रेलटिव होमोलॉजी: Difference between revisions
Line 46: | Line 46: | ||
सीमित समरूपता का आसान उदाहरण शंकु के मूल में समष्टि के [[शंकु (टोपोलॉजी)|शंकु (सांस्थितिक)]] की सीमित समरूपता की गणना करना है। याद रखें कि शंकु को भागफल समष्टि के रूप में परिभाषित किया गया है | सीमित समरूपता का आसान उदाहरण शंकु के मूल में समष्टि के [[शंकु (टोपोलॉजी)|शंकु (सांस्थितिक)]] की सीमित समरूपता की गणना करना है। याद रखें कि शंकु को भागफल समष्टि के रूप में परिभाषित किया गया है | ||
:<math>CX = (X\times I)/(X\times\{0\}) ,</math> | :<math>CX = (X\times I)/(X\times\{0\}) ,</math> | ||
जहाँ <math>X \times \{0\}</math> उप-समष्टि सांस्थितिक है। फिर, उत्पत्ति <math>x_0 = 0</math> बिंदु का समतुल्य वर्ग है <math>[X\times 0]</math>। अंतर्ज्ञान का उपयोग करते हुए कि सीमित समरूपता समूह <math>H_{*,\{x_0\}}(CX)</math> का <math>CX</math> पर <math>x_0</math> की समरूपता को | जहाँ <math>X \times \{0\}</math> उप-समष्टि सांस्थितिक है। फिर, उत्पत्ति <math>x_0 = 0</math> बिंदु का समतुल्य वर्ग है <math>[X\times 0]</math>। अंतर्ज्ञान का उपयोग करते हुए कि सीमित समरूपता समूह <math>H_{*,\{x_0\}}(CX)</math> का <math>CX</math> पर <math>x_0</math> की समरूपता को <math>CX</math> अधिकृत है मूल के "निकट", हमें उम्मीद करनी चाहिए कि यह समरूपता है <math>H_*(X)</math> तब से <math>CX \setminus \{x_0\}</math> इसमें [[होमोटोपी वापस लेना|समरूपता तर्क]] <math>X</math> है, सीमित समरूपता की गणना समरूपता में लंबे सटीक अनुक्रम का उपयोग करके की जा सकती है | ||
:<math>\begin{align} | :<math>\begin{align} | ||
\to &H_n(CX\setminus \{x_0 \})\to H_n(CX) \to H_{n,\{x_{0}\}}(CX)\\ | \to &H_n(CX\setminus \{x_0 \})\to H_n(CX) \to H_{n,\{x_{0}\}}(CX)\\ | ||
Line 57: | Line 57: | ||
& \cong H_{n-1}(X), | & \cong H_{n-1}(X), | ||
\end{align}</math> | \end{align}</math> | ||
तब से <math>CX \setminus \{x_0\}</math> | तब से <math>CX \setminus \{x_0\}</math>, <math>X</math>के लिए अनुबंधीय है। | ||
==== [[बीजगणितीय ज्यामिति]] में ==== | ==== [[बीजगणितीय ज्यामिति]] में ==== | ||
ध्यान दें कि पिछले निर्माण को [[प्रक्षेप्य किस्म]] के [[शंकु (बीजगणितीय ज्यामिति)]] का उपयोग करके बीजगणितीय ज्यामिति में सिद्ध किया जा सकता है <math>X</math> सीमित | ध्यान दें कि पिछले निर्माण को [[प्रक्षेप्य किस्म]] के [[शंकु (बीजगणितीय ज्यामिति)]] का उपयोग करके बीजगणितीय ज्यामिति में सिद्ध किया जा सकता है <math>X</math> सीमित समरूपता का उपयोग करना है। | ||
=== | === निर्बाध विविधता पर बिंदु की सीमित समरूपता === | ||
सीमित समरूपता के लिए | सीमित समरूपता के लिए अन्य गणना विविध <math>M</math> एक बिंदु <math>p</math> पर की जा सकती है। तो फिर <math>K</math> का सघन पड़ोस <math>p</math> हो बंद डिस्क के लिए समरूपी <math>\mathbb{D}^n = \{ x \in \R^n : |x| \leq 1 \}</math> और मान लीजिये <math>U = M \setminus K</math> है। उच्छेदन प्रमेय का उपयोग करते हुए सापेक्ष समरूपता समूहों का समरूप है | ||
