साइन फ़ंक्शन: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
{{distinguish|संबंध पर हस्ताक्षर करें|साइन फ़ंक्शन}} | {{distinguish|संबंध पर हस्ताक्षर करें|साइन फ़ंक्शन}} | ||
[[Image:Signum function.svg|thumb|300px|सिग्नल फ़ंक्शन <math>y=\sgn x</math>]]गणित में, साइन फ़ंक्शन या साइनम फ़ंक्शन | [[Image:Signum function.svg|thumb|300px|सिग्नल फ़ंक्शन <math>y=\sgn x</math>]]गणित में, '''साइन फ़ंक्शन''' या '''साइनम फ़ंक्शन''' (साइनम से, [[लैटिन भाषा]] में "साइन" के लिए) एक [[फ़ंक्शन (गणित)]] है जो [[वास्तविक संख्या]] का [[साइन (गणित)]] लौटाता है। गणितीय संकेतन में साइन फ़ंक्शन को अधिकांश <math>\sgn (x)</math> के रूप में दर्शाया जाता है।<ref name=":0">{{Cite web|title=सिग्नल फ़ंक्शन - मैकेस|url=http://www.maeckes.nl/Signum%20functie%20GB.html|url-status=live|access-date=|website=www.maeckes.nl}}</ref> | ||
==परिभाषा== | ==परिभाषा== | ||
वास्तविक संख्या <math>x</math> का साइनम फ़ंक्शन एक टुकड़े-टुकड़े फ़ंक्शन है जिसे निम्नानुसार परिभाषित किया गया है:<ref name=":0" /><math display="block"> \sgn x :=\begin{cases} | |||
<math display="block"> \sgn x :=\begin{cases} | |||
-1 & \text{if } x < 0, \\ | -1 & \text{if } x < 0, \\ | ||
0 & \text{if } x = 0, \\ | 0 & \text{if } x = 0, \\ | ||
Line 19: | Line 18: | ||
यह जब भी चलता है <math>x</math> हमारे पास 0 के बराबर नहीं है | यह जब भी चलता है <math>x</math> हमारे पास 0 के बराबर नहीं है | ||
<math display="block"> \sgn x = \frac{x}{|x|} = \frac{|x|}{x}\,.</math> | <math display="block"> \sgn x = \frac{x}{|x|} = \frac{|x|}{x}\,.</math> | ||
इसी प्रकार, किसी भी वास्तविक संख्या | इसी प्रकार, किसी भी वास्तविक संख्या <math>x</math> के लिए, | ||
<math display="block"> |x| = x\sgn x. </math> | <math display="block"> |x| = x\sgn x. </math> | ||
हम यह भी सुनिश्चित कर सकते हैं कि: | हम यह भी सुनिश्चित कर सकते हैं कि: | ||
<math display="block">\sgn x^n=(\sgn x)^n.</math> | <math display="block">\sgn x^n=(\sgn x)^n.</math> | ||
साइनम फ़ंक्शन शून्य पर अनिश्चितता तक ( | साइनम फ़ंक्शन शून्य पर अनिश्चितता तक (किन्तु सम्मिलित नहीं) पूर्ण मान फ़ंक्शन का व्युत्पन्न है। अधिक औपचारिक रूप से, एकीकरण सिद्धांत में यह एक [[कमजोर व्युत्पन्न]] है, और उत्तल कार्य सिद्धांत में 0 पर निरपेक्ष मान का [[उपविभेदक]] अंतराल <math>[-1,1]</math> है, साइन फ़ंक्शन को भरता (पूर्ण मान का उप-अंतर 0 पर एकल-मान नहीं है) हैं। ध्यान दें, <math>x</math> की परिणामी घात 0 है, जो <math>x</math> के सामान्य व्युत्पन्न के समान है। संख्याएँ रद्द हो जाती हैं और हमारे पास केवल <math>x</math> का चिह्न ही रह जाता है। | ||
<math display="block"> \frac{\text{d} |x|}{\text{d}x} = \sgn x \text{ for } x \ne 0\,.</math> | <math display="block"> \frac{\text{d} |x|}{\text{d}x} = \sgn x \text{ for } x \ne 0\,.</math> | ||
