विलगित विलक्षणता (आइसोलेटेड सिंगुलेरिटी): Difference between revisions
No edit summary |
No edit summary |
||
Line 12: | Line 12: | ||
==उदाहरण== | ==उदाहरण== | ||
* | *फलन <math>\frac {1} {z}</math> पृथक विलक्षणता के रूप में 0 है। | ||
* सहसंयोजक फलन <math>\csc \left(\pi z\right)</math> प्रत्येक [[पूर्णांक]] पृथक विलक्षणता के रूप में है। | * सहसंयोजक फलन <math>\csc \left(\pi z\right)</math> प्रत्येक [[पूर्णांक]] पृथक विलक्षणता के रूप में है। | ||
==असंबद्ध विलक्षणताएं== | ==असंबद्ध विलक्षणताएं== | ||
पृथक विलक्षणताओं के | पृथक विलक्षणताओं के अतिरिक्त, वेरिएबल के जटिल फलन अन्य विलक्षण व्यवहार प्रदर्शित कर सकते हैं। अर्थात्, दो प्रकार की असंबद्ध विलक्षणताएँ उपस्थित हैं: | ||
* क्लस्टर बिंदु, | * '''क्लस्टर बिंदु''', अर्थात् पृथक विलक्षणताओं के सीमा बिंदु: यदि वे सभी ध्रुव हैं, तो उनमें से प्रत्येक पर लॉरेंट श्रृंखला के विस्तार को स्वीकार करने के अतिरिक्त, इसकी सीमा पर ऐसा कोई विस्तार संभव नहीं है। | ||
* प्राकृतिक सीमाएँ, | * '''प्राकृतिक सीमाएँ''', अर्थात् कोई भी गैर-पृथक सेट (उदाहरण के लिए वक्र) जिसके चारों ओर फलन [[विश्लेषणात्मक निरंतरता]] (या उनके बाहर यदि वे [[रीमैन क्षेत्र]] में बंद वक्र हैं) नहीं हो सकते हैं। | ||
===उदाहरण=== | ===उदाहरण=== | ||
[[Image:Natural_boundary_example.gif|thumb|right|256px|इस शक्ति श्रृंखला की प्राकृतिक सीमा इकाई वृत्त है (उदाहरण पढ़ें)।]]* | [[Image:Natural_boundary_example.gif|thumb|right|256px|इस शक्ति श्रृंखला की प्राकृतिक सीमा इकाई वृत्त है (उदाहरण पढ़ें)।]] | ||
* | |||
*[[मैकलॉरिन श्रृंखला]] | * फलन <math display="inline">\tan\left(\frac{1}{z}\right)</math> <math>\mathbb{C}\setminus\{0\}</math> पर [[मेरोमोर्फिक]] है, जिसमें प्रत्येक <math> n\in\mathbb{N}_0</math> के लिए <math display="inline">z_n = \left(\frac{\pi}{2}+n\pi\right)^{-1}</math> पर सरल ध्रुव होते हैं। चूँकि <math>z_n\rightarrow 0</math>, <math>0</math> पर केन्द्रित प्रत्येक छिद्रित डिस्क के अन्दर इसके अन्दर अनंत संख्या में विलक्षणताएँ होती हैं, इसलिए <math>0</math> के आसपास <math display="inline">\tan\left(\frac{1}{z}\right)</math> के लिए कोई लॉरेंट विस्तार उपलब्ध नहीं है, जो वास्तव में इसके ध्रुवों का एक क्लस्टर बिंदु है। जो वास्तव में इसके ध्रुवों का क्लस्टर बिंदु है। | ||
* फलन <math display="inline">\csc \left(\frac {\pi} {z}\right)</math> 0 पर विलक्षणता होती है जो पृथक नहीं होती है, क्योंकि प्रत्येक पूर्णांक के गुणन व्युत्क्रम में अतिरिक्त विलक्षणताएँ होती हैं, जो स्वैच्छिक रूप से 0 के निकट स्थित होती हैं (चूँकि इन व्युत्क्रमों पर विलक्षणताएँ स्वयं पृथक होती हैं)। | |||
*[[मैकलॉरिन श्रृंखला]] <math display="inline">\sum_{n=0}^{\infty}z^{2^n}</math> के माध्यम से परिभाषित फलन <math>0</math> केन्द्रित खुली इकाई डिस्क के अंदर एकत्रित होती है और इकाई वृत्त इसकी प्राकृतिक सीमा है। | |||
== बाहरी संबंध == | == बाहरी संबंध == |
Revision as of 05:06, 14 July 2023
Mathematical analysis → Complex analysis |
Complex analysis |
---|
Complex numbers |
Complex functions |
Basic Theory |
Geometric function theory |
People |
|
जटिल विश्लेषण में, गणित की एक शाखा, एक पृथक विलक्षणता वह है जिसके करीब कोई अन्य गणितीय विलक्षणता नहीं है। दूसरे शब्दों में, एक सम्मिश्र संख्या z0 एक फलन f की एक अलग विलक्षणता है यदि z0 पर केंद्रित एक खुली डिस्क (गणित) D उपस्थित है जैसे कि f D \ {z0} पर होलोमोर्फिक फलन है, जो कि z0 को निकालकर D से प्राप्त सेट (गणित) पर है।
औपचारिक रूप से, और सामान्य टोपोलॉजी के सामान्य सीम के अन्दर, एक होलोमोर्फिक फ़ंक्शन की एक अलग विलक्षणता एक फ़ंक्शन डोमेन की सीमा का कोई पृथक बिंदु है। दूसरे शब्दों में, यदि , , का एक खुला उपसमुच्चय है और एक होलोमोर्फिक फ़ंक्शन है, तो , की एक पृथक विलक्षणता है।
खुले उपसमुच्चय पर मेरोमोर्फिक फलन की प्रत्येक विलक्षणता पृथक है, लेकिन केवल विलक्षणताओं का पृथक्करण यह गारंटी देने के लिए पर्याप्त नहीं है कि कोई फलन मेरोमोर्फिक है। जटिल विश्लेषण के कई महत्वपूर्ण उपकरण जैसे लॉरेंट श्रृंखला और अवशेष प्रमेय के लिए आवश्यक है कि फलन की सभी प्रासंगिक विलक्षणताओं को अलग किया जाए।
पृथक विलक्षणताएँ तीन प्रकार की होती हैं: हटाने योग्य विलक्षणता, ध्रुव (जटिल विश्लेषण) और आवश्यक विलक्षणता।
उदाहरण
- फलन पृथक विलक्षणता के रूप में 0 है।
- सहसंयोजक फलन प्रत्येक पूर्णांक पृथक विलक्षणता के रूप में है।
असंबद्ध विलक्षणताएं
पृथक विलक्षणताओं के अतिरिक्त, वेरिएबल के जटिल फलन अन्य विलक्षण व्यवहार प्रदर्शित कर सकते हैं। अर्थात्, दो प्रकार की असंबद्ध विलक्षणताएँ उपस्थित हैं:
- क्लस्टर बिंदु, अर्थात् पृथक विलक्षणताओं के सीमा बिंदु: यदि वे सभी ध्रुव हैं, तो उनमें से प्रत्येक पर लॉरेंट श्रृंखला के विस्तार को स्वीकार करने के अतिरिक्त, इसकी सीमा पर ऐसा कोई विस्तार संभव नहीं है।
- प्राकृतिक सीमाएँ, अर्थात् कोई भी गैर-पृथक सेट (उदाहरण के लिए वक्र) जिसके चारों ओर फलन विश्लेषणात्मक निरंतरता (या उनके बाहर यदि वे रीमैन क्षेत्र में बंद वक्र हैं) नहीं हो सकते हैं।
उदाहरण
- फलन पर मेरोमोर्फिक है, जिसमें प्रत्येक के लिए पर सरल ध्रुव होते हैं। चूँकि , पर केन्द्रित प्रत्येक छिद्रित डिस्क के अन्दर इसके अन्दर अनंत संख्या में विलक्षणताएँ होती हैं, इसलिए के आसपास के लिए कोई लॉरेंट विस्तार उपलब्ध नहीं है, जो वास्तव में इसके ध्रुवों का एक क्लस्टर बिंदु है। जो वास्तव में इसके ध्रुवों का क्लस्टर बिंदु है।
- फलन 0 पर विलक्षणता होती है जो पृथक नहीं होती है, क्योंकि प्रत्येक पूर्णांक के गुणन व्युत्क्रम में अतिरिक्त विलक्षणताएँ होती हैं, जो स्वैच्छिक रूप से 0 के निकट स्थित होती हैं (चूँकि इन व्युत्क्रमों पर विलक्षणताएँ स्वयं पृथक होती हैं)।
- मैकलॉरिन श्रृंखला के माध्यम से परिभाषित फलन केन्द्रित खुली इकाई डिस्क के अंदर एकत्रित होती है और इकाई वृत्त इसकी प्राकृतिक सीमा है।
बाहरी संबंध
- Ahlfors, L., Complex Analysis, 3 ed. (McGraw-Hill, 1979).
- Rudin, W., Real and Complex Analysis, 3 ed. (McGraw-Hill, 1986).