{{Short description|Delays experienced through a linear time-invariant system}}
{{Short description|Delays experienced through a linear time-invariant system}}
संकेत प्रक्रमन में, समूह विलंब और चरण विलंब संकेत के विभिन्न आवृति घटकों द्वारा अनुभव किए जाने वाले विलंब समय मे होते हैं, जब संकेत एक ऐसी प्रणाली से गुजरता है जो रैखिक समय-अपरिवर्तनीय है, जैसे कि माइक्रोफ़ोन, समाक्षीय केबल, प्रवर्धक, लाउडस्पीकर, दूरसंचार सिस्टम या ईथरनेट केबल। ये विलंब सामान्यतः आवृत्ति पर निर्भर होते है।<ref name="RabinerGold1975" /> इसका मतलब है कि विभिन्न आवृत्ति घटक अलग-अलग विलंब का अनुभव करते हैं, जो संकेत के तरंग के विरूपण का कारण बनते हैं क्योंकि यह सिस्टम से गुजरता है। यह विकृति एनालॉग वीडियो और एनालॉग ऑडियो में खराब उच्च निष्ठा, या उपकरण बिट वर्ग में उच्च बिट-त्रुटि दर जैसी समस्याएं पैदा कर सकती है। मॉड्यूलेशन संकेत के लिए, संकेत बुद्धिमत्ता को विशेष रूप से तरंग अन्वालोप कर में ले जाया जाता है। समूह विलंब केवल अन्वालोप से प्राप्त आवृत्ति घटकों के साथ संचालित होता है।
संकेत संसाधन में, समूह विलंब और चरण विलंब संकेत के विभिन्न आवृति घटकों द्वारा अनुभव किए जाने वाले विलंब समय मे होते हैं, जब संकेत एक ऐसी प्रणाली से गुजरता है जो रैखिक समय-अपरिवर्तनीय है, जैसे कि माइक्रोफ़ोन, समाक्षीय केबल, प्रवर्धक, लाउडस्पीकर, दूरसंचार सिस्टम या ईथरनेट केबल। ये विलंब सामान्यतः आवृत्ति पर निर्भर होते है।<ref name="RabinerGold1975" /> इसका मतलब है कि विभिन्न आवृत्ति घटक अलग-अलग विलंब का अनुभव करते हैं, जो संकेत के तरंग के विरूपण का कारण बनते हैं क्योंकि यह सिस्टम से गुजरता है। यह विकृति एनालॉग वीडियो और एनालॉग ऑडियो में खराब उच्च विश्वस्तता या उपकरण बिट वर्ग में उच्च बिट-त्रुटि दर जैसी समस्याएं उत्पन्न कर सकती है। मॉड्यूलेशन संकेत के लिए, संकेत बुद्धिमत्ता को विशेष रूप से तरंग एनवेलप कर में ले जाया जाता है। समूह विलंब केवल एनवेलप से प्राप्त आवृत्ति घटकों के साथ संचालित होता है।
== परिचय ==
== परिचय ==
एक रैखिक समय-अपरिवर्तनीय प्रणाली के समूह विलंब और चरण विलंब गुण आवृत्ति के कार्य हैं, जो उस समय को देते हैं जब एक समय के संकेत के आवृत्ति घटक भौतिक मात्रा में भिन्न होते हैं-उदाहरण के लिए वोल्टेज संकेत- एलटीआई सिस्टम इनपुट पर उस समय दिखाई देता है जब उसी आवृत्ति घटक की एक प्रति पर प्रकट होता है -एक अलग भौतिक घटना-एलटीआई सिस्टम आउटपुट पर दिखाई देता है।
रैखिक समय-अपरिवर्तनीय प्रणाली के समूह विलंब और चरण विलंब गुण आवृत्ति के कार्य हैं, जो उस समय देते हैं जब किसी समय के संकेत के आवृत्ति घटक भौतिक मात्रा में भिन्न होते हैं-उदाहरण के लिए वोल्टेज संकेत- एलटीआई सिस्टम इनपुट पर उस समय दिखाई देता है जब उसी आवृत्ति घटक की एक प्रति पर प्रकट होता है -एक अलग भौतिक घटना-एलटीआई सिस्टम आउटपुट पर दिखाई देता है।
आवृत्ति के एक कार्य के रूप में एक भिन्न चरण प्रतिक्रिया, जिससे समूह विलंब और चरण विलंब की गणना की जा सकती है, सामान्यतः इक्रोफ़ोन, प्रवर्धक, लाउडस्पीकर, चुंबकीय रिकॉर्डर, हेडफ़ोन, समाक्षीय केबल और एंटीएलियासिंग फ़िल्टर जैसे उपकरणों में होती है।<ref name="Preis1982" /> संकेत के सभी आवृत्ति घटकों में विलंब हो जाती है जब ऐसे उपकरणों के माध्यम से पारित किया जाता है, या जब अंतरिक्ष या माध्यम से फैलता है, जैसे हवा या पानी।
आवृत्ति के एक कार्य के रूप में एक भिन्न चरण प्रतिक्रिया, जिससे समूह विलंब और चरण विलंब की गणना की जा सकती है, सामान्यतः इक्रोफ़ोन, प्रवर्धक, लाउडस्पीकर, चुंबकीय रिकॉर्डर, हेडफ़ोन, समाक्षीय केबल और एंटीएलियासिंग फ़िल्टर जैसे उपकरणों में होती है।<ref name="Preis1982" /> संकेत के सभी आवृत्ति घटकों में विलंब हो जाती है जब ऐसे उपकरणों के माध्यम से पारित किया जाता है, या जब अंतरिक्ष या माध्यम से फैलता है, जैसे हवा या पानी।
=== चरण विलंब ===
=== चरण विलंब ===
एक रैखिक समय-अपरिवर्तनीय प्रणाली या उपकरण में एक चरण प्रतिक्रिया संपत्ति और एक चरण विलंब संपत्ति होती है, जहां एक की गणना दूसरे से की जा सकती है। चरण विलंब सीधे व्यक्तिगत आवृत्ति घटकों के उपकरण या सिस्टम समय विलंब को मापता है।<ref name=Lathi2005/> यदि किसी निश्चित आवृत्ति पर चरण विलंब कार्य - ब्याज की आवृत्ति सीमा के भीतर - चयनित आवृत्ति पर चरण और स्वयं चयनित आवृत्ति के बीच आनुपातिकता का समान स्थिरांक होता है, तो सिस्टम/ उपकरण में एक फ्लैट चरण विलंब संपत्ति का आदर्श, a.k.a. रैखिक चरण होते है ।<ref name="RabinerGold1975" /> चूंकि चरण विलंब समय की विलंब देने वाली आवृत्ति का एक कार्य है, इसके फ़ंक्शन ग्राफ़ की समतलता से एक प्रस्थान विभिन्न संकेत के आवृति घटकों के बीच समय की विलंब के अंतर को प्रकट कर सकता है, जिस स्थिति में वे अंतर संकेत विरूपण में योगदान करेंगे, जो कि आउटपुट संकेत वेवफॉर्म शेप के रूप में प्रकट होता है जो इनपुट संकेत से अलग होता है। यदि उपकरण इनपुट एक मॉड्यूलेशन संकेत है, तो चरण विलंब संपत्ति सामान्य रूप से उपयोगी जानकारी नहीं देती है। उसके लिए समूह विलंब का उपयोग करना चाहिए।
