साइनम फ़ंक्शन को जटिल संख्याओं के लिए सामान्यीकृत किया जा सकता है:
साइनम फ़ंक्शन को जटिल संख्याओं के लिए सामान्यीकृत किया जा सकता है:
<math display="block">\sgn z = \frac{z}{|z|} </math>
<math display="block">\sgn z = \frac{z}{|z|} </math>
किसी भी सम्मिश्र संख्या के लिए <math>z</math> के अलावा <math>z=0</math>. किसी दी गई सम्मिश्र संख्या का चिह्न <math>z</math> जटिल तल के इकाई वृत्त पर वह [[बिंदु (ज्यामिति)]] है जो निकटतम है <math>z</math>. फिर, के लिए <math>z\ne 0</math>,
<math>z=0</math> को छोड़कर किसी भी सम्मिश्र संख्या <math>z</math> के लिए। किसी दिए गए सम्मिश्र संख्या <math>z</math> का चिह्न सम्मिश्र तल के इकाई वृत्त पर वह [[बिंदु (ज्यामिति)]] है जो <math>z</math> के निकटतम है। फिर, <math>z\ne 0</math> के लिए,
<math display="block">\sgn z = e^{i\arg z}\,,</math>
<math display="block">\sgn z = e^{i\arg z}\,,</math>
जहाँ <math>\arg</math> [[तर्क (जटिल विश्लेषण)]] है.
जहाँ <math>\arg</math> [[तर्क (जटिल विश्लेषण)]] है.
समरूपता के कारणों के लिए, और इसे वास्तविक पर साइनम फ़ंक्शन का उचित सामान्यीकरण रखने के लिए, जटिल डोमेन में भी जिसे आमतौर पर परिभाषित किया जाता है, के लिए <math>z=0</math>:
समरूपता के कारणों के लिए, और इसे वास्तविक पर साइनम फ़ंक्शन का उचित सामान्यीकरण रखने के लिए, जटिल डोमेन में भी जिसे आमतौर पर परिभाषित किया जाता है, <math>z=0</math> के लिए:
<math display="block">\sgn(0+0i)=0</math>
<math display="block">\sgn(0+0i)=0</math>
वास्तविक और जटिल अभिव्यक्तियों के लिए संकेत फ़ंक्शन का एक और सामान्यीकरण है <math>\text{csgn}</math>,<ref>Maple V documentation. May 21, 1998</ref> जिसे इस प्रकार परिभाषित किया गया है:
वास्तविक और जटिल अभिव्यक्तियों के लिए साइन फ़ंक्शन का एक और सामान्यीकरण <math>\text{csgn}</math> है,<ref>Maple V documentation. May 21, 1998</ref> जिसे इस प्रकार परिभाषित किया गया है:<math display="block">
<math display="block">
\operatorname{csgn} z= \begin{cases}
\operatorname{csgn} z= \begin{cases}
1 & \text{if } \mathrm{Re}(z) > 0, \\
1 & \text{if } \mathrm{Re}(z) > 0, \\
Line 70:
Line 69:
\end{cases}
\end{cases}
</math>
</math>
जहाँ <math>\text{Re}(z)</math> का असली हिस्सा है <math>z</math> और <math>\text{Im}(z)</math> का काल्पनिक भाग है <math>z</math>.
फिर हमारे पास (के लिए) है <math>z\ne 0</math>):
जहां <math>\text{Re}(z)</math> <math>z</math> का वास्तविक भाग है और <math>\text{Im}(z)</math> <math>z</math> का काल्पनिक भाग है।
फिर हमारे पास <math>z\ne 0</math>) (के लिए) है:
<math display="block">\operatorname{csgn} z = \frac{z}{\sqrt{z^2}} = \frac{\sqrt{z^2}}{z}. </math>
<math display="block">\operatorname{csgn} z = \frac{z}{\sqrt{z^2}} = \frac{\sqrt{z^2}}{z}. </math>
==सामान्यीकृत साइनम फ़ंक्शन==
==सामान्यीकृत साइनम फ़ंक्शन==