:<math>\begin{align} | :<math>\begin{align} | ||
H_n(M,M\setminus\{p\}) &\cong H_n(M\setminus U, M\setminus (U\cup \{p\})) \\ | H_n(M,M\setminus\{p\}) &\cong H_n(M\setminus U, M\setminus (U\cup \{p\})) \\ | ||
&= H_n(K, K\setminus\{p\}), | &= H_n(K, K\setminus\{p\}), | ||
\end{align}</math> | \end{align}</math> | ||
इसलिए एक बिंदु की सीमित समरूपता एक बंद गेंद | इसलिए एक बिंदु की सीमित समरूपता एक बंद गेंद <math>\mathbb{D}^n</math> में बिंदु की सीमित समरूपता में बदल जाती है। समरूप समतुल्यता के कारण | ||
:<math>\mathbb{D}^n \setminus \{0\} \simeq S^{n-1}</math> | :<math>\mathbb{D}^n \setminus \{0\} \simeq S^{n-1}</math> | ||
और तथ्य | और तथ्य | ||
Line 77: | Line 77: | ||
युग्म के लंबे सटीक अनुक्रम का एकमात्र गैर-तुच्छ हिस्सा <math>(\mathbb{D},\mathbb{D}\setminus\{0\})</math> है | युग्म के लंबे सटीक अनुक्रम का एकमात्र गैर-तुच्छ हिस्सा <math>(\mathbb{D},\mathbb{D}\setminus\{0\})</math> है | ||
:<math>0 \to H_{n,\{0\}}(\mathbb{D}^n) \to H_{n-1}(S^{n-1}) \to 0 ,</math> | :<math>0 \to H_{n,\{0\}}(\mathbb{D}^n) \to H_{n-1}(S^{n-1}) \to 0 ,</math> | ||
इसलिए एकमात्र गैर-शून्य सीमित समरूपता समूह | इसलिए एकमात्र गैर-शून्य सीमित समरूपता समूह <math>H_{n,\{0\}}(\mathbb{D}^n)</math> है। | ||
==कार्यात्मकता== | ==कार्यात्मकता== | ||
पूर्ण समरूपता की तरह, रिक्त समष्टि के बीच निरंतर मानचित्र सापेक्ष समरूपता समूहों के बीच समरूपता उत्पन्न करते हैं। वास्तव में, यह मानचित्र बिल्कुल समरूपता समूहों पर प्रेरित मानचित्र है, लेकिन यह भागफल तक अवरोह है। | पूर्ण समरूपता की तरह, रिक्त समष्टि के बीच निरंतर मानचित्र सापेक्ष समरूपता समूहों के बीच समरूपता उत्पन्न करते हैं। वास्तव में, यह मानचित्र बिल्कुल समरूपता समूहों पर प्रेरित मानचित्र है, लेकिन यह भागफल तक अवरोह है। | ||
मान लीजिये <math>(X,A)</math> और <math>(Y,B)</math> ऐसे रिक्त समष्टि के युग्म बनें <math>A\subseteq X</math> और <math>B\subseteq Y</math>, और मान लीजिये <math>f\colon X\to Y</math> सतत मानचित्र है। फिर प्रेरित मानचित्र<math>f_\#\colon C_n(X)\to C_n(Y)</math> (पूर्ण) श्रृंखला समूहों पर है। अगर <math>f(A)\subseteq B</math>, तब <math>f_\#(C_n(A))\subseteq C_n(B)</math>है। मान लीजिये | |||
<math>\begin{align} | <math>\begin{align} | ||
Line 88: | Line 88: | ||
\pi_Y&:C_n(Y)\longrightarrow C_n(Y)/C_n(B) \\ | \pi_Y&:C_n(Y)\longrightarrow C_n(Y)/C_n(B) \\ | ||
\end{align}</math> | \end{align}</math> | ||
