एंटीथेटिक वैरिएबल: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
[[सांख्यिकी]] में, '''एंटीथेटिक विचर''' विधि [[मोंटे कार्लो विधियों]] में उपयोग की जाने वाली एक [[प्रसरण न्यूनन|प्रसरण समानयन]] तकनीक है। यह ध्यान में रखते हुए कि | [[सांख्यिकी]] में, '''एंटीथेटिक विचर''' विधि [[मोंटे कार्लो विधियों]] में उपयोग की जाने वाली एक [[प्रसरण न्यूनन|प्रसरण समानयन]] तकनीक है। यह ध्यान में रखते हुए कि अनुकारित संकेत (मोंटे कार्लो विधियों का उपयोग करके) में त्रुटि में एक से अधिक [[वर्गमूल अभिसरण]] हैं, सटीक परिणाम प्राप्त करने के लिए बहुत बड़ी संख्या में [[नमूना (सांख्यिकी)|प्रतिदर्श]] पथों की आवश्यकता होती है। एंटीथेटिक विचर विधि अनुकार (सिमुलेशन) परिणामों के प्रसरण को कम करती है।<ref name="varred17">{{cite journal|last1=Botev|first1=Z.|last2=Ridder|first2=A.|title=विचरण में कमी|journal= Wiley StatsRef: Statistics Reference Online|date=2017|pages=1–6|doi=10.1002/9781118445112.stat07975|isbn=9781118445112}}</ref><ref>{{cite book|last1=Kroese|first1=D. P.|authorlink1=Dirk Kroese |last2=Taimre|first2=T.|last3=Botev|first3=Z. I.|title=मोंटे कार्लो विधियों की पुस्तिका|year=2011 |publisher=John Wiley & Sons}}(Chapter 9.3)</ref> | ||
==अंतर्निहित सिद्धांत== | ==अंतर्निहित सिद्धांत== | ||
एंटीथेटिक विचर तकनीक में प्राप्त प्रत्येक प्रतिदर्श पथ के लिए, इसके एंटीथेटिक पथ को लेने में सम्मिलित होता है - जिसे <math>\{\varepsilon_1,\dots,\varepsilon_M\}</math> लेने के लिए एक पथ <math>\{-\varepsilon_1,\dots,-\varepsilon_M\}</math> दिया जाता है। इस तकनीक का लाभ दोगुना है: यह ''N'' पथ उत्पन्न करने के लिए लिए जाने वाले प्रसामान्य प्रतिदर्शों की संख्या को कम करता है, और यह प्रतिदर्श पथों के प्रसरण को कम करता है, जिससे सटीकता में सुधार होता है। | एंटीथेटिक विचर तकनीक में प्राप्त प्रत्येक प्रतिदर्श पथ के लिए, इसके एंटीथेटिक पथ को लेने में सम्मिलित होता है - जिसे <math>\{\varepsilon_1,\dots,\varepsilon_M\}</math> लेने के लिए एक पथ <math>\{-\varepsilon_1,\dots,-\varepsilon_M\}</math> दिया जाता है। इस तकनीक का लाभ दोगुना है: यह ''N'' पथ उत्पन्न करने के लिए लिए जाने वाले प्रसामान्य प्रतिदर्शों की संख्या को कम करता है, और यह प्रतिदर्श पथों के प्रसरण को कम करता है, जिससे सटीकता में सुधार होता है। | ||
मान लीजिए कि हम | मान लीजिए कि हम आकलन करना चाहेंगे | ||
:<math>\theta = \mathrm{E}( h(X) ) = \mathrm{E}( Y ) \, </math> | :<math>\theta = \mathrm{E}( h(X) ) = \mathrm{E}( Y ) \, </math> | ||
उसके लिए हमने दो प्रतिदर्श तैयार किए हैं | उसके लिए हमने दो प्रतिदर्श तैयार किए हैं | ||
Line 22: | Line 22: | ||
==उदाहरण 2: पूर्णांकीय परिकलन == | ==उदाहरण 2: पूर्णांकीय परिकलन == | ||
हम | हम आकलन करना चाहेंगे | ||
:<math>I = \int_0^1 \frac{1}{1+x} \, \mathrm{d}x.</math> | :<math>I = \int_0^1 \frac{1}{1+x} \, \mathrm{d}x.</math> | ||
सटीक परिणाम <math>I=\ln 2 \approx 0.69314718</math> है| इस समाकल को <math>f(U)</math> के प्रत्याशित मान के रूप में देखा जा सकता है, जहां | सटीक परिणाम <math>I=\ln 2 \approx 0.69314718</math> है| इस समाकल को <math>f(U)</math> के प्रत्याशित मान के रूप में देखा जा सकता है, जहां | ||
Line 29: | Line 29: | ||
और ''U'' [[एक समान बंटन|एकसमान बंटन]] [0, 1] का अनुसरण करते हैं। | और ''U'' [[एक समान बंटन|एकसमान बंटन]] [0, 1] का अनुसरण करते हैं। | ||
निम्न तालिका चिरप्रतिष्ठित मोंटे कार्लो | निम्न तालिका चिरप्रतिष्ठित मोंटे कार्लो आकलन (प्रतिदर्श आकार: 2n, जहां ''n'' = 1500) की तुलना एंटीथेटिक विचर आकलन (प्रतिदर्श आकार: n, रूपांतरित प्रतिदर्श ''1'' - ''ui'' के साथ पूर्ण) से करती है: | ||
:{| cellspacing="1" border="1" | :{| cellspacing="1" border="1" |
Revision as of 11:18, 13 July 2023
सांख्यिकी में, एंटीथेटिक विचर विधि मोंटे कार्लो विधियों में उपयोग की जाने वाली एक प्रसरण समानयन तकनीक है। यह ध्यान में रखते हुए कि अनुकारित संकेत (मोंटे कार्लो विधियों का उपयोग करके) में त्रुटि में एक से अधिक वर्गमूल अभिसरण हैं, सटीक परिणाम प्राप्त करने के लिए बहुत बड़ी संख्या में प्रतिदर्श पथों की आवश्यकता होती है। एंटीथेटिक विचर विधि अनुकार (सिमुलेशन) परिणामों के प्रसरण को कम करती है।[1][2]
अंतर्निहित सिद्धांत
एंटीथेटिक विचर तकनीक में प्राप्त प्रत्येक प्रतिदर्श पथ के लिए, इसके एंटीथेटिक पथ को लेने में सम्मिलित होता है - जिसे लेने के लिए एक पथ दिया जाता है। इस तकनीक का लाभ दोगुना है: यह N पथ उत्पन्न करने के लिए लिए जाने वाले प्रसामान्य प्रतिदर्शों की संख्या को कम करता है, और यह प्रतिदर्श पथों के प्रसरण को कम करता है, जिससे सटीकता में सुधार होता है।
मान लीजिए कि हम आकलन करना चाहेंगे
उसके लिए हमने दो प्रतिदर्श तैयार किए हैं
का एक निष्पक्ष अनुमान द्वारा दिया गया है
और
इसलिए यदि ऋणात्मक है तो प्रसरण कम हो जाता है।
उदाहरण 1
यदि चर X का नियम [0, 1] के साथ एक समान बंटन का पालन करता है, तो पहला प्रतिदर्श होगा, जहां, किसी दिए गए i के लिए, U(0, 1) से प्राप्त होता है। दूसरा प्रतिदर्श से बनाया गया है, जहां, किसी दिए गए i के लिए: | यदि समुच्चय [0, 1] के साथ एक समान है, तो भी एक समान है। इसके अलावा, सहप्रसरण ऋणात्मक है, जो प्रारंभिक प्रसरण में लघुकरण की अनुमति देता है।
उदाहरण 2: पूर्णांकीय परिकलन
हम आकलन करना चाहेंगे
सटीक परिणाम है| इस समाकल को के प्रत्याशित मान के रूप में देखा जा सकता है, जहां
और U एकसमान बंटन [0, 1] का अनुसरण करते हैं।
निम्न तालिका चिरप्रतिष्ठित मोंटे कार्लो आकलन (प्रतिदर्श आकार: 2n, जहां n = 1500) की तुलना एंटीथेटिक विचर आकलन (प्रतिदर्श आकार: n, रूपांतरित प्रतिदर्श 1 - ui के साथ पूर्ण) से करती है:
आकलन मानक विचलन चिरप्रतिष्ठित आकलन 0.69365 0.00255 एंटीथेटिक विचर 0.69399 0.00063
परिणाम का आकलन करने के लिए एंटीथेटिक विचर विधि का उपयोग एक महत्वपूर्ण प्रसरण में लघुकरण दर्शाता है।
यह भी देखें
संदर्भ
- ↑ Botev, Z.; Ridder, A. (2017). "विचरण में कमी". Wiley StatsRef: Statistics Reference Online: 1–6. doi:10.1002/9781118445112.stat07975. ISBN 9781118445112.
- ↑ Kroese, D. P.; Taimre, T.; Botev, Z. I. (2011). मोंटे कार्लो विधियों की पुस्तिका. John Wiley & Sons.(Chapter 9.3)