के वास्तविक मूल्यों पर <math>x</math>, साइनम फ़ंक्शन के सामान्यीकृत फ़ंक्शन-संस्करण को परिभाषित करना संभव है, <math>\varepsilon (x)</math> ऐसा है कि <math>\varepsilon (x)^2=1</math> बिंदु सहित, हर जगह <math>x=0</math>, विपरीत <math>\sgn</math>, जिसके लिए <math>(\sgn 0)^2=0</math>. यह सामान्यीकृत संकेत सामान्यीकृत कार्यों के बीजगणित के निर्माण की अनुमति देता है, किन्तु ऐसे सामान्यीकरण की कीमत [[क्रमपरिवर्तनशीलता]] की हानि है। विशेष रूप से, सामान्यीकृत साइनम डिराक डेल्टा फ़ंक्शन के साथ एंटीकम्यूट करता है<ref name="Algebra">
के वास्तविक मूल्यों पर <math>x</math>, साइनम फ़ंक्शन के सामान्यीकृत फ़ंक्शन-संस्करण को परिभाषित करना संभव है, <math>\varepsilon (x)</math> ऐसा है कि <math>\varepsilon (x)^2=1</math> बिंदु सहित, प्रत्येक स्थान <math>x=0</math>, विपरीत <math>\sgn</math>, जिसके लिए <math>(\sgn 0)^2=0</math> है। यह सामान्यीकृत संकेत सामान्यीकृत फलनों के बीजगणित के निर्माण की अनुमति देता है, किन्तु ऐसे सामान्यीकरण की कीमत [[क्रमपरिवर्तनशीलता]] की हानि है। विशेष रूप से, सामान्यीकृत साइनम डिराक डेल्टा फ़ंक्शन के साथ एंटीकम्यूट करता है<ref name="Algebra">
इसके साथ ही, <math>\varepsilon (x)</math> पर मूल्यांकन नहीं किया जा सकता <math>x=0</math>; और विशेष नाम, <math>\varepsilon</math> इसे फ़ंक्शन से अलग करना आवश्यक है <math>\sgn</math>. (<math>\varepsilon (0)</math> परिभाषित नहीं है, किन्तु <math>\sgn 0=0</math>.)
इसके साथ ही, <math>\varepsilon (x)</math> का मूल्यांकन <math>x=0</math> पर नहीं किया जा सकता है; और <math>\varepsilon</math> इसे फ़ंक्शन से अलग करना आवश्यक है <math>\sgn</math>. (<math>\varepsilon (0)</math> परिभाषित नहीं है, किन्तु <math>\sgn 0=0</math> है।
==आव्यूहों का सामान्यीकरण==
==आव्यूहों का सामान्यीकरण==
ध्रुवीय अपघटन प्रमेय, एक मैट्रिक्स के लिए धन्यवाद <math>\boldsymbol A\in\mathbb K^{n\times n}</math> (<math>n\in\mathbb N</math> और <math>\mathbb K\in\{\mathbb R,\mathbb C\}</math>) को एक उत्पाद के रूप में विघटित किया जा सकता है <math>\boldsymbol Q\boldsymbol P</math> जहाँ <math>\boldsymbol Q</math> एक एकात्मक मैट्रिक्स है और <math>\boldsymbol P</math> एक स्व-सहायक, या हर्मिटियन, सकारात्मक निश्चित मैट्रिक्स है, दोनों में <math>\mathbb K^{n\times n}</math>. अगर <math>\boldsymbol A</math> उलटा है तो ऐसा अपघटन अद्वितीय है और <math>\boldsymbol Q</math> की भूमिका निभाता है <math>\boldsymbol A</math>का साइनम. अपघटन द्वारा एक दोहरा निर्माण दिया जाता है <math>\boldsymbol A=\boldsymbol S\boldsymbol R</math> जहाँ <math>\boldsymbol R</math> एकात्मक है, किन्तु आम तौर पर इससे भिन्न है <math>\boldsymbol Q</math>. इससे प्रत्येक व्युत्क्रमणीय मैट्रिक्स में एक अद्वितीय बाएँ-हस्ताक्षर होता है <math>\boldsymbol Q</math> और दायाँ-हस्ताक्षर <math>\boldsymbol R</math>.
ध्रुवीय अपघटन प्रमेय के लिए धन्यवाद, एक मैट्रिक्स <math>\boldsymbol A\in\mathbb K^{n\times n}</math> (<math>n\in\mathbb N</math> और <math>\mathbb K\in\{\mathbb R,\mathbb C\}</math>) को उत्पाद <math>\boldsymbol Q\boldsymbol P</math> के रूप में विघटित किया जा सकता है जहां <math>\boldsymbol Q</math> एक एकात्मक मैट्रिक्स है और <math>\boldsymbol P</math> एक स्व-सहायक है, या <math>\mathbb K^{n\times n}</math> दोनों में हर्मिटियन सकारात्मक निश्चित मैट्रिक्स है। यदि <math>\boldsymbol A</math> उलटा है तो ऐसा अपघटन अद्वितीय है और <math>\boldsymbol Q</math> <math>\boldsymbol A</math> के साइनम की भूमिका निभाता है। एक दोहरा निर्माण अपघटन <math>\boldsymbol A=\boldsymbol S\boldsymbol R</math> द्वारा दिया जाता है जहां <math>\boldsymbol R</math> एकात्मक है, किन्तु सामान्यतः <math>\boldsymbol Q</math> से भिन्न होता है। इससे प्रत्येक व्युत्क्रमणीय मैट्रिक्स में एक अद्वितीय बायां-चिह्न <math>\boldsymbol Q</math> और दायां-चिह्न <math>\boldsymbol R</math> होता है।
विशेष मामले में जहां <math>\mathbb K=\mathbb R,\ n=2,</math> और (उलटा) मैट्रिक्स <math>\boldsymbol A = \left[\begin{array}{rr}a&-b\\b&a\end{array}\right]</math>, जो (गैरशून्य) सम्मिश्र संख्या से पहचान करता है <math>a+\mathrm i b=c</math>, तो साइनम मैट्रिक्स संतुष्ट होते हैं <math>\boldsymbol Q=\boldsymbol P=\left[\begin{array}{rr}a&-b\\b&a\end{array}\right]/|c|</math> और के जटिल संकेत से पहचानें <math>c</math>, <math>\sgn c = c/|c|</math>. इस अर्थ में, ध्रुवीय अपघटन जटिल संख्याओं के साइनम-मापांक अपघटन को मैट्रिक्स में सामान्यीकृत करता है।
विशेष स्थिति में जहां <math>\mathbb K=\mathbb R,\ n=2,</math> और (उलटा) मैट्रिक्स <math>\boldsymbol A = \left[\begin{array}{rr}a&-b\\b&a\end{array}\right]</math>, जो (गैरशून्य) सम्मिश्र संख्या <math>a+\mathrm i b=c</math> से पहचान करता है, तो साइनम मैट्रिक्स संतुष्ट होते हैं <math>\boldsymbol Q=\boldsymbol P=\left[\begin{array}{rr}a&-b\\b&a\end{array}\right]/|c|</math> और के जटिल संकेत <math>c</math>, <math>\sgn c = c/|c|</math> से पहचानें। इस अर्थ में, ध्रुवीय अपघटन जटिल संख्याओं के साइनम-मापांक अपघटन को मैट्रिक्स में सामान्यीकृत करता है।
गणित में, साइन फ़ंक्शन या साइनम फ़ंक्शन (साइनम से, लैटिन भाषा में "साइन" के लिए) एक फ़ंक्शन (गणित) है जो वास्तविक संख्या का साइन (गणित) लौटाता है। गणितीय संकेतन में साइन फ़ंक्शन को अधिकांश के रूप में दर्शाया जाता है।[1]
वास्तविक संख्या का साइनम फ़ंक्शन एक टुकड़े-टुकड़े फ़ंक्शन है जिसे निम्नानुसार परिभाषित किया गया है:[1]
गुण
साइन फ़ंक्शन निरंतर कार्य नहीं है .
किसी भी वास्तविक संख्या को उसके निरपेक्ष मान और उसके चिह्न फलन के गुणनफल के रूप में व्यक्त किया जा सकता है:
यह जब भी चलता है हमारे पास 0 के बराबर नहीं है
इसी प्रकार, किसी भी वास्तविक संख्या के लिए,
हम यह भी सुनिश्चित कर सकते हैं कि:
साइनम फ़ंक्शन शून्य पर अनिश्चितता तक (किन्तु सम्मिलित नहीं) पूर्ण मान फ़ंक्शन का व्युत्पन्न है। अधिक औपचारिक रूप से, एकीकरण सिद्धांत में यह एक कमजोर व्युत्पन्न है, और उत्तल कार्य सिद्धांत में 0 पर निरपेक्ष मान का उपविभेदक अंतराल है, साइन फ़ंक्शन को भरता (पूर्ण मान का उप-अंतर 0 पर एकल-मान नहीं है) हैं। ध्यान दें, की परिणामी घात 0 है, जो के सामान्य व्युत्पन्न के समान है। संख्याएँ रद्द हो जाती हैं और हमारे पास केवल का चिह्न ही रह जाता है।