एक रैखिक समय-अपरिवर्तनीय प्रणाली या उपकरण में एक चरण प्रतिक्रिया सामग्री और एक चरण विलंब सामग्री होती है, जहां एक की गणना दूसरे से की जा सकती है। चरण विलंब सीधे व्यक्तिगत आवृत्ति घटकों के उपकरण या सिस्टम समय विलंब को मापता है।<ref name=Lathi2005/> यदि किसी निश्चित आवृत्ति पर चरण विलंब कार्य-ब्याज की आवृत्ति सीमा के भीतर - चयनित आवृत्ति पर चरण और स्वयं चयनित आवृत्ति के बीच आनुपातिकता का समान स्थिरांक होता है, तो सिस्टम/ उपकरण में एक फ्लैट चरण विलंब सामग्री का आदर्श, a.k.a. रैखिक चरण होते है ।<ref name="RabinerGold1975" /> चूंकि चरण विलंब समय की विलंब देने वाली आवृत्ति का एक कार्य है, इसके फ़ंक्शन ग्राफ़ की समतलता से एक प्रस्थान विभिन्न संकेत के आवृति घटकों के बीच समय की विलंब के अंतर को प्रकट कर सकता है, जिस स्थिति में वे अंतर संकेत विरूपण में योगदान करेंगे, जो कि आउटपुट संकेत वेवफॉर्म शेप के रूप में प्रकट होता है जो इनपुट संकेत से अलग होता है। यदि उपकरण इनपुट एक मॉड्यूलेशन संकेत है, तो चरण विलंब सामग्री सामान्य रूप से उपयोगी जानकारी नहीं देती है। उसके लिए समूह विलंब का उपयोग करना चाहिए।
=== समूह विलंब ===
=== समूह विलंब ===
Line 19:
Line 19:
उपकरण के समूह विलंब की गणना उपकरण की चरण प्रतिक्रिया से की जा सकती है, लेकिन इसके विपरीत नहीं।
उपकरण के समूह विलंब की गणना उपकरण की चरण प्रतिक्रिया से की जा सकती है, लेकिन इसके विपरीत नहीं।
समूह विलंब के लिए सबसे सरल उपयोग मामला चित्र 1 में दिखाया गया है जो एक वैचारिक मॉडुलन प्रणाली को दर्शाता है, जो स्वयं एक बेसबैंड आउटपुट के साथ एक एलटीआई प्रणाली है जो आदर्श रूप से बेसबैंड संकेत इनपुट की एक सटीक प्रति है। समग्र रूप से इस प्रणाली को यहां बाहरी एलटीआई उपकरण के रूप में संदर्भित किया जाता है, जिसमें एक आंतरिक (लाल ब्लॉक) एलटीआई उपकरण होता है। जैसा कि अक्सर एक रेडियो सिस्टम के मामले में होता है, चित्र 1 में आंतरिक लाल एलटीआई सिस्टम कैस्केड में दो एलटीआई सिस्टम का प्रतिनिधित्व कर सकता है, उदाहरण के लिए एक प्रवर्धक भेजने वाले अंत में एक संचारण एंटीना और दूसरा एंटीना और प्रवर्धक प्राप्त करने के अंत में होता है।
समूह विलंब के लिए सबसे सरल उपयोग मामला चित्र 1 में दिखाया गया है जो एक वैचारिक मॉडुलन प्रणाली को दर्शाता है, जो स्वयं एक बेसबैंड आउटपुट के साथ एक एलटीआई प्रणाली है जो आदर्श रूप से बेसबैंड संकेत इनपुट की एक सुनिश्चित प्रति है। समग्र रूप से इस प्रणाली को यहां बाहरी एलटीआई उपकरण के रूप में संदर्भित किया जाता है, जिसमें एक आंतरिक (लाल ब्लॉक) एलटीआई उपकरण होता है। जैसा कि अक्सर एक रेडियो सिस्टम के मामले में होता है, चित्र 1 में आंतरिक लाल एलटीआई सिस्टम कैस्केड में दो एलटीआई सिस्टम का प्रतिनिधित्व कर सकता है, उदाहरण के लिए एक प्रवर्धक भेजने वाले अंत में एक संचारण एंटीना और दूसरा एंटीना और प्रवर्धक प्राप्त करने के अंत में होता है।
==== आयाम मॉडुलन मापीय ====
==== आयाम मॉडुलन मापीय ====
Line 27:
Line 27:
==== कोण मॉडुलन ====
==== कोण मॉडुलन ====
कोण -मॉड्यूलेशन सिस्टम में - जैसे आवृति मॉड्यूलेशन (एफएम) या फ़ेज़ मॉड्यूलेशन के साथ -एलटीआई सिस्टम इनपुट पर लागू (एफएम या पीएम) पासबैंड संकेत का विश्लेषण दो अलग-अलग पासबैंड संकेत के रूप में किया जा सकता है, एक इन-फ़ेज़ ( I) आयाम मॉडुलन पासबैंड संकेत और एक चतुर्भुज-चरण (क्यू) आयाम मॉड्यूलेशन पासबैंड संकेत, जहां उनका योग वास्तव में मूल कोण-मॉड्यूलेशन (एफएम या पीएम) पासबैंड संकेत का पुनर्निर्माण करता है। जबकि (एफएम/पीएम) पासबैंड संकेत आयाम मॉडुलन नहीं है, और इसलिए कोई स्पष्ट बाहरी लिफाफा नहीं है, आई और क्यू पासबैंड संकेत में वास्तव में आयाम मॉड्यूलेशन अन्वालोप हैं। (हालांकि, नियमित आयाम मॉडुलन के विपरीत, I और क्यू बेसबैंड संकेत के तरंग आकार के समान नहीं होते हैं, भले ही बेसबैंड संकेत का 100 प्रतिशत उनके अन्वालोप द्वारा जटिल तरीके से दर्शाया जाता है।) इसलिए, प्रत्येक के लिए I और क्यू पासबैंड संकेत, एक फ्लैट समूह विलंब सुनिश्चित करता है कि न तो I पास बैंड लिफाफा और न ही क्यू पासबैंड अन्वालोप में तरंग आकार विकृति होगी, इसलिए जब I पासबैंड संकेत और क्यू पासबैंड संकेत को एक साथ वापस जोड़ा जाता है, तो योग मूल है एफएम/पीएम पासबैंड संकेत, जिसे भी बदला नहीं जाएगा।
कोण -मॉड्यूलेशन सिस्टम में - जैसे आवृति मॉड्यूलेशन (एफएम) या फ़ेज़ मॉड्यूलेशन के साथ -एलटीआई सिस्टम इनपुट पर लागू (एफएम या पीएम) पासबैंड संकेत का विश्लेषण दो अलग-अलग पासबैंड संकेत के रूप में किया जा सकता है, एक इन-फ़ेज़ ( I) आयाम मॉडुलन पासबैंड संकेत और एक चतुर्भुज-चरण (क्यू) आयाम मॉड्यूलेशन पासबैंड संकेत, जहां उनका योग वास्तव में मूल कोण-मॉड्यूलेशन (एफएम या पीएम) पासबैंड संकेत का पुनर्निर्माण करता है। जबकि (एफएम/पीएम) पासबैंड संकेत आयाम मॉडुलन नहीं है, और इसलिए कोई स्पष्ट बाहरी लिफाफा नहीं है, आई और क्यू पासबैंड संकेत में वास्तव में आयाम मॉड्यूलेशन एनवेलप हैं। (हालांकि, नियमित आयाम मॉडुलन के विपरीत, I और क्यू बेसबैंड संकेत के तरंग आकार के समान नहीं होते हैं, भले ही बेसबैंड संकेत का 100 प्रतिशत उनके एनवेलप द्वारा जटिल तरीके से दर्शाया जाता है।) इसलिए, प्रत्येक के लिए I और क्यू पासबैंड संकेत, एक फ्लैट समूह विलंब सुनिश्चित करता है कि न तो I पास बैंड लिफाफा और न ही क्यू पासबैंड एनवेलप में तरंग आकार विकृति होगी, इसलिए जब I पासबैंड संकेत और क्यू पासबैंड संकेत को एक साथ वापस जोड़ा जाता है, तो योग मूल है एफएम/पीएम पासबैंड संकेत, जिसे भी बदला नहीं जाएगा।
== पृष्ठभूमि ==
== पृष्ठभूमि ==
=== संकेत के आवृति घटक<स्पैन क्लास= एंकर आईडी= फ़्रिक्वेंसी घटक > ===
एक आवधिक संकेत के लिए, एक आवृत्ति घटक गुणों के साथ एक साइन वक्र होता है जिसमें समय-आधारित आवृत्ति और चरण शामिल होते हैं।