[[File:The functoriality of relative homology.svg|frameकम|300x300पिक्सेल]]श्रृंखला मानचित्र समरूपता समूहों के बीच समरूपता उत्पन्न करते हैं, इसलिए <math>f</math> एक | [[भागफल समूह]] #गुण बनें जो तत्वों को भागफल समूहों में उनके समतुल्य वर्गों में ले जाते हैं। फिर मानचित्र <math>\pi_Y\circ f_\#\colon C_n(X)\to C_n(Y)/C_n(B)</math> एक समूह समरूपता है. तब से <math>f_\#(C_n(A))\subseteq C_n(B)=\ker\pi_Y</math>, यह मानचित्र भागफल तक अवरोह है, एक अच्छी तरह से परिभाषित मानचित्र को प्रेरित करता है <math>\varphi\colon C_n(X)/C_n(A)\to C_n(Y)/C_n(B)</math> ऐसा कि निम्नलिखित आरेख आवागमन करता है:<ref>{{Cite book|last1=Dummit|first1=David S.|title=सार बीजगणित|last2=Foote|first2=Richard M.|date=2004|publisher=Wiley|isbn=9780471452348|edition=3|location=Hoboken, NJ|oclc=248917264}}</ref> | ||
[[File:The functoriality of relative homology.svg|frameकम|300x300पिक्सेल]]श्रृंखला मानचित्र समरूपता समूहों के बीच समरूपता उत्पन्न करते हैं, इसलिए <math>f</math> एक मानचित्र प्रेरित करता है <math>f_*\colon H_n(X,A)\to H_n(Y,B)</math> सापेक्ष समरूपता समूहों पर.<ref name=":0" /> | |||
Revision as of 13:25, 13 July 2023
बीजगणितीय सांस्थितिक में, गणित की शाखा, उप-समष्टि के सापेक्ष सांस्थितिक समष्टि की (व्युत्क्रमणीय) समरूपता, सांस्थितिक युग्म के लिए व्युत्क्रमणीय समरूपता में निर्माण है। सापेक्ष समरूपता कई मायनों में उपयोगी और महत्वपूर्ण है। सहज रूप से, यह यह निर्धारित करने में मदद करता है कि पूर्ण समरूपता समूह का कौन सा भाग किस उप-समष्टि से आता है।
परिभाषा
उपसमष्टि दिया गया, कोई संक्षिप्त सटीक अनुक्रम बना सकता है
जहाँ समष्टि X पर व्युत्क्रमणीय श्रृंखलाओं को दर्शाता है। पर सीमा मानचित्र तक अवरोहa है और इसलिए भागफल पर सीमा मानचित्र उत्पन्न करता है। यदि हम इस भागफल को इससे निरूपित करें
, फिर हमारे पास सम्मिश्र है
परिभाषा के अनुसार,रिक्त समष्टि के युग्म का nवाँ सापेक्ष समरूपता समूह है
एक का कहना है कि सापेक्ष समरूपता सापेक्ष चक्रों द्वारा दी जाती है, श्रृंखलाएं जिनकी सीमाएं A पर श्रृंखलाएं होती हैं, सापेक्ष सीमाएं मॉड्यूलो (श्रृंखलाएं जो A पर श्रृंखला के अनुरूप होती हैं, यानी, श्रृंखलाएं जो सीमाएं होंगी , मॉड्यूलो Aफिर से)।[1]
गुण
सापेक्ष श्रृंखला समूहों को निर्दिष्ट करने वाले उपरोक्त संक्षिप्त सटीक अनुक्रम छोटे सटीक अनुक्रमों के श्रृंखला परिसर को उत्पन्न करती हैं। स्नेक लेम्मा के अनुप्रयोग से सटीक अनुक्रम प्राप्त होता है
संयोजक मानचित्र सापेक्ष चक्र लेता है, जो समरूपता वर्ग का प्रतिनिधित्व करता है , इसकी सीमा तक (जो A में चक्र है)।[2]
यह इस प्रकार है कि , जहाँ , X में बिंदु है, X का n-वाँ लघुकृत समरूपता समूह है। दूसरे शब्दों में, सभी के लिए , जब , जब , से श्रेणी कम का फ्री मॉड्यूल है। जुड़े हुए घटक युक्त सापेक्ष समरूपता में तुच्छ हो जाता है।
उच्छेदन प्रमेय कहता है कि पर्याप्त रूप से अच्छे उपसमुच्चय को हटाना सापेक्ष समरूपता समूहों अपरिवर्तित को छोड़ देता है। युग्म के लंबे सटीक अनुक्रम और उच्छेदन प्रमेय का उपयोग करके, कोई यह दिखा सकता है भागफल समष्टि के n-वें कम किए गए समरूपता समूहों के समान है।
सापेक्ष समरूपता आसानी से त्रिगुण तक फैली हुई है के लिए .
युग्म के लिए यूलर विशेषता को परिभाषित किया जा सकता है द्वारा
अनुक्रम की सटीकता का तात्पर्य है कि यूलर विशेषता योगात्मक है, अर्थात, यदि , किसी के पास
सीमित समरूपता
किसी समष्टि का -वां सीमित समरूपता समूह बिंदु पर , निरूपित
सापेक्ष समरूपता समूह के रूप में परिभाषित किया गया है अनौपचारिक रूप से, यह सीमित समरूपता है के करीब है।
मूल बिंदु पर शंकु CX की सीमित समरूपता
सीमित समरूपता का आसान उदाहरण शंकु के मूल में समष्टि के शंकु (सांस्थितिक) की सीमित समरूपता की गणना करना है। याद रखें कि शंकु को भागफल समष्टि के रूप में परिभाषित किया गया है
जहाँ उप-समष्टि सांस्थितिक है। फिर, उत्पत्ति बिंदु का समतुल्य वर्ग है । अंतर्ज्ञान का उपयोग करते हुए कि सीमित समरूपता समूह का पर की समरूपता को अधिकृत है मूल के "निकट", हमें उम्मीद करनी चाहिए कि यह समरूपता है तब से इसमें समरूपता तर्क है, सीमित समरूपता की गणना समरूपता में लंबे सटीक अनुक्रम का उपयोग करके की जा सकती है
क्योंकि किसी समष्टि का शंकु संकुचन योग्य समष्टि है, मध्य समरूपता समूह सभी शून्य हैं, जो समरूपता देते हैं
तब से , के लिए अनुबंधीय है।
बीजगणितीय ज्यामिति में
ध्यान दें कि पिछले निर्माण को प्रक्षेप्य किस्म के शंकु (बीजगणितीय ज्यामिति) का उपयोग करके बीजगणितीय ज्यामिति में सिद्ध किया जा सकता है सीमित समरूपता का उपयोग करना है।
निर्बाध विविधता पर बिंदु की सीमित समरूपता
सीमित समरूपता के लिए अन्य गणना विविध एक बिंदु पर की जा सकती है। तो फिर का सघन पड़ोस हो बंद डिस्क के लिए समरूपी और मान लीजिये है। उच्छेदन प्रमेय का उपयोग करते हुए सापेक्ष समरूपता समूहों का समरूप है
इसलिए एक बिंदु की सीमित समरूपता एक बंद गेंद में बिंदु की सीमित समरूपता में बदल जाती है। समरूप समतुल्यता के कारण
और तथ्य
युग्म के लंबे सटीक अनुक्रम का एकमात्र गैर-तुच्छ हिस्सा है
इसलिए एकमात्र गैर-शून्य सीमित समरूपता समूह है।
कार्यात्मकता
पूर्ण समरूपता की तरह, रिक्त समष्टि के बीच निरंतर मानचित्र सापेक्ष समरूपता समूहों के बीच समरूपता उत्पन्न करते हैं। वास्तव में, यह मानचित्र बिल्कुल समरूपता समूहों पर प्रेरित मानचित्र है, लेकिन यह भागफल तक अवरोह है।
मान लीजिये और ऐसे रिक्त समष्टि के युग्म बनें और , और मान लीजिये सतत मानचित्र है। फिर प्रेरित मानचित्र (पूर्ण) श्रृंखला समूहों पर है। अगर , तब है। मान लीजिये
भागफल समूह #गुण बनें जो तत्वों को भागफल समूहों में उनके समतुल्य वर्गों में ले जाते हैं। फिर मानचित्र एक समूह समरूपता है. तब से , यह मानचित्र भागफल तक अवरोह है, एक अच्छी तरह से परिभाषित मानचित्र को प्रेरित करता है ऐसा कि निम्नलिखित आरेख आवागमन करता है:[3]
श्रृंखला मानचित्र समरूपता समूहों के बीच समरूपता उत्पन्न करते हैं, इसलिए एक मानचित्र प्रेरित करता है सापेक्ष समरूपता समूहों पर.[2]
उदाहरण
सापेक्ष समरूपता का एक महत्वपूर्ण उपयोग भागफल स्थानों के समरूपता समूहों की गणना है . उस मामले में का एक उपसमष्टि है हल्की नियमितता की शर्त को पूरा करते हुए कि वहाँ एक पड़ोस मौजूद है कि है एक विरूपण के रूप में पीछे हटना, फिर समूह के लिए समरूपी है . हम किसी गोले की समरूपता की गणना करने के लिए इस तथ्य का तुरंत उपयोग कर सकते हैं। हम महसूस कर सकते हैं इसकी सीमा द्वारा एन-डिस्क के भागफल के रूप में, अर्थात। . सापेक्ष समरूपता के सटीक अनुक्रम को लागू करने से निम्नलिखित मिलता है:
क्योंकि डिस्क सिकुड़ने योग्य है, हम जानते हैं कि इसके कम किए गए समरूपता समूह सभी आयामों में गायब हो जाते हैं, इसलिए उपरोक्त अनुक्रम संक्षिप्त सटीक अनुक्रम में ढह जाता है:
इसलिए, हमें समरूपताएँ प्राप्त होती हैं . अब हम इसे दिखाने के लिए प्रेरण द्वारा आगे बढ़ सकते हैं . अब क्योंकि अपने आप में एक उपयुक्त पड़ोस का विरूपण प्रत्यावर्तन है , हमें वह मिल गया .
एक और व्यावहारिक ज्यामितीय उदाहरण सापेक्ष समरूपता द्वारा दिया गया है जहाँ . तब हम लंबे सटीक अनुक्रम का उपयोग कर सकते हैं
अनुक्रम की सटीकता का उपयोग करके हम इसे देख सकते हैं एक लूप शामिल है मूल के चारों ओर वामावर्त। के कोकर्नेल के बाद से सटीक क्रम में फिट बैठता है
यह समरूपी होना चाहिए . कोकर्नेल के लिए एक जनरेटर है -ज़ंजीर चूँकि इसका सीमा मानचित्र है
यह भी देखें
- उच्छेदन प्रमेय
- मेयर-विएटोरिस अनुक्रम
टिप्पणियाँ
संदर्भ
- "Relative homology groups". PlanetMath.
- Joseph J. Rotman, An Introduction to Algebraic Topology, Springer-Verlag, ISBN 0-387-96678-1
- Specific
- ↑ Hatcher, Allen (2002). बीजगणितीय टोपोलॉजी. Cambridge, UK: Cambridge University Press. ISBN 9780521795401. OCLC 45420394.
- ↑ 2.0 2.1 Hatcher, Allen (2002). बीजगणितीय टोपोलॉजी. Cambridge: Cambridge University Press. pp. 118–119. ISBN 9780521795401. OCLC 45420394.
- ↑ Dummit, David S.; Foote, Richard M. (2004). सार बीजगणित (3 ed.). Hoboken, NJ: Wiley. ISBN 9780471452348. OCLC 248917264.