साइनम फ़ंक्शन 0 को छोड़कर | साइनम फ़ंक्शन 0 को छोड़कर प्रत्येक स्थान व्युत्पन्न 0 के साथ भिन्न होता है। यह सामान्य अर्थों में 0 पर भिन्न नहीं होता है, किन्तु [[वितरण (गणित)]] में भेदभाव की सामान्यीकृत धारणा के अनुसार, साइनम फ़ंक्शन का व्युत्पन्न [[डिराक डेल्टा फ़ंक्शन]] से दो गुना है, जिसे पहचान का उपयोग करके प्रदर्शित किया जा सकता है <ref>{{MathWorld |title=Sign |id=Sign}}</ref> | ||
साइनम फ़ंक्शन का व्युत्पन्न [[डिराक डेल्टा फ़ंक्शन]] | |||
<math display="block"> \sgn x = 2 H(x) - 1 \,,</math> | <math display="block"> \sgn x = 2 H(x) - 1 \,,</math> | ||
जहां <math>H(x)</math> मानक <math>H(0)=\frac{1}{2}</math> औपचारिकता का उपयोग करते हुए [[हेविसाइड स्टेप फ़ंक्शन]] है। इस पहचान का उपयोग करके वितरण व्युत्पन्न प्राप्त करना आसान है:<ref>{{MathWorld |title=Heaviside Step Function |id=HeavisideStepFunction}}</ref> | |||
इस पहचान का उपयोग करके | |||
<math display="block"> \frac{\text{d}\sgn x}{\text{d}x} = 2 \frac{\text{d} H(x)}{\text{d}x} = 2\delta(x) \,.</math> | <math display="block"> \frac{\text{d}\sgn x}{\text{d}x} = 2 \frac{\text{d} H(x)}{\text{d}x} = 2\delta(x) \,.</math> | ||
साइनम फ़ंक्शन का [[फूरियर रूपांतरण]] है<ref>{{cite journal|last1=Burrows|first1=B. L.|last2=Colwell|first2=D. J.|title=यूनिट स्टेप फ़ंक्शन का फूरियर रूपांतरण|journal=International Journal of Mathematical Education in Science and Technology|date=1990|volume=21|issue=4|pages=629–635|doi=10.1080/0020739900210418}}</ref> | साइनम फ़ंक्शन का [[फूरियर रूपांतरण]] है<ref>{{cite journal|last1=Burrows|first1=B. L.|last2=Colwell|first2=D. J.|title=यूनिट स्टेप फ़ंक्शन का फूरियर रूपांतरण|journal=International Journal of Mathematical Education in Science and Technology|date=1990|volume=21|issue=4|pages=629–635|doi=10.1080/0020739900210418}}</ref> | ||
<math display="block">\int_{-\infty}^\infty (\sgn x) e^{-ikx}\text{d}x = PV\frac{2}{ik},</math> | <math display="block">\int_{-\infty}^\infty (\sgn x) e^{-ikx}\text{d}x = PV\frac{2}{ik},</math> | ||
जहां <math>PV</math> का अर्थ [[ कॉची प्रमुख मूल्य |कॉची प्रिंसिपल वैल्यू]] लेना है। | |||
साइनम को [[इवरसन ब्रैकेट]] नोटेशन का उपयोग करके भी लिखा जा सकता है: | साइनम को [[इवरसन ब्रैकेट]] नोटेशन का उपयोग करके भी लिखा जा सकता है: | ||
<math display="block">\sgn x = -[x < 0] + [x > 0] \,.</math> | <math display="block">\sgn x = -[x < 0] + [x > 0] \,.</math> | ||
साइनम को [[फर्श और छत के कार्य | साइनम को [[फर्श और छत के कार्य|फ़्लोर और निरपेक्ष मान फ़ंक्शंस]] का उपयोग करके भी लिखा जा सकता है: | ||
<math display="block">\sgn x = \Biggl\lfloor \frac{x}{|x|+1} \Biggr\rfloor - | <math display="block">\sgn x = \Biggl\lfloor \frac{x}{|x|+1} \Biggr\rfloor - | ||
\Biggl\lfloor \frac{-x}{|x|+1} \Biggr\rfloor \,.</math>साइनम फ़ंक्शन की एक बहुत ही सरल परिभाषा है यदि <math>0^0</math> 1 के बराबर माना जाता है। तब साइनम को सभी वास्तविक संख्याओं के लिए इस प्रकार लिखा जा सकता है | \Biggl\lfloor \frac{-x}{|x|+1} \Biggr\rfloor \,.</math>साइनम फ़ंक्शन की एक बहुत ही सरल परिभाषा है यदि <math>0^0</math> 1 के बराबर माना जाता है। तब साइनम को सभी वास्तविक संख्याओं के लिए इस प्रकार लिखा जा सकता है | ||
Line 46: | Line 43: | ||
<math display="block">\sgn x = \lim_{n\to\infty}\frac{2}{\pi}{\rm arctan}(nx)\, = \lim_{n\to\infty}\frac{2}{\pi}\tan^{-1}(nx)\,.</math>साथ ही साथ, | <math display="block">\sgn x = \lim_{n\to\infty}\frac{2}{\pi}{\rm arctan}(nx)\, = \lim_{n\to\infty}\frac{2}{\pi}\tan^{-1}(nx)\,.</math>साथ ही साथ, | ||
<math display="block">\sgn x=\lim_{n\to\infty}\tanh(nx)\,.</math>यहाँ, <math>\tanh(x)</math> हाइपरबोलिक स्पर्शज्या है और इसके ऊपर -1 का सुपरस्क्रिप्ट, [[त्रिकोणमितीय कार्य]] | <math display="block">\sgn x=\lim_{n\to\infty}\tanh(nx)\,.</math>यहाँ, <math>\tanh(x)</math> हाइपरबोलिक स्पर्शज्या है और इसके ऊपर -1 का सुपरस्क्रिप्ट, [[त्रिकोणमितीय कार्य|त्रिकोणमितीय फलनों]] के व्युत्क्रम फलन, स्पर्शरेखा के लिए आशुलिपि संकेतन है। | ||
<math>k>1</math> के लिए, साइन फ़ंक्शन का एक सहज सन्निकटन है | |||
<math display="block">\sgn x \approx \tanh kx \,.</math> | |||
एक और अनुमान है | एक और अनुमान है | ||
<math display="block">\sgn x \approx \frac{x}{\sqrt{x^2 + \varepsilon^2}} \,.</math> | <math display="block">\sgn x \approx \frac{x}{\sqrt{x^2 + \varepsilon^2}} \,.</math> | ||
जो | जो <math>\varepsilon\to 0</math> के समान तीव्र हो जाता है; ध्यान दें कि यह <math>\sqrt{x^2+\varepsilon ^2}</math> का व्युत्पन्न है यह इस तथ्य से प्रेरित है कि उपरोक्त सभी गैर-शून्य <math>x</math> के लिए बिल्कुल बराबर है यदि <math>\varepsilon=0</math>, और साइन फ़ंक्शन (उदाहरण के लिए, आंशिक <math>\sqrt{x^2+y^2}</math> के व्युत्पन्न) के उच्च-आयामी एनालॉग्स के लिए सरल सामान्यीकरण का लाभ है | ||
{{section link|हेविसाइड स्टेप फ़ंक्शन#विश्लेषणात्मक सन्निकटन}} देखे. | |||
==जटिल साइनम== | ==जटिल साइनम== | ||
Line 61: | Line 58: | ||
किसी भी सम्मिश्र संख्या के लिए <math>z</math> के अलावा <math>z=0</math>. किसी दी गई सम्मिश्र संख्या का चिह्न <math>z</math> जटिल तल के इकाई वृत्त पर वह [[बिंदु (ज्यामिति)]] है जो निकटतम है <math>z</math>. फिर, के लिए <math>z\ne 0</math>, | किसी भी सम्मिश्र संख्या के लिए <math>z</math> के अलावा <math>z=0</math>. किसी दी गई सम्मिश्र संख्या का चिह्न <math>z</math> जटिल तल के इकाई वृत्त पर वह [[बिंदु (ज्यामिति)]] है जो निकटतम है <math>z</math>. फिर, के लिए <math>z\ne 0</math>, | ||
<math display="block">\sgn z = e^{i\arg z}\,,</math> | <math display="block">\sgn z = e^{i\arg z}\,,</math> | ||
जहाँ <math>\arg</math> [[तर्क (जटिल विश्लेषण)]] है. | |||
समरूपता के कारणों के लिए, और इसे वास्तविक पर साइनम फ़ंक्शन का उचित सामान्यीकरण रखने के लिए, जटिल डोमेन में भी जिसे आमतौर पर परिभाषित किया जाता है, के लिए <math>z=0</math>: | समरूपता के कारणों के लिए, और इसे वास्तविक पर साइनम फ़ंक्शन का उचित सामान्यीकरण रखने के लिए, जटिल डोमेन में भी जिसे आमतौर पर परिभाषित किया जाता है, के लिए <math>z=0</math>: | ||
Line 73: | Line 70: | ||
\end{cases} | \end{cases} | ||
</math> | </math> | ||
जहाँ <math>\text{Re}(z)</math> का असली हिस्सा है <math>z</math> और <math>\text{Im}(z)</math> का काल्पनिक भाग है <math>z</math>. | |||
फिर हमारे पास (के लिए) है <math>z\ne 0</math>): | फिर हमारे पास (के लिए) है <math>z\ne 0</math>): | ||
Line 80: | Line 77: | ||
==सामान्यीकृत साइनम फ़ंक्शन== | ==सामान्यीकृत साइनम फ़ंक्शन== | ||
के वास्तविक मूल्यों पर <math>x</math>, साइनम फ़ंक्शन के सामान्यीकृत फ़ंक्शन-संस्करण को परिभाषित करना संभव है, <math>\varepsilon (x)</math> ऐसा है कि <math>\varepsilon (x)^2=1</math> बिंदु सहित, हर जगह <math>x=0</math>, विपरीत <math>\sgn</math>, जिसके लिए <math>(\sgn 0)^2=0</math>. यह सामान्यीकृत संकेत सामान्यीकृत कार्यों के बीजगणित के निर्माण की अनुमति देता है, | के वास्तविक मूल्यों पर <math>x</math>, साइनम फ़ंक्शन के सामान्यीकृत फ़ंक्शन-संस्करण को परिभाषित करना संभव है, <math>\varepsilon (x)</math> ऐसा है कि <math>\varepsilon (x)^2=1</math> बिंदु सहित, हर जगह <math>x=0</math>, विपरीत <math>\sgn</math>, जिसके लिए <math>(\sgn 0)^2=0</math>. यह सामान्यीकृत संकेत सामान्यीकृत कार्यों के बीजगणित के निर्माण की अनुमति देता है, किन्तु ऐसे सामान्यीकरण की कीमत [[क्रमपरिवर्तनशीलता]] की हानि है। विशेष रूप से, सामान्यीकृत साइनम डिराक डेल्टा फ़ंक्शन के साथ एंटीकम्यूट करता है<ref name="Algebra"> | ||
{{cite journal | {{cite journal | ||
|author = Yu.M.Shirokov | |author = Yu.M.Shirokov | ||
Line 96: | Line 93: | ||
}}</ref> | }}</ref> | ||
<math display="block">\varepsilon (x) \delta(x)+\delta(x) \varepsilon(x) = 0 \, ;</math> | <math display="block">\varepsilon (x) \delta(x)+\delta(x) \varepsilon(x) = 0 \, ;</math> | ||
इसके साथ ही, <math>\varepsilon (x)</math> पर मूल्यांकन नहीं किया जा सकता <math>x=0</math>; और विशेष नाम, <math>\varepsilon</math> इसे फ़ंक्शन से अलग करना आवश्यक है <math>\sgn</math>. (<math>\varepsilon (0)</math> परिभाषित नहीं है, | इसके साथ ही, <math>\varepsilon (x)</math> पर मूल्यांकन नहीं किया जा सकता <math>x=0</math>; और विशेष नाम, <math>\varepsilon</math> इसे फ़ंक्शन से अलग करना आवश्यक है <math>\sgn</math>. (<math>\varepsilon (0)</math> परिभाषित नहीं है, किन्तु <math>\sgn 0=0</math>.) | ||
==आव्यूहों का सामान्यीकरण== | ==आव्यूहों का सामान्यीकरण== | ||
ध्रुवीय अपघटन प्रमेय, एक मैट्रिक्स के लिए धन्यवाद <math>\boldsymbol A\in\mathbb K^{n\times n}</math> (<math>n\in\mathbb N</math> और <math>\mathbb K\in\{\mathbb R,\mathbb C\}</math>) को एक उत्पाद के रूप में विघटित किया जा सकता है <math>\boldsymbol Q\boldsymbol P</math> | ध्रुवीय अपघटन प्रमेय, एक मैट्रिक्स के लिए धन्यवाद <math>\boldsymbol A\in\mathbb K^{n\times n}</math> (<math>n\in\mathbb N</math> और <math>\mathbb K\in\{\mathbb R,\mathbb C\}</math>) को एक उत्पाद के रूप में विघटित किया जा सकता है <math>\boldsymbol Q\boldsymbol P</math> जहाँ <math>\boldsymbol Q</math> एक एकात्मक मैट्रिक्स है और <math>\boldsymbol P</math> एक स्व-सहायक, या हर्मिटियन, सकारात्मक निश्चित मैट्रिक्स है, दोनों में <math>\mathbb K^{n\times n}</math>. अगर <math>\boldsymbol A</math> उलटा है तो ऐसा अपघटन अद्वितीय है और <math>\boldsymbol Q</math> की भूमिका निभाता है <math>\boldsymbol A</math>का साइनम. अपघटन द्वारा एक दोहरा निर्माण दिया जाता है <math>\boldsymbol A=\boldsymbol S\boldsymbol R</math> जहाँ <math>\boldsymbol R</math> एकात्मक है, किन्तु आम तौर पर इससे भिन्न है <math>\boldsymbol Q</math>. इससे प्रत्येक व्युत्क्रमणीय मैट्रिक्स में एक अद्वितीय बाएँ-हस्ताक्षर होता है <math>\boldsymbol Q</math> और दायाँ-हस्ताक्षर <math>\boldsymbol R</math>. | ||
विशेष मामले में जहां <math>\mathbb K=\mathbb R,\ n=2,</math> और (उलटा) मैट्रिक्स <math>\boldsymbol A = \left[\begin{array}{rr}a&-b\\b&a\end{array}\right]</math>, जो (गैरशून्य) सम्मिश्र संख्या से पहचान करता है <math>a+\mathrm i b=c</math>, तो साइनम मैट्रिक्स संतुष्ट होते हैं <math>\boldsymbol Q=\boldsymbol P=\left[\begin{array}{rr}a&-b\\b&a\end{array}\right]/|c|</math> और के जटिल संकेत से पहचानें <math>c</math>, <math>\sgn c = c/|c|</math>. इस अर्थ में, ध्रुवीय अपघटन जटिल संख्याओं के साइनम-मापांक अपघटन को मैट्रिक्स में सामान्यीकृत करता है। | विशेष मामले में जहां <math>\mathbb K=\mathbb R,\ n=2,</math> और (उलटा) मैट्रिक्स <math>\boldsymbol A = \left[\begin{array}{rr}a&-b\\b&a\end{array}\right]</math>, जो (गैरशून्य) सम्मिश्र संख्या से पहचान करता है <math>a+\mathrm i b=c</math>, तो साइनम मैट्रिक्स संतुष्ट होते हैं <math>\boldsymbol Q=\boldsymbol P=\left[\begin{array}{rr}a&-b\\b&a\end{array}\right]/|c|</math> और के जटिल संकेत से पहचानें <math>c</math>, <math>\sgn c = c/|c|</math>. इस अर्थ में, ध्रुवीय अपघटन जटिल संख्याओं के साइनम-मापांक अपघटन को मैट्रिक्स में सामान्यीकृत करता है। |
Revision as of 11:37, 13 July 2023
गणित में, साइन फ़ंक्शन या साइनम फ़ंक्शन (साइनम से, लैटिन भाषा में "साइन" के लिए) एक फ़ंक्शन (गणित) है जो वास्तविक संख्या का साइन (गणित) लौटाता है। गणितीय संकेतन में साइन फ़ंक्शन को अधिकांश के रूप में दर्शाया जाता है।[1]
परिभाषा
वास्तविक संख्या का साइनम फ़ंक्शन एक टुकड़े-टुकड़े फ़ंक्शन है जिसे निम्नानुसार परिभाषित किया गया है:[1]
गुण
किसी भी वास्तविक संख्या को उसके निरपेक्ष मान और उसके चिह्न फलन के गुणनफल के रूप में व्यक्त किया जा सकता है:
साइनम को इवरसन ब्रैकेट नोटेशन का उपयोग करके भी लिखा जा सकता है:
साइनम फ़ंक्शन सीमाओं के साथ मेल खाता है
साथ ही साथ,
के लिए, साइन फ़ंक्शन का एक सहज सन्निकटन है
हेविसाइड स्टेप फ़ंक्शन § विश्लेषणात्मक सन्निकटन देखे.
जटिल साइनम
साइनम फ़ंक्शन को जटिल संख्याओं के लिए सामान्यीकृत किया जा सकता है:
समरूपता के कारणों के लिए, और इसे वास्तविक पर साइनम फ़ंक्शन का उचित सामान्यीकरण रखने के लिए, जटिल डोमेन में भी जिसे आमतौर पर परिभाषित किया जाता है, के लिए :
वास्तविक और जटिल अभिव्यक्तियों के लिए संकेत फ़ंक्शन का एक और सामान्यीकरण है ,[5] जिसे इस प्रकार परिभाषित किया गया है:
फिर हमारे पास (के लिए) है ):
सामान्यीकृत साइनम फ़ंक्शन
के वास्तविक मूल्यों पर , साइनम फ़ंक्शन के सामान्यीकृत फ़ंक्शन-संस्करण को परिभाषित करना संभव है, ऐसा है कि बिंदु सहित, हर जगह , विपरीत , जिसके लिए . यह सामान्यीकृत संकेत सामान्यीकृत कार्यों के बीजगणित के निर्माण की अनुमति देता है, किन्तु ऐसे सामान्यीकरण की कीमत क्रमपरिवर्तनशीलता की हानि है। विशेष रूप से, सामान्यीकृत साइनम डिराक डेल्टा फ़ंक्शन के साथ एंटीकम्यूट करता है[6]
आव्यूहों का सामान्यीकरण
ध्रुवीय अपघटन प्रमेय, एक मैट्रिक्स के लिए धन्यवाद ( और ) को एक उत्पाद के रूप में विघटित किया जा सकता है जहाँ एक एकात्मक मैट्रिक्स है और एक स्व-सहायक, या हर्मिटियन, सकारात्मक निश्चित मैट्रिक्स है, दोनों में . अगर उलटा है तो ऐसा अपघटन अद्वितीय है और की भूमिका निभाता है का साइनम. अपघटन द्वारा एक दोहरा निर्माण दिया जाता है जहाँ एकात्मक है, किन्तु आम तौर पर इससे भिन्न है . इससे प्रत्येक व्युत्क्रमणीय मैट्रिक्स में एक अद्वितीय बाएँ-हस्ताक्षर होता है और दायाँ-हस्ताक्षर .
विशेष मामले में जहां और (उलटा) मैट्रिक्स , जो (गैरशून्य) सम्मिश्र संख्या से पहचान करता है , तो साइनम मैट्रिक्स संतुष्ट होते हैं और के जटिल संकेत से पहचानें , . इस अर्थ में, ध्रुवीय अपघटन जटिल संख्याओं के साइनम-मापांक अपघटन को मैट्रिक्स में सामान्यीकृत करता है।
यह भी देखें
- निरपेक्ष मूल्य
- हेविसाइड फ़ंक्शन
- ऋणात्मक संख्या
- आयताकार कार्य
- सिग्मॉइड फ़ंक्शन (कठोर सिग्मॉइड)
- चरण फ़ंक्शन (टुकड़े-टुकड़े स्थिर फ़ंक्शन)
- तीनतरफा तुलना
- जीबरा क्रोससिंग
- ध्रुवीय अपघटन
टिप्पणियाँ
- ↑ 1.0 1.1 "सिग्नल फ़ंक्शन - मैकेस". www.maeckes.nl.
{{cite web}}
: CS1 maint: url-status (link) - ↑ Weisstein, Eric W. "Sign". MathWorld.
- ↑ Weisstein, Eric W. "Heaviside Step Function". MathWorld.
- ↑ Burrows, B. L.; Colwell, D. J. (1990). "यूनिट स्टेप फ़ंक्शन का फूरियर रूपांतरण". International Journal of Mathematical Education in Science and Technology. 21 (4): 629–635. doi:10.1080/0020739900210418.
- ↑ Maple V documentation. May 21, 1998
- ↑ Yu.M.Shirokov (1979). "Algebra of one-dimensional generalized functions". Theoretical and Mathematical Physics. 39 (3): 471–477. doi:10.1007/BF01017992. Archived from the original on 2012-12-08.
[Category:Unary operatio