एक आवधिक संकेत के लिए, एक आवृत्ति घटक गुणों के साथ एक साइन वक्र होता है जिसमें समय-आधारित आवृत्ति और चरण शामिल होते हैं।
==== एक मूल साइन वक्र उत्पन्न करना ====
==== एक मूल साइन वक्र उत्पन्न करना ====
साइन वक्र, समय आधारित आवृत्ति संपत्ति के साथ या बिना, एक सर्कल द्वारा उत्पन्न होता है जैसा कि चित्र में दिखाया गया है। इस उदाहरण में, साइन वक्र एक साइन वेव है जिसे का उपयोग करके पता लगाया जाता है <math>\sin</math> त्रिकोणमितीय समारोह।
साइन वक्र, समय आधारित आवृत्ति सामग्री के साथ या बिना, एक सर्कल द्वारा उत्पन्न होता है जैसा कि चित्र में दिखाया गया है। इस उदाहरण में, साइन वक्र एक साइन वेव है जिसे का उपयोग करके पता लगाया जाता है <math>\sin</math> त्रिकोणमितीय समारोह।
[[File:Generating_a_Sine.png|एक सर्कल से साइनसॉइड का पता लगाना: <math>y=\sin(x)</math>. इस उदाहरण में, <math>\sin</math> त्रिकोणमितीय फ़ंक्शन का उपयोग किया जाता है। साइनसॉइड और यूनिट सर्कल दोनों के लिए, आश्रित आउटपुट चर <math>y</math> ऊर्ध्वाधर अक्ष पर है। केवल साइनसॉइड के लिए, डिग्री में कोण स्वतंत्र इनपुट चर है <math>x</math> क्षैतिज अक्ष पर। केवल यूनिट सर्कल के लिए, डिग्री में कोण स्वतंत्र इनपुट मान है <math>x</math>, क्षैतिज अक्ष और लाल वेक्टर के बीच बने आरेख में वास्तविक कोण के रूप में दर्शाया गया है, वर्तमान में छवि में शून्य डिग्री पर है, लेकिन किसी भी कोण पर हो सकता है|अंगूठे|480x480px]]
[[File:Generating_a_Sine.png|एक सर्कल से साइनसॉइड का पता लगाना: <math>y=\sin(x)</math>. इस उदाहरण में, <math>\sin</math> त्रिकोणमितीय फ़ंक्शन का उपयोग किया जाता है। साइनसॉइड और यूनिट सर्कल दोनों के लिए, आश्रित आउटपुट चर <math>y</math> ऊर्ध्वाधर अक्ष पर है। केवल साइनसॉइड के लिए, डिग्री में कोण स्वतंत्र इनपुट चर है <math>x</math> क्षैतिज अक्ष पर। केवल यूनिट सर्कल के लिए, डिग्री में कोण स्वतंत्र इनपुट मान है <math>x</math>, क्षैतिज अक्ष और लाल वेक्टर के बीच बने आरेख में वास्तविक कोण के रूप में दर्शाया गया है, वर्तमान में छवि में शून्य डिग्री पर है, लेकिन किसी भी कोण पर हो सकता है|अंगूठे|480x480px]]
Line 97:
Line 95:
== ऑडियो में समूह विलंब ==
== ऑडियो में समूह विलंब ==
ऑडियो क्षेत्र में और विशेष रूप से ध्वनि प्रजनन क्षेत्र में समूह विलंब का कुछ महत्व है।<ref name=PlompSteeneken1969/><ref name=Ashley1980/>एक ऑडियो प्रजनन श्रृंखला के कई घटक, विशेष रूप से लाउडस्पीकर और मल्टीवे लाउडस्पीकर ऑडियो क्रॉसओवर, ऑडियो संकेत में समूह विलंब का परिचय देते हैं।<ref name=Preis1982/><ref name=Ashley1980/>इसलिए आवृत्ति के संबंध में समूह विलंब की श्रव्यता की सीमा जानना महत्वपूर्ण है,<ref name=Moller1975/><ref name=Liski2018/><ref name=Liski2021/>विशेष रूप से यदि ऑडियो श्रृंखला उच्च निष्ठा प्रजनन प्रदान करने वाली हो। श्रव्यता तालिका की सर्वोत्तम सीमाएँ Blauert and Laws द्वारा प्रदान की गई हैं।<ref name="BlauertLaws1978"/>
ऑडियो क्षेत्र में और विशेष रूप से ध्वनि प्रजनन क्षेत्र में समूह विलंब का कुछ महत्व है।<ref name=PlompSteeneken1969/><ref name=Ashley1980/>एक ऑडियो प्रजनन श्रृंखला के कई घटक, विशेष रूप से लाउडस्पीकर और मल्टीवे लाउडस्पीकर ऑडियो क्रॉसओवर, ऑडियो संकेत में समूह विलंब का परिचय देते हैं।<ref name=Preis1982/><ref name=Ashley1980/>इसलिए आवृत्ति के संबंध में समूह विलंब की श्रव्यता की सीमा जानना महत्वपूर्ण है,<ref name=Moller1975/><ref name=Liski2018/><ref name=Liski2021/>विशेष रूप से यदि ऑडियो श्रृंखला उच्च विश्वस्तता प्रजनन प्रदान करने वाली हो। श्रव्यता तालिका की सर्वोत्तम सीमाएँ Blauert and Laws द्वारा प्रदान की गई हैं।<ref name="BlauertLaws1978"/>
{| class="wikitable" style=text-align:center
{| class="wikitable" style=text-align:center
Line 191:
Line 189:
}}
}}
==इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची==
*रैखिक फिल्टर
*मूर्ति प्रोद्योगिकी
*करणीय
*खास समय
*संकेत (इलेक्ट्रॉनिक्स)
*लगातार कश्मीर फिल्टर
*चरण विलंब
*एम-व्युत्पन्न फ़िल्टर
*स्थानांतरण प्रकार्य
*बहुपदीय फलन
*लो पास फिल्टर
*अंतःप्रतीक हस्तक्षेप
*फ़िल्टर (प्रकाशिकी)
*युग्मित उपकरण को चार्ज करें
*गांठदार तत्व
*पतली फिल्म थोक ध्वनिक गुंजयमान यंत्र
*लोहा
*परमाणु घड़ी
*फुरियर रूपांतरण
*लहर (फ़िल्टर)
*कार्तीय समन्वय प्रणाली
*अंक शास्त्र
*यूक्लिडियन स्पेस
*मामला
*ब्रम्हांड
*कद
*द्वि-आयामी अंतरिक्ष
*निर्देशांक तरीका
*अदिश (गणित)
*शास्त्रीय हैमिल्टनियन quaternions
*quaternions
*पार उत्पाद
*उत्पत्ति (गणित)
*दो प्रतिच्छेद रेखाएँ
*तिरछी रेखाएं
*समानांतर पंक्ति
*रेखीय समीकरण
*समानांतर चतुर्भुज
*वृत्त
*शंकु खंड
*विकृति (गणित)
*निर्देशांक वेक्टर
*लीनियर अलजेब्रा
*सीधा
*भौतिक विज्ञान
*लेट बीजगणित
*एक क्षेत्र पर बीजगणित
*जोड़नेवाला
*समाकृतिकता
*कार्तीय गुणन
*अंदरूनी प्रोडक्ट
*आइंस्टीन योग सम्मेलन
*इकाई वेक्टर
*टुकड़े-टुकड़े चिकना
*द्विभाजित
*आंशिक व्युत्पन्न
*आयतन तत्व
*समारोह (गणित)
*रेखा समाकलन का मौलिक प्रमेय
*खंड अनुसार
*सौम्य सतह
*फ़ानो विमान
*प्रक्षेप्य स्थान
*प्रक्षेप्य ज्यामिति
*चार आयामी अंतरिक्ष
*विद्युत प्रवाह
*उच्च लाभ एंटीना
*सर्वदिशात्मक एंटीना
*गामा किरणें
*विद्युत संकेत
*वाहक लहर
*आयाम अधिमिश्रण
*चैनल क्षमता
*आर्थिक अच्छा
*आधार - सामग्री संकोचन
*शोर उन्मुक्ति
*कॉल चिह्न
*शिशु की देखरेख करने वाला
*आईएसएम बैंड
*लंबी लहर
*एफएम प्रसारण
*सत्य के प्रति निष्ठा
*जमीनी लहर
*कम आवृत्ति
*श्रव्य विकृति
*वह-एएसी
*एमपीईजी-4
*संशोधित असतत कोसाइन परिवर्तन
*भू-स्थिर
*प्रत्यक्ष प्रसारण उपग्रह टेलीविजन
*माध्यमिक आवृत्ति
*परमाणु घड़ी
*बीपीसी (समय संकेत)
*फुल डुप्लेक्स
*बिट प्रति सेकंड
*पहला प्रतिसादकर्ता
*हवाई गलियारा
*नागरिक बंद
*विविधता स्वागत
*शून्य (रेडियो)
*बिजली का मीटर
*जमीन (बिजली)
*हवाई अड्डे की निगरानी रडार
*altimeter
*समुद्री रडार
*देशान्तर
*तोपखाने का खोल
*बचाव बीकन का संकेत देने वाली आपातकालीन स्थिति
*अंतर्राष्ट्रीय कॉस्पास-सरसैट कार्यक्रम
*संरक्षण जीवविज्ञान
*हवाई आलोक चित्र विद्या
*गैराज का दरवाज़ा
*मुख्य जेब
*अंतरिक्ष-विज्ञान
*ध्वनि-विज्ञान
*निरंतर संकेत
*मिड-रेंज स्पीकर
*फ़िल्टर (संकेत प्रोसेसिंग)
*उष्ण ऊर्जा
*विद्युतीय प्रतिरोध
*लंबी लाइन (दूरसंचार)
*इलास्टेंस
*गूंज
*ध्वनिक प्रतिध्वनि
*प्रत्यावर्ती धारा
*आवृत्ति विभाजन बहुसंकेतन
*छवि फ़िल्टर
*वाहक लहर
*ऊष्मा समीकरण
*प्रतिक दर
*विद्युत चालकता
*आवृति का उतार - चढ़ाव
*निरंतर कश्मीर फिल्टर
*जटिल विमान
*फासर (साइन वेव्स)
*पोर्ट (सर्किट सिद्धांत)
*लग्रांगियन यांत्रिकी
*जाल विश्लेषण
*पॉइसन इंटीग्रल
*affine परिवर्तन
*तर्कसंगत कार्य
*शोर अनुपात का संकेत
*मिलान फ़िल्टर
*रैखिक-द्विघात-गाऊसी नियंत्रण
*राज्य स्थान (नियंत्रण)
*ऑपरेशनल एंप्लीफायर
*एलटीआई प्रणाली सिद्धांत
*विशिष्ट एकीकृत परिपथ आवेदन
*सतत समय
*एंटी - एलियासिंग फ़िल्टर
*भाजक
*निश्चित बिंदु अंकगणित
*फ्लोटिंग-पॉइंट अंकगणित
*डिजिटल बाइकैड फ़िल्टर
*अनुकूली फिल्टर
*अध्यारोपण सिद्धांत
*कदम की प्रतिक्रिया
*राज्य स्थान (नियंत्रण)
*नियंत्रण प्रणाली
*वोल्टेज नियंत्रित थरथरानवाला
*कंपंडोर
*नमूना और पकड़
*संगणक
*अनेक संभावनाओं में से चुनी हूई प्रक्रिया
*प्रायिकता वितरण
*वर्तमान परिपथ
*गूंज रद्दीकरण
*सुविधा निकासी
*छवि उन्नीतकरण
*एक प्रकार की प्रोग्रामिंग की पर्त
*ओ एस आई मॉडल
*समानता (संचार)
*आंकड़ा अधिग्रहण
*रूपांतरण सिद्धांत
*लीनियर अलजेब्रा
*स्टचास्तिक प्रोसेसेज़
*संभावना
*गैर-स्थानीय साधन
*घटना (सिंक्रनाइज़ेशन आदिम)
*एंटीलोक ब्रेक
*उद्यम प्रणाली
*सुरक्षा-महत्वपूर्ण प्रणाली
*डेटा सामान्य
*आर टी -11
*डंब टर्मिनल
*समय बताना
*सेब II
*जल्द से जल्द समय सीमा पहले शेड्यूलिंग
*अनुकूली विभाजन अनुसूचक
*वीडियो गेम कंसोल की चौथी पीढ़ी
*वीडियो गेम कंसोल की तीसरी पीढ़ी
*नमूनाकरण दर
*अंकगणित औसत
*उच्च प्रदर्शन कंप्यूटिंग
*भयावह विफलता
*हुड विधि
*प्रणाली विश्लेषण
*समय अपरिवर्तनीय
*औद्योगिक नियंत्रण प्रणाली
*निर्देशयोग्य तर्क नियंत्रक
*प्रक्रिया अभियंता)
*नियंत्रण पाश
*संयंत्र (नियंत्रण सिद्धांत)
*क्रूज नियंत्रण
*अनुक्रमिक कार्य चार्ट
*नकारात्मक प्रतिपुष्टि
*अन्देंप्त
*नियंत्रण वॉल्व
*पीआईडी नियंत्रक
*यौगिक
*फिल्टर (संकेत प्रोसेसिंग)
*वितरित कोटा पद्धति
*महाकाव्यों
*डूप गति नियंत्रण
*हवाई जहाज
*संक्षिप्त और प्रारंभिकवाद
*मोटर गाड़ी
*संयुक्त राज्य नौसेना
*निर्देशित मिसाइलें
*भूभाग-निम्नलिखित रडार
*अवरक्त किरणे
*प्रेसिजन-निर्देशित युद्धपोत
*विमान भेदी युद्ध
*शाही रूसी नौसेना
*हस्तक्षेप हरा
*सेंट पीटर्सबर्ग
*योण क्षेत्र
*आकाशीय बिजली
*द्वितीय विश्वयुद्ध
*संयुक्त राज्य सेना
*डेथ रे
*पर्ल हार्बर पर हमला
*ओबाउ (नेविगेशन)
*जमीन नियंत्रित दृष्टिकोण
*भूविज्ञानी
*आंधी तूफान
*मौसम पूर्वानुमान
*बहुत बुरा मौसम
*सर्दियों का तूफान
*संकेत पहचान
*बिखरने
*इलेक्ट्रिकल कंडक्टीविटी
*पराबैगनी प्रकाश
*खालीपन
*भूसा (प्रतिमाप)
*पारद्युतिक स्थिरांक
*विद्युत चुम्बकीय विकिरण
*विद्युतीय प्रतिरोध
*प्रतिचुम्बकत्व
*बहुपथ प्रसार
*तरंग दैर्ध्य
*अर्ध-सक्रिय रडार होमिंग
*Nyquist आवृत्ति
*ध्रुवीकरण (लहरें)
*अपवर्तक सूचकांक
*नाड़ी पुनरावृत्ति आवृत्ति
*शोर मचाने वाला फ़र्श
*प्रकाश गूंज
*रेत का तूफान
*स्वत: नियंत्रण प्राप्त करें
*जय स्पाइक
*घबराना
*आयनमंडलीय परावर्तन
*वायुमंडलीय वाहिनी
*व्युत्क्रम वर्ग नियम
*इलेक्ट्रानिक युद्ध
*उड़ान का समय
*प्रकाश कि गति
*पूर्व चेतावनी रडार
*रफ़्तार
*निरंतर-लहर रडार
*स्पेकट्रूम विशेष्यग्य
*रेंज अस्पष्टता संकल्प
*मिलान फ़िल्टर
*रोटेशन
*चरणबद्ध व्यूह रचना
*मैमथ राडार
*निगरानी करना
*स्क्रीन
*पतला सरणी अभिशाप
*हवाई रडार प्रणाली
*परिमाणक्रम
*इंस्टीट्यूट ऑफ़ इलेक्ट्रिकल एंड इलेक्ट्रॉनिक्स इंजीनियर्स
*क्षितिज राडार के ऊपर
*पल्स बनाने वाला नेटवर्क
*अमेरिका में प्रदूषण की रोकथाम
*आईटी रेडियो विनियम
*रडार संकेत विशेषताएं
*हैस (रडार)
*एवियोनिक्स में एक्रोनिम्स और संक्षिप्ताक्षर
*समय की इकाई
*गुणात्मक प्रतिलोम
*रोशनी
*दिल की आवाज
*हिलाना
*सरल आवर्त गति
*नहीं (पत्र)
*एसआई व्युत्पन्न इकाई
*इंटरनेशनल इलेक्ट्रोटेक्नीकल कमीशन
*प्रति मिनट धूर्णन
*हवा की लहर
*एक समारोह का तर्क
*चरण (लहरें)
*आयामहीन मात्रा
*असतत समय संकेत
*विशेष मामला
*मध्यम (प्रकाशिकी)
*कोई भी त्रुटि
*ध्वनि की तरंग
*दृश्यमान प्रतिबिम्ब
*लय
*सुनवाई की दहलीज
*प्रजातियाँ
*मुख्य विधुत
*नाबालिग तीसरा
*माप की इकाइयां
*आवधिकता (बहुविकल्पी)
*परिमाण के आदेश (आवृत्ति)
*वर्णक्रमीय घटक
*रैखिक समय-अपरिवर्तनीय प्रणाली
*असतत समय फिल्टर
*ऑटोरेग्रेसिव मॉडल
*डिजिटल डाटा
*डिजिटल विलंब लाइन
*बीआईबीओ स्थिरता
*फोरियर श्रेणी
*दोषी
*दशमलव (संकेत प्रोसेसिंग)
*असतत फूरियर रूपांतरण
*एफआईआर ट्रांसफर फंक्शन
*3डी परीक्षण मॉडल
*ब्लेंडर (सॉफ्टवेयर)
*वैज्ञानिक दृश्य
*प्रतिपादन (कंप्यूटर ग्राफिक्स)
*विज्ञापन देना
*चलचित्र
*अनुभूति
*निहित सतह
*विमानन
*भूतपूर्व छात्र
*छिपी सतह निर्धारण
*अंतरिक्ष आक्रमणकारी
*लकीर खींचने की क्रिया
*एनएमओएस तर्क
*उच्च संकल्प
*एमओएस मेमोरी
*पूरक राज्य मंत्री
*नक्षत्र-भवन
*वैश्विक चमक
*मैकिंटोश कंप्यूटर
*प्रथम व्यक्ति शूटर
*साधारण मानचित्रण
*हिमयुग (2002 फ़िल्म)
*मेडागास्कर (2005 फ़िल्म)
*बायोइनफॉरमैटिक्स
*शारीरिक रूप से आधारित प्रतिपादन
*हीरे की थाली
*प्रतिबिंब (कंप्यूटर ग्राफिक्स)
*2010 की एनिमेटेड फीचर फिल्मों की सूची
*परिवेशी बाधा
*वास्तविक समय (मीडिया)
*जानकारी
*कंकाल एनिमेशन
*भीड़ अनुकरण
*प्रक्रियात्मक एनिमेशन
*अणु प्रणाली
*कैमरा
*माइक्रोस्कोप
*इंजीनियरिंग के चित्र
*रेखापुंज छवि
*नक्शा
*हार्डवेयर एक्सिलरेशन
*अंधेरा
*गैर-समान तर्कसंगत बी-तख़्ता
*नक्शा टक्कर
*चुम्बकीय अनुनाद इमेजिंग
*नमूनाकरण (संकेत प्रोसेसिंग)
*sculpting
*आधुनिक कला का संग्रहालय
*गेम डेवलपर्स कांफ्रेंस
*शैक्षिक
*आपूर्ती बंद करने की आवृत्ति
*प्रतिक्रिया (इलेक्ट्रॉनिक्स)
*अण्डाकार फिल्टर
*सीरिज़ सर्किट)
*मिलान जेड-ट्रांसफॉर्म विधि
*कंघी फ़िल्टर
*समूह विलंब
*सप्टक
*दूसरों से अलग
*लो पास फिल्टर
*निर्देश प्रति सेकंड
*अंकगणित अतिप्रवाह
*चरण (लहरें)
*हस्तक्षेप (लहर प्रसार)
*बीट (ध्वनिक)
*अण्डाकार तर्कसंगत कार्य
*जैकोबी अण्डाकार कार्य
*क्यू कारक
*यूनिट सर्कल
*फी (पत्र)
*सुनहरा अनुपात
*मोनोटोनिक
*Immittance
*ऑप एंप
*आवेग invariance
*बेसेल फ़ंक्शन
*जटिल सन्युग्म
*संकेत प्रतिबिंब
*विद्युतीय ऊर्जा
*इनपुट उपस्थिति
*एकदिश धारा
*जटिल संख्या
*भार प्रतिबाधा
*विद्युतचुंबकीय व्यवधान
*बिजली की आपूर्ति
*आम-कैथोड
*अवमन्दन कारक
*ध्वनिरोधन
*गूंज (घटना)
*फ्रेस्नेल समीकरण
*रोड़ी
*लोडिंग कॉइल
*आर एस होयतो
*लोड हो रहा है कॉइल
*चेबीशेव बहुपद
*एक बंदरगाह
*सकारात्मक-वास्तविक कार्य
*आपूर्ती बंद करने की आवृत्ति
*उच्च मार्ग
*रैखिक फ़िल्टर
*प्रतिक दर
*घेरा
*नॉन-रिटर्न-टू-जीरो
*अनियमित चर
*संघ बाध्य
*एकाधिक आवृत्ति-शिफ्ट कुंजीयन
*COMPARATOR
*द्विआधारी जोड़
*असंबद्ध संचरण
*त्रुटि समारोह
*आपसी जानकारी
*बिखरा हुआ1
*डिजिटल मॉडुलन
*डिमॉड्युलेटर
*कंघा
*खड़ी तरंगें
*नमूना दर
*प्रक्षेप
*ऑडियो संकेत प्रोसेसिंग
*खगोल-कंघी
*खास समय
*पोल (जटिल विश्लेषण)
*दुर्लभ
*आरसी सर्किट
*अवरोध
*स्थिर समय
*एक घोड़ा
*पुनरावृत्ति संबंध
*निष्क्रिय फिल्टर
*श्रव्य सीमा
*मिक्सिंग कंसोल
*एसी कपलिंग
*क्यूएससी ऑडियो
*संकट
*दूसरों से अलग
*डीएसएल मॉडम
*फाइबर ऑप्टिक संचार
*व्यावर्तित जोड़ी
*बातचीत का माध्यम
*समाक्षीय तार
*लंबी दूरी का टेलीफोन कनेक्शन
*डाउनस्ट्रीम (कंप्यूटर विज्ञान)
*आवृत्ति द्वैध
*आवृत्ति प्रतिक्रिया
*आकड़ों की योग्यता
*परीक्षण के अंतर्गत उपकरण
*कंघी फिल्टर
*निष्क्रियता (इंजीनियरिंग)
*लाभ (इलेक्ट्रॉनिक्स)
*कोने की आवृत्ति
*फील्ड इफ़ेक्ट ट्रांजिस्टर
*कम आवृत्ति दोलन
*एकीकृत परिपथ
*निरंतर-प्रतिरोध नेटवर्क
*यूनिट सर्कल
*अधिकतम प्रयोग करने योग्य आवृत्ति
*विशेषता समीकरण (कलन)
*लहर संख्या
*वेवगाइड (प्रकाशिकी)
*लाप्लासियान
*वेवनंबर
*अपवर्तन तरंग
*एकतरफा बहुपद
*एकपदी की डिग्री
*एक बहुपद का क्रम (बहुविकल्पी)
*रैखिक प्रकार्य
*कामुक समीकरण
*चतुर्थक कार्य
*क्रमसूचक अंक
*त्रिनाम
*इंटीग्रल डोमेन
*सदिश स्थल
*फील्ड (गणित)
*सेट (गणित)
*अंगूठी (गणित)
*पूर्णांक मॉड्यूल n
*लोगारित्म
*घातांक प्रकार्य
*एल्गोरिदम का विश्लेषण
*बीजगणित का मौलिक प्रमेय
*डिजिटल डाटा
*प्रारंभ करनेवाला
*ध्वनि दाब स्तर
*साधारण सेल
*निरंतर संकेत
*व्यावर्तित जोड़ी
*आवृत्ति स्पेक्ट्रम
*जुड़वां सीसा
*नेटवर्क विश्लेषण (विद्युत सर्किट)
*सैटेलाइट टेलीविज़न
*एक बहुपद की घात
*क्यू कारक
*निविष्टी की हानि
*खड़ी लहर
*गांठदार घटक
*गांठदार तत्व मॉडल
*विरोधी गूंज
*वितरित तत्व फ़िल्टर
*मिटटी तेल
*बहुपथ हस्तक्षेप
*पहली पीढ़ी का कंप्यूटर
*ऊर्जा परिवर्तन
*उपकरण को मापना
*ऊर्जा का रूप
*repeatability
*प्रतिक्रिया (इंजीनियरिंग)
*बिजली का शोर
*संचार प्रणाली
*चुंबकीय कारतूस
*स्पर्श संवेदक
*ध्वनि परावर्तन
*उज्ज्वल दीपक
*द्वितीय विश्व युद्ध के दौरान प्रौद्योगिकी
*शोर (इलेक्ट्रॉनिक्स)
*फिल्टर सिद्धांत
*डिप्लेक्सर
*हार्मोनिक विकृति
*आस्पेक्ट अनुपात
*लॉर्ड रेले
*हंस बेथे
*संतुलित जोड़ी
*असंतुलित रेखा
*भिन्नात्मक बैंडविड्थ
*स्वतंत्रता की डिग्री (भौतिकी और रसायन विज्ञान)
*विलंब बराबरी
*अधिष्ठापन
*लाइनों के संचालन पर संकेतों का प्रतिबिंब
*परावर्तन गुणांक
*कसने वाला नट
*कम तापमान सह-निकाल दिया सिरेमिक
*हवाई जहाज
*परावैद्युतांक
*ऊष्मीय चालकता
*वैफ़ल आयरन
*नकारात्मक प्रतिरोध प्रवर्धक
*आधार मिलान
*इस्पात मिश्र धातु
*लाउडस्पीकर बाड़े
*ताकत
*दोहरी प्रतिबाधा
*गांठदार-तत्व मॉडल
*गैरपेशेवर रेडियो
*भंवर धारा
*चीनी मिट्टी
*विद्युत यांत्रिक युग्मन गुणांक
*भाग प्रति अरब
*आपसी अधिष्ठापन
*शिखर से शिखर तक
*वारैक्टर
*पीस (अपघर्षक काटने)
*स्पंदित लेजर बयान
*ध्रुव (जटिल विश्लेषण)
*कम उत्तीर्ण
*ऑपरेशनल एंप्लीफायर
*YIG क्षेत्र
*अनुरूप संकेत
*सभा की भाषा
*घुमाव
*निश्चित बिंदु अंकगणित
*डेटा पथ
*पता पीढ़ी इकाई
*बुंदाडा इटाकुरा
*मोशन वेक्टर
*SE444
*गति मुआवजा
*भाषा संकलन
*पीएमओएस तर्क
*तंग पाश
*अंकगणितीय तर्क इकाई
*ट्राईमीडिया (मीडिया प्रोसेसर)
*कृत्रिम होशियारी
*एक चिप पर सिस्टम
*पुनर्निर्माण फिल्टर
*नमूनाकरण (संकेत प्रोसेसिंग)
*तेजी से अनुमानित एंटी-अलियासिंग
*नमूनाचयन आवृत्ति
*डिजीटल
*फ़िल्टर बैंक
*स्थानीय थरथरानवाला
*सुपरहेटरोडाइन रिसीवर
*यव (रोटेशन)
*चूरा लहर
*पीजोइलेक्ट्रिक सामग्री की सूची
*स्कैनिंग जांच माइक्रोस्कोपी
*पिकअप (संगीत प्रौद्योगिकी)
*विद्युतीय संभाव्यता
*टोपाज़
*पहला विश्व युद्ध
*गूंज (घटना)
*गन्ना की चीनी
*वेक्टर क्षेत्र
*चार्ज का घनत्व
*खिसकाना
*वोइगट नोटेशन
*मैडेलुंग स्थिरांक
*लिथियम टैंटलेट
*पीतल
*काल्कोजन
*ध्रुवीय अर्धचालकों में गैर रेखीय पीजोइलेक्ट्रिक प्रभाव
*पैरीलीन
*फोजी
*संपर्क माइक्रोफ़ोन
*गैर विनाशकारी परीक्षण
*उठाओ (संगीत प्रौद्योगिकी)
*स्कैनिंग टनलिंग माइक्रोस्कोप
*रॉबर्ट बॉश GmbH
*चुम्बकीय अनुनाद इमेजिंग
*सार्वजनिक रेल
*गुहिकायन
*उच्च तीव्रता केंद्रित अल्ट्रासाउंड
*थरथरानवाला
*घड़ी की नाड़ी
*टकराव
*तार की रस्सी
*अत्यंत सहनशक्ति
*उपज (इंजीनियरिंग)
*लोहे के अपरूप
*समुंद्री जहाज
*क्रिस्टल लैटिस
*हथियार, शस्त्र
*आधारभूत संरचना
*रॉकेट्स
*अस्थिभंग बेरहमी
*एनीलिंग (धातु विज्ञान)
*तड़के (धातु विज्ञान)
*औजार
*ग्रीनहाउस गैस का उत्सर्जन
*बोरान
*अलॉय स्टील
*ताँबा
*नरम लोहा
*क्रस्ट (भूविज्ञान)
*लकड़ी का कोयला
*धातु थकान
*निष्क्रियता (रसायन विज्ञान)
*उच्च गति स्टील
*प्रमुख
*कमरे का तापमान
*शरीर केंद्रित घन
*चेहरा केंद्रित घन
*अनाज सीमाएं
*तलछट
*शरीर केंद्रित चतुष्कोणीय
*अपरूपण तनाव
*काम सख्त
*शारीरिक संपीड़न
*अनाज के आकार में वृद्धि
*वसूली (धातु विज्ञान)
*उष्मा उपचार
*निरंतर ढलाई
*इनगट
*कास्टिंग (धातु का काम)
*हॉट रोलिंग
*इबेरिआ का प्रायद्वीप
*श्री लंका
*युद्धरत राज्यों की अवधि
*हान साम्राज्य
*क्लासिकल एंटिक्विटी
*Tissamaharama तमिल ब्राह्मी शिलालेख
*चेरा डायनेस्टी
*पैगोपोलिस के ज़ोसिमोस
*तत्व का पता लगाएं
*कम कार्बन अर्थव्यवस्था
*गीत राजवंश
*फाइनरी फोर्ज
*तुलसी ब्रुक (धातुकर्मी)
*मामले को मजबूत बनाना
*लौह अयस्क
*खुली चूल्हा भट्टी
*उत्थान और पतन
*इस्पात उत्पादकों की सूची
*कम मिश्र धातु स्टील
*एचएसएलए स्टील
*दोहरे चरण स्टील
*हॉट डिप गल्वनाइजिंग
*तेजी से सख्त होना
*बढ़ने की योग्यता
*जिंदगी के जबड़े
*नाखून (इंजीनियरिंग)
*हाथ - या
*खुदाई
*लुढ़का सजातीय कवच
*सफेद वस्तुओं
*इस्पात की पतली तारें
*छुरा
*ओवरहेड पावर लाइन
*घड़ी
*परमाणु हथियार परीक्षण
*मशीन की
*ताप विस्तार प्रसार गुणांक
*नकारात्मक प्रतिपुष्टि
*गर्म करने वाला तत्व
*घड़ी
*कैल्शियम मानक
*अरेखीय प्रकाशिकी
*धरती
*मणि पत्थर
*मोह पैमाने की कठोरता
*खरोंच कठोरता
*पूर्व मध्य जर्मन
*मध्य उच्च जर्मन
*प्राचीन यूनानी
*पारदर्शिता और पारदर्शिता
*सकल (भूविज्ञान)
*कैल्सेडनी
*सुलेमानी पत्थर
*बिल्लौर
*बैंगनी रंग)
*नीला रंग)
*खनिज कठोरता का मोह पैमाना
*क्षुद्रग्रह (रत्न विज्ञान)
*मैंने
*एराइड आइलैंड
*सेशल्स
*तलछटी पत्थर
*रूपांतरित चट्टान
*धरती
*परिपक्वता (तलछट विज्ञान)
*नस (भूविज्ञान)
*सेमीकंडक्टर
*बटन लगाना
*पत्थर का औजार
*पाषाण प्रौद्योगिकी
*आयरलैंड का गणराज्य
*पूर्व-कोलंबियाई युग
*पियर्स थरथरानवाला
*पतली फिल्म मोटाई मॉनिटर
*ट्यूनेड सर्किट
*पेंडुलम क्लॉक
*बेल लेबोरेटरीज
*ट्यूनिंग कांटा
*एलसी थरथरानवाला
*सामरिक सामग्री
*एचिंग
*सतह ध्वनिक तरंग
*समावेशन (खनिज)
*जिंक आक्साइड
*नव युवक
*गैस निकालना
*शॉक (यांत्रिकी)
*जी बल
*रासायनिक चमकाने
*प्रति-चुंबकीय
*रैंडम संख्या जनरेटर
*दिमाग
*कंपन
*विवेक
*लोंगिट्युडिनल वेव
*डायाफ्राम (ध्वनिकी)
*प्रतिबिंब (भौतिकी)
*श्यानता
*वस्तुस्थिति
*विरल करना
*समतल लहर
*ध्वनि का दबाव
*ध्वनि तीव्रता
*रुद्धोष्म प्रक्रिया
*आपेक्षिक यूलर समीकरण
*वर्गमूल औसत का वर्ग
*वर्गमूल औसत का वर्ग
*जवाबदेही
*आवृत्तियों
*बर्ड वोकलिज़ेशन
*समुद्री स्तनधारियों
*सस्तन प्राणी
*हीड्रास्फीयर
*प्रबलता
*शिकार
*भाषण संचार
*श्वेत रव
*ध्वनिरोधन
*सोनार
*रॉयल सोसाइटी के फेलो
*रडार अनुसंधान प्रतिष्ठान
*रॉयल संकेत और रडार स्थापना
*रेले तरंगें
*एचएफई वंशानुगत हेमोक्रोमैटोसिस
*लौह अधिभार
*ध्वनिकी संस्थान (यूनाइटेड किंगडम)
*गैबर मेडल
*हाइब्रिड इंटीग्रेटेड सर्किट
*खास समय
*समय क्षेत्र
*मैक्सिम इंटीग्रेटेड प्रोडक्ट्स
*प्यार की तरंगे
*लोंगिट्युडिनल वेव
*देखा फिल्टर
*एलसी फिल्टर
*सतह ध्वनिक तरंग सेंसर
*टॉर्कः
*चरण बंद लूप
*भूकंप का झटका
*फोनोन
*qubit
*स्पिन वेव
*क्वांटम जानकारी
*ध्वनिक-विद्युत प्रभाव
*बहाव का वेग
*जेट (द्रव)
*मिश्रण (प्रक्रिया इंजीनियरिंग)
*छोटी बूंद आधारित माइक्रोफ्लुइडिक्स
*अर्ध-लहर द्विध्रुव
*सकारात्मक आरोप
*प्रेरित तत्व
*विकिरण स्वरुप
*विद्युतचुम्बकीय तरंगें
*लॉग-आवधिक एंटीना
*चरणबद्ध व्यूह रचना
*चुंबकीय पाश एंटीना
*काउंटरपोइज़ (ग्राउंड सिस्टम)
*जमीन (बिजली)
*तांबे का नुकसान
*फोकस (प्रकाशिकी)
*गैरपेशेवर रेडियो
*दिशिकता
*लाभ (विद्युत चुम्बकीय)
*कम शोर प्रवर्धक
*शून्य (रेडियो)
*चरणबद्ध
*वोर्सिगट एंटीना
*फील्ड की छमता
*प्रतिबाधा मैच
*लाइन-ऑफ़-विज़न प्रसार
*दाहिने हाथ का नियम
*विशिष्टता (तकनीकी मानक)
*आकाश की लहर
*परावर्तक प्रतिबिंब
*व्युत्क्रम वर्ग नियम
*ऊर्जा घटक
*एंटीना प्रकार
*लौहचुंबकीय
*स्थिर हरा
*रेखा की चौडाई
*YIG फ़िल्टर
*प्रकाश तरंगदैर्घ्य
*solenoid
*इन्सुलेटर (बिजली)
*चुंबकीय क्षेत्र
*गति देनेवाला
*पार्टिकल एक्सेलेटर
*प्रेरण ऊष्मन
*चुंबकीय ताला
*एम्पीयर-टर्न
*अरेखीय
*सीमित तत्व विधि
*remanence
*चुंबकीय परिपथ
*टेस्ला (इकाई)
*चुम्बकीय भेद्यता
*वयर्थ ऊष्मा
*एकदिश धारा
*इलेक्ट्रिक आर्क
*चुंबकीय क्षेत्र रेखाएं
*फाड़ना
*भंवर धारा
*हिस्टैरिसीस हानि
*क्षेत्र रेखा
*प्रत्यारोपण (यांत्रिक प्रक्रिया)
*पदार्थ विज्ञान
*परमाणु क्रमांक
*आइसोटोप
*श्वसन संबंधी रोग
*तत्व का पता लगाएं
*Ytterby
*वैद्युतीयऋणात्मकता
*समूह 3 तत्व
*भाप
*संयोजकता (रसायन विज्ञान)
*यट्रियम (III) ऑक्साइड
*घुलनशीलता
*यट्रियम (III) फ्लोराइड
*यट्रियम (III) क्लोराइड
*ऑर्गेनोयट्रियम केमिस्ट्री
*ट्रिमराइज़ेशन
*सौर प्रणाली
*न्यूट्रॉन कैप्चर
*मीरा
*परमाणु कचरा
*हाफ लाइफ
*निम्नतम अवस्था
*समावयवी संक्रमण
*जोहान गैडोलिन
*पृथ्वी (रसायन विज्ञान)
*येट्रियम बेरियम कॉपर ऑक्साइड
*ज़ेनोटाइम
*भाग प्रति दस लाख
*स्तन का दूध
*पत्ता गोभी
*परमाणु भार
*माउंटेन पास रेयर अर्थ माइन
*येट्रियम फ्लोराइड
*सीआरटी टेलीविजन
*यत्रियम आयरन गार्नेट
*हीरा
*दोपंत
*थर्मल विस्तार
*नस
*मेरुदण्ड
*रूमेटाइड गठिया
*वाईबीसीओ
*बिजली के वाहन
*रंग
*फुफ्फुसीय शोथ
*व्यावसायिक सुरक्षा और स्वास्थ्य प्रसाशन
*अनुशंसित जोखिम सीमा
*अनाज की सीमा
*क्रिस्टलोग्राफी
*क्रिस्टलोग्राफिक दोष
*एनिस्ट्रोपिक
*अपवित्रता
*पुन: क्रिस्टलीकरण (रसायन विज्ञान)
*किरोपोलोस विधि
*वर्न्यूइल विधि
*तरल चरण एपिटॉक्सी
*फील्ड इफ़ेक्ट ट्रांजिस्टर
*राष्ट्रीय प्रज्वलन सुविधा
*अतिसंतृप्ति
*इलेक्ट्रिकल कंडक्टीविटी
*इंटरनेशनल एनील्ड कॉपर स्टैंडर्ड
*भूतल विज्ञान
*संघनित पदार्थ भौतिकी
*हीलियम परमाणु प्रकीर्णन
*क्रिस्टल की संरचना
*कम ऊर्जा इलेक्ट्रॉन विवर्तन
*कोण-समाधानित प्रकाश उत्सर्जन स्पेक्ट्रोस्कोपी
*आंशिक क्रिस्टलीकरण (रसायन विज्ञान)
*अलकाली धातु
*सीज़ियम-133
*नापाक
*दूसरा
*रेडियोआइसोटोप
*उत्सर्जन चित्र
*लचीलापन
*चमक (खनिज)
*प्रकाश द्वारा सहज प्रभावित
*दाढ़ एकाग्रता
*क्षारीय धातु
*कटियन
*ऋणायन
*अरहेनियस बेस
*काल्कोजन
*लुईस बेस
*सीज़ियम फ्लोराइड
*आदिम कोशिका
*जन अंक
*नाभिकीय चुबकीय अनुनाद
*परमाणु समावयवी
*विखंडन उत्पाद उपज
*खर्च किया गया परमाणु ईंधन
*आयोडीन के समस्थानिक
*पृथ्वी का वातावरण
*परमाणु नतीजा
*भाग प्रति दस लाख
*फिटकिरी
*निक्षालन (धातु विज्ञान)
*शुद्ध पानी
*एल्कलाइन अर्थ मेटल
*परमाण्विक भार
*माध्यमिक आयन मास स्पेक्ट्रोमेट्री
*तौल और माप पर सामान्य सम्मेलन
*निष्कर्षण तेल उद्योग
*पूर्णता (तेल और गैस के कुएं)
*डिफरेंशियल सेंट्रीफ्यूजेशन
*ऑर्गेनेल
*कार्बनिक रसायन शास्त्र
*विकिरण उपचार
*सीज़ियम के समस्थानिक
*भड़कना (आतिशबाजी)
*मिरगी
*फेशबैक प्रतिध्वनि
*क्वांटम तकनीक
*हृदय गति रुकना
*ऑटो ज्वलन ताप
*बीओस्फिअ
*अंतरराष्ट्रीय परमाणु ऊर्जा एजेंसी
*गंदा बम
*मेपल के पेड़ दुर्घटना
*बिल्लौर
*रोशनी
*चमक (खनिज)
*सुसंगतता (भौतिकी)
*पराग
*समलौत जिला
*उत्तर मैसेडोनिया गणराज्य
*उत्तरी केरोलिना
*दोपंत
*धारियाँ
*नियामक माप मशीन
*प्राकृतिक इतिहास का राष्ट्रीय संग्रहालय
*प्रेरित उत्सर्जन
*ईसा पूर्व
*उत्तर सिल्क रोड
*पुराना वसीयतनामा
*नीतिवचन की किताब
*पलायन की किताब
*रवि
*एनीओलाइट
*चौगुनी आयन जाल
*संगति (भौतिकी)
*भौतिकी में नोबेल पुरस्कार
*कोलम्बिया विश्वविद्यालय
*कानाफूसी-गैलरी लहर
*पेंटासीन
*भौतिक विज्ञान की ठोस अवस्था
*राष्ट्रीय भौतिक प्रयोगशाला (यूनाइटेड किंगडम)
*पी-टेरफिनाइल
*कृत्रिम हीरा
*अंतरिक्ष यान
*मंगल ग्रह
*जनसंख्या का ह्रास
*चरण बंद लूप
*कट्टरपंथी (रसायन विज्ञान)
*विद्युत चुम्बकीय वर्णक्रम
*सितारा
*सक्रिय गांगेय नाभिक
*दृश्य प्रकाश
*उपनाम (सीजन 3)
*काइजु
*उपनाम (टीवी श्रृंखला)
*गुणक
*मीटर
*शून्य समारोह
*फ़ंक्शन का डोमेन
*कम शर्तें
*समाशोधन भाजक
*एक बीजीय किस्म की डिग्री
*मूल्य (गणित)
*निरंतर कार्य
*समान शब्द
*पुनरावृत्ति संबंध
*स्थायी अवधि
*आंशिक अंश
*जियोमीट्रिक श्रंखला
*निर्माण कार्य
*अद्वितीय गुणनखंड डोमेन
*अपरिवर्तनीय अंश
*सार बीजगणित
*समन्वय की अंगूठी
*एक बीजीय किस्म का कार्य क्षेत्र
*कंप्यूटर बीजगणित प्रणाली
*फूरियर से संबंधित परिवर्तनों की सूची
*आवधिक दृढ़ संकल्प
*असतत-समय फूरियर रूपांतरण
*पल पैदा करने वाला कार्य
*समारोह (गणित)
*लाप्लास ट्रांसफॉर्म
*अनुकूली फिल्टर
*गतिशील प्रणाली
*मॉडल (समष्टि अर्थशास्त्र)
*रोज़गार
*बहिर्जात और अंतर्जात चर
*कुल घटक उत्पादकता
*उत्पादन प्रकार्य
*पूर्व बनाया
*ऑटो सहसंबंध
*पार सहसंबंध
*संचालन (गणित)
*हर्मिटियन एडजॉइंट
*संभावना
*कंप्यूटर दृष्टी
*आंकड़े
*विभेदक समीकरण
*बीजीय संरचना
*पूर्णांकों
*उलटा काम करना
*उलटा लाप्लास परिवर्तन
*आवधिक योग
*सर्कुलर कनवल्शन
*गुणा
*लेबेस्ग इंटीग्रल
*तेजी से घट रहा कार्य
*बोरेल उपाय
*सीमित भिन्नता
*सूचक समारोह
*साहचर्य बीजगणित
*संबद्धता
*गुणक पहचान
*उलटा तत्व
*जेड को बदलने
*मध्य परिवर्तन
*डीएफटी मैट्रिक्स
*रैखिक ऑपरेटर
*समय अपरिवर्तनीय प्रणाली
*टोपोलॉजिकल ग्रुप
*उसका उपाय
*यूनिमॉड्यूलर समूह
*मंडली समूह
*चरित्र (गणित)
*एकात्मक प्रतिनिधित्व
*गुणन संकारक
*आगे की ओर उपाय
*समूह कार्रवाई (गणित)
*एंडोमोर्फिज्म बीजगणित
*विश्लेषणात्मक रसायनशास्त्र
*सामान्य गति
*वोइगट फंक्शन
*रैखिक प्रणाली
*बड़ी एड़ी सिमुलेशन
*वर्णक्रमीय रेखा आकार
*कम्प्यूटेशनल तरल सक्रिय
*स्वतंत्र (संभाव्यता)
*सिद्धांत संभावना
*बिखरने वाले मीडिया में ऑप्टिकल ब्रॉड-बीम प्रतिक्रियाओं के लिए दृढ़ संकल्प
संकेत संसाधन में, समूह विलंब और चरण विलंब संकेत के विभिन्न आवृति घटकों द्वारा अनुभव किए जाने वाले विलंब समय मे होते हैं, जब संकेत एक ऐसी प्रणाली से गुजरता है जो रैखिक समय-अपरिवर्तनीय है, जैसे कि माइक्रोफ़ोन, समाक्षीय केबल, प्रवर्धक, लाउडस्पीकर, दूरसंचार सिस्टम या ईथरनेट केबल। ये विलंब सामान्यतः आवृत्ति पर निर्भर होते है।[1] इसका मतलब है कि विभिन्न आवृत्ति घटक अलग-अलग विलंब का अनुभव करते हैं, जो संकेत के तरंग के विरूपण का कारण बनते हैं क्योंकि यह सिस्टम से गुजरता है। यह विकृति एनालॉग वीडियो और एनालॉग ऑडियो में खराब उच्च विश्वस्तता या उपकरण बिट वर्ग में उच्च बिट-त्रुटि दर जैसी समस्याएं उत्पन्न कर सकती है। मॉड्यूलेशन संकेत के लिए, संकेत बुद्धिमत्ता को विशेष रूप से तरंग एनवेलप कर में ले जाया जाता है। समूह विलंब केवल एनवेलप से प्राप्त आवृत्ति घटकों के साथ संचालित होता है।
रैखिक समय-अपरिवर्तनीय प्रणाली के समूह विलंब और चरण विलंब गुण आवृत्ति के कार्य हैं, जो उस समय देते हैं जब किसी समय के संकेत के आवृत्ति घटक भौतिक मात्रा में भिन्न होते हैं-उदाहरण के लिए वोल्टेज संकेत- एलटीआई सिस्टम इनपुट पर उस समय दिखाई देता है जब उसी आवृत्ति घटक की एक प्रति पर प्रकट होता है -एक अलग भौतिक घटना-एलटीआई सिस्टम आउटपुट पर दिखाई देता है।
आवृत्ति के एक कार्य के रूप में एक भिन्न चरण प्रतिक्रिया, जिससे समूह विलंब और चरण विलंब की गणना की जा सकती है, सामान्यतः इक्रोफ़ोन, प्रवर्धक, लाउडस्पीकर, चुंबकीय रिकॉर्डर, हेडफ़ोन, समाक्षीय केबल और एंटीएलियासिंग फ़िल्टर जैसे उपकरणों में होती है।[2] संकेत के सभी आवृत्ति घटकों में विलंब हो जाती है जब ऐसे उपकरणों के माध्यम से पारित किया जाता है, या जब अंतरिक्ष या माध्यम से फैलता है, जैसे हवा या पानी।
चरण विलंब
एक रैखिक समय-अपरिवर्तनीय प्रणाली या उपकरण में एक चरण प्रतिक्रिया सामग्री और एक चरण विलंब सामग्री होती है, जहां एक की गणना दूसरे से की जा सकती है। चरण विलंब सीधे व्यक्तिगत आवृत्ति घटकों के उपकरण या सिस्टम समय विलंब को मापता है।[3] यदि किसी निश्चित आवृत्ति पर चरण विलंब कार्य-ब्याज की आवृत्ति सीमा के भीतर - चयनित आवृत्ति पर चरण और स्वयं चयनित आवृत्ति के बीच आनुपातिकता का समान स्थिरांक होता है, तो सिस्टम/ उपकरण में एक फ्लैट चरण विलंब सामग्री का आदर्श, a.k.a. रैखिक चरण होते है ।[1] चूंकि चरण विलंब समय की विलंब देने वाली आवृत्ति का एक कार्य है, इसके फ़ंक्शन ग्राफ़ की समतलता से एक प्रस्थान विभिन्न संकेत के आवृति घटकों के बीच समय की विलंब के अंतर को प्रकट कर सकता है, जिस स्थिति में वे अंतर संकेत विरूपण में योगदान करेंगे, जो कि आउटपुट संकेत वेवफॉर्म शेप के रूप में प्रकट होता है जो इनपुट संकेत से अलग होता है। यदि उपकरण इनपुट एक मॉड्यूलेशन संकेत है, तो चरण विलंब सामग्री सामान्य रूप से उपयोगी जानकारी नहीं देती है। उसके लिए समूह विलंब का उपयोग करना चाहिए।
समूह विलंब
चित्र 1: बाहरी और आंतरिक एलटीआई उपकरण
समूह विलंब एक मॉडुलन प्रणाली में आवृत्ति के संबंध में चरण की रैखिकता का एक सुविधाजनक उपाय है।[4][5]
बुनियादी मॉडुलन प्रणाली
उपकरण के समूह विलंब की गणना उपकरण की चरण प्रतिक्रिया से की जा सकती है, लेकिन इसके विपरीत नहीं।
समूह विलंब के लिए सबसे सरल उपयोग मामला चित्र 1 में दिखाया गया है जो एक वैचारिक मॉडुलन प्रणाली को दर्शाता है, जो स्वयं एक बेसबैंड आउटपुट के साथ एक एलटीआई प्रणाली है जो आदर्श रूप से बेसबैंड संकेत इनपुट की एक सुनिश्चित प्रति है। समग्र रूप से इस प्रणाली को यहां बाहरी एलटीआई उपकरण के रूप में संदर्भित किया जाता है, जिसमें एक आंतरिक (लाल ब्लॉक) एलटीआई उपकरण होता है। जैसा कि अक्सर एक रेडियो सिस्टम के मामले में होता है, चित्र 1 में आंतरिक लाल एलटीआई सिस्टम कैस्केड में दो एलटीआई सिस्टम का प्रतिनिधित्व कर सकता है, उदाहरण के लिए एक प्रवर्धक भेजने वाले अंत में एक संचारण एंटीना और दूसरा एंटीना और प्रवर्धक प्राप्त करने के अंत में होता है।
आयाम मॉडुलन मापीय
विपुलता मॉड्यूलेशन बेसबैंड आवृति घटकों को बहुत अधिक आवृति रेंज में स्थानांतरित करके पासबैंड संकेत बनाता है। हालांकि आवृत्तियां अलग-अलग हैं, पासबैंड संकेत बेसबैंड संकेत के समान ही जानकारी रखता है। डेमोडुलेटर उलटा करता है, पासबैंड आवृत्तियों को मूल बेसबैंड आवृत्ति रेंज में वापस स्थानांतरित कर देता है। आदर्श रूप से, आउटपुट संकेत, इनपुट संकेत का एक समय विलंबित संस्करण है जहां आउटपुट का तरंग आकार इनपुट के समान होता है।
चित्र 1 में, बाहरी सिस्टम चरण विलंब सार्थक प्रदर्शन मापीय है। आयाम मॉडुलन के लिए, आंतरिक लाल एलटीआई उपकरण समूह विलंब बाहरी एलटीआई उपकरण चरण विलंब बन जाता है। यदि आंतरिक लाल उपकरण समूह विलंब ब्याज की आवृत्ति रेंज में पूरी तरह से चपटी होती है, तो बाहरी उपकरण में एक चरण विलंब का आदर्श होगा, जहां बाहरी एलटीआई उपकरण के चरण प्रतिक्रिया के कारण विरूपण का योगदान-पूरी तरह से निर्धारित होता है आंतरिक उपकरण की संभावित रूप से भिन्न चरण प्रतिक्रिया द्वारा-समाप्त हो जाती है। उस स्थिति में, आंतरिक लाल उपकरण की समूह विलंब और बाहरी उपकरण की चरण विलंब बेसबैंड इनपुट से बेसबैंड आउटपुट तक संकेत के लिए एक ही समय विलंब का आंकड़ा देती है। यह ध्यान रखना महत्वपूर्ण है कि आंतरिक लाल उपकरण के लिए बहुत गैर-फ्लैट चरण विलंब (लेकिन फ्लैट समूह विलंब) होना संभव है, जबकि बाहरी उपकरण में पूरी तरह से फ्लैट चरण विलंब का आदर्श होता है। यह सौभाग्य की बात है क्योंकि एलटीआई उपकरण डिजाइन में, फ्लैट चरण विलंब की तुलना में एक फ्लैट समूह विलंब प्राप्त करना आसान होता है।
कोण मॉडुलन
कोण -मॉड्यूलेशन सिस्टम में - जैसे आवृति मॉड्यूलेशन (एफएम) या फ़ेज़ मॉड्यूलेशन के साथ -एलटीआई सिस्टम इनपुट पर लागू (एफएम या पीएम) पासबैंड संकेