होमोटोपी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 2: Line 2:
{{distinguish|होमोटॉपी}}
{{distinguish|होमोटॉपी}}


[[बीजगणितीय टोपोलॉजी|बीजगणितीय सांस्थितिकी]] में गणित का एक क्षेत्र [[टोपोलॉजिकल स्पेस|सांस्थितिक समष्टि]] का एक '''होमोटोपी समूह''' उस समष्टि के [[होमियोमोर्फिज्म|स्व-होमियोमोर्फिज्म]] के समूह का एक होमोटॉपी समूह है।
[[बीजगणितीय टोपोलॉजी|बीजगणितीय सांस्थितिकी]] में गणित का एक क्षेत्र [[टोपोलॉजिकल स्पेस|सांस्थितिक समष्टि]] का '''होमोटोपी समूह''' उस समष्टि के [[होमियोमोर्फिज्म|स्व-होमियोमोर्फिज्म]] के समूह का एक होमोटॉपी समूह है।


==परिभाषा==
==परिभाषा==
Line 12: Line 12:
इस प्रकार <math>HME_0(X)=\pi_0({\rm Homeo}(X))=MCG^*(X)</math> के लिए [[वर्ग समूह का मानचित्रण|मानचित्रण वर्ग समूह]] <math>X</math> है। दूसरे शब्दों में मानचित्रण वर्ग समूह <math>{\rm Homeo}(X)</math> से संबद्ध घटकों का समूह है, जैसा कि गुणांक <math>\pi_0</math> द्वारा निर्दिष्ट किया गया है।
इस प्रकार <math>HME_0(X)=\pi_0({\rm Homeo}(X))=MCG^*(X)</math> के लिए [[वर्ग समूह का मानचित्रण|मानचित्रण वर्ग समूह]] <math>X</math> है। दूसरे शब्दों में मानचित्रण वर्ग समूह <math>{\rm Homeo}(X)</math> से संबद्ध घटकों का समूह है, जैसा कि गुणांक <math>\pi_0</math> द्वारा निर्दिष्ट किया गया है।
==उदाहरण==
==उदाहरण==
[[डेन-नील्सन प्रमेय]] के अनुसार यदि <math>X</math> एक सवृत सतह है तो <math>HME_0(X)={\rm Out}(\pi_1(X)),</math> अर्थात, किसी समष्टि के स्वसमाकृतिकता का शून्यवाँ होमोटॉपी समूह उसके [[मौलिक समूह]] के [[बाहरी ऑटोमोर्फिज्म समूह|बाहरी स्वसमाकृतिकता समूह]] के समान होता है।
[[डेन-नील्सन प्रमेय]] के अनुसार यदि <math>X</math> एक सवृत सतह है तो <math>HME_0(X)={\rm Out}(\pi_1(X))</math> अर्थात, किसी समष्टि के स्वसमाकृतिकता का शून्यवाँ होमोटॉपी समूह उसके [[मौलिक समूह]] के [[बाहरी ऑटोमोर्फिज्म समूह|बाहरी स्वसमाकृतिकता समूह]] के समान होता है।


==संदर्भ==
==संदर्भ==
Line 19: Line 19:
*{{cite journal |first=R. |last=Arens |title=Topologies for homeomorphism groups |journal=American Journal of Mathematics |volume=68 |issue=4 |pages=593–610 |date=1946 |doi=10.2307/2371787 |jstor=2371787 }}
*{{cite journal |first=R. |last=Arens |title=Topologies for homeomorphism groups |journal=American Journal of Mathematics |volume=68 |issue=4 |pages=593–610 |date=1946 |doi=10.2307/2371787 |jstor=2371787 }}
{{refend}}
{{refend}}
[[Category: बीजगणितीय टोपोलॉजी]] [[Category: होमियोमोर्फिज्म]]
 


{{topology-stub}}
{{topology-stub}}


 
[[Category:All stub articles]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 08/07/2023]]
[[Category:Created On 08/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Topology stubs]]
[[Category:बीजगणितीय टोपोलॉजी]]
[[Category:होमियोमोर्फिज्म]]

Latest revision as of 18:31, 16 July 2023

बीजगणितीय सांस्थितिकी में गणित का एक क्षेत्र सांस्थितिक समष्टि का होमोटोपी समूह उस समष्टि के स्व-होमियोमोर्फिज्म के समूह का एक होमोटॉपी समूह है।

परिभाषा

होमोटोपी समूह गुणांक प्रत्येक समूह से संबद्ध सांस्थितिक समष्टि को निरंतर मानचित्र के होमोटॉपी वर्गों के समूह को निर्दिष्ट करता है। समष्टि पर अन्य निर्मित सभी स्व-होमियोमोर्फिज्म समूह के समूह है, जिसे द्वारा दर्शाया गया है यदि एक स्थानीय रूप से संक्षिप्त स्थानीय संबद्ध हॉसडॉर्फ समष्टि है तो आर.एरेन्स का एक मौलिक परिणाम कहता है कि वास्तव में संक्षिप्त विवृत सांस्थितिक के अंतर्गत एक सांस्थितिक समूह है।

उपरोक्त धारणाओं के अंतर्गत के लिए होमोटोपी समूहों को इस प्रकार परिभाषित किया गया है:

इस प्रकार के लिए मानचित्रण वर्ग समूह है। दूसरे शब्दों में मानचित्रण वर्ग समूह से संबद्ध घटकों का समूह है, जैसा कि गुणांक द्वारा निर्दिष्ट किया गया है।

उदाहरण

डेन-नील्सन प्रमेय के अनुसार यदि एक सवृत सतह है तो अर्थात, किसी समष्टि के स्वसमाकृतिकता का शून्यवाँ होमोटॉपी समूह उसके मौलिक समूह के बाहरी स्वसमाकृतिकता समूह के समान होता है।

संदर्भ

  • McCarty, G.S. (1963). "Homeotopy groups" (PDF). Transactions of the American Mathematical Society. 106 (2): 293–304. doi:10.1090/S0002-9947-1963-0145531-9. JSTOR 1993771.
  • Arens, R. (1946). "Topologies for homeomorphism groups". American Journal of Mathematics. 68 (4): 593–610. doi:10.2307/2371787. JSTOR 2371787.