साइनम फ़ंक्शन 0 को छोड़कर प्रत्येक स्थान व्युत्पन्न 0 के साथ भिन्न होता है। यह सामान्य अर्थों में 0 पर भिन्न नहीं होता है, किन्तु वितरण (गणित) में भेदभाव की सामान्यीकृत धारणा के अनुसार, साइनम फ़ंक्शन का व्युत्पन्न डिराक डेल्टा फ़ंक्शन से दो गुना है, जिसे पहचान का उपयोग करके प्रदर्शित किया जा सकता है [2]
जहां मानक औपचारिकता का उपयोग करते हुए हेविसाइड स्टेप फ़ंक्शन है। इस पहचान का उपयोग करके वितरण व्युत्पन्न प्राप्त करना आसान है:[3]
साइनम फ़ंक्शन की एक बहुत ही सरल परिभाषा है यदि 1 के बराबर माना जाता है। तब साइनम को सभी वास्तविक संख्याओं के लिए इस प्रकार लिखा जा सकता है
साइनम फ़ंक्शन सीमाओं के साथ मेल खाता है
और
साथ ही साथ,
यहाँ, हाइपरबोलिक स्पर्शज्या है और इसके ऊपर -1 का सुपरस्क्रिप्ट, त्रिकोणमितीय फलनों के व्युत्क्रम फलन, स्पर्शरेखा के लिए आशुलिपि संकेतन है।
के लिए, साइन फ़ंक्शन का एक सहज सन्निकटन है
एक और अनुमान है
जो के समान तीव्र हो जाता है; ध्यान दें कि यह का व्युत्पन्न है यह इस तथ्य से प्रेरित है कि उपरोक्त सभी गैर-शून्य के लिए बिल्कुल बराबर है यदि , और साइन फ़ंक्शन (उदाहरण के लिए, आंशिक के व्युत्पन्न) के उच्च-आयामी एनालॉग्स के लिए सरल सामान्यीकरण का लाभ है
साइनम फ़ंक्शन को जटिल संख्याओं के लिए सामान्यीकृत किया जा सकता है:
को छोड़कर किसी भी सम्मिश्र संख्या के लिए। किसी दिए गए सम्मिश्र संख्या का चिह्न सम्मिश्र तल के इकाई वृत्त पर वह बिंदु (ज्यामिति) है जो के निकटतम है। फिर, के लिए,
समरूपता के कारणों के लिए, और इसे वास्तविक पर साइनम फ़ंक्शन का उचित सामान्यीकरण रखने के लिए, जटिल डोमेन में भी जिसे आमतौर पर परिभाषित किया जाता है, के लिए:
वास्तविक और जटिल अभिव्यक्तियों के लिए साइन फ़ंक्शन का एक और सामान्यीकरण है,[5] जिसे इस प्रकार परिभाषित किया गया है:
जहां का वास्तविक भाग है और का काल्पनिक भाग है।
फिर हमारे पास ) (के लिए) है:
सामान्यीकृत साइनम फ़ंक्शन
के वास्तविक मूल्यों पर , साइनम फ़ंक्शन के सामान्यीकृत फ़ंक्शन-संस्करण को परिभाषित करना संभव है, ऐसा है कि बिंदु सहित, प्रत्येक स्थान , विपरीत , जिसके लिए है। यह सामान्यीकृत संकेत सामान्यीकृत फलनों के बीजगणित के निर्माण की अनुमति देता है, किन्तु ऐसे सामान्यीकरण की कीमत क्रमपरिवर्तनशीलता की हानि है। विशेष रूप से, सामान्यीकृत साइनम डिराक डेल्टा फ़ंक्शन के साथ एंटीकम्यूट करता है[6]
इसके साथ ही, का मूल्यांकन पर नहीं किया जा सकता है; और इसे फ़ंक्शन से अलग करना आवश्यक है . ( परिभाषित नहीं है, किन्तु है।
आव्यूहों का सामान्यीकरण
ध्रुवीय अपघटन प्रमेय के लिए धन्यवाद, एक मैट्रिक्स ( और ) को उत्पाद के रूप में विघटित किया जा सकता है जहां एक एकात्मक मैट्रिक्स है और एक स्व-सहायक है, या दोनों में हर्मिटियन सकारात्मक निश्चित मैट्रिक्स है। यदि उलटा है तो ऐसा अपघटन अद्वितीय है और के साइनम की भूमिका निभाता है। एक दोहरा निर्माण अपघटन द्वारा दिया जाता है जहां एकात्मक है, किन्तु सामान्यतः से भिन्न होता है। इससे प्रत्येक व्युत्क्रमणीय मैट्रिक्स में एक अद्वितीय बायां-चिह्न और दायां-चिह्न होता है।
विशेष स्थिति में जहां और (उलटा) मैट्रिक्स , जो (गैरशून्य) सम्मिश्र संख्या से पहचान करता है, तो साइनम मैट्रिक्स संतुष्ट होते हैं और के जटिल संकेत , से पहचानें। इस अर्थ में, ध्रुवीय अपघटन जटिल संख्याओं के साइनम-मापांक अपघटन को मैट्रिक्स में सामान्यीकृत करता है।
↑Burrows, B. L.; Colwell, D. J. (1990). "यूनिट स्टेप फ़ंक्शन का फूरियर रूपांतरण". International Journal of Mathematical Education in Science and Technology. 21 (4): 629–635. doi:10.1080/0020739900210418.