, "Classic Iterated Function Systems: Koch Snowflake", Agnes Scott College e-Academy (online), see [2], accessed 5 March 2015.
  4. 4.0 4.1 Keith Clayton, 1996, "Fractals and the Fractal Dimension," Basic Concepts in Nonlinear Dynamics and Chaos (workshop), Society for Chaos Theory in Psychology and the Life Sciences annual meeting, June 28, 1996, Berkeley, California, see [3], accessed 5 March 2015.
  5. 5.0 5.1 5.2 Mandelbrot, Benoît (1982). नेचर की फ़्रैक्टर जियोमीट्री. Lecture notes in mathematics 1358. W. H. Freeman. ISBN 0-7167-1186-9.
  6. Briggs, Jimmy; Tyree, Tim (3 December 2016). "हॉसडॉर्फ़ उपाय" (PDF). University of Washington. Retrieved 3 February 2022.
  7. Farkas, Abel; Fraser, Jonathan (30 July 2015). "हॉसडॉर्फ़ माप और हॉसडॉर्फ़ सामग्री की समानता पर". arXiv:1411.0867 [math.MG].
  8. 8.0 8.1 Schleicher, Dierk (June 2007). "हॉसडॉर्फ आयाम, इसके गुण और इसके आश्चर्य". The American Mathematical Monthly (in English). 114 (6): 509–528. arXiv:math/0505099. doi:10.1080/00029890.2007.11920440. ISSN 0002-9890. S2CID 9811750.
  9. Falconer, Kenneth (2003). Fractal Geometry: Mathematical Foundations and Applications (2nd ed.). John Wiley and Sons.
  10. Morters, Peres (2010). एक प्रकार कि गति. Cambridge University Press.
  11. This Wikipedia article also discusses further useful characterizations of the Hausdorff dimension.[clarification needed]
  12. Marstrand, J. M. (1954). "कार्टेशियन उत्पाद सेट का आयाम". Proc. Cambridge Philos. Soc. 50 (3): 198–202. Bibcode:1954PCPS...50..198M. doi:10.1017/S0305004100029236. S2CID 122475292.
  13. Falconer, Kenneth J. (2003). भग्न ज्यामिति. गणितीय नींव और अनुप्रयोग. John Wiley & Sons, Inc., Hoboken, New Jersey.
  14. Falconer, K. J. (1985). "Theorem 8.3". फ्रैक्टल सेट की ज्यामिति. Cambridge, UK: Cambridge University Press. ISBN 0-521-25694-1.
  15. Hutchinson, John E. (1981). "भग्न और स्व समानता". Indiana Univ. Math. J. 30 (5): 713–747. doi:10.1512/iumj.1981.30.30055.


अग्रिम पठन


बाहरी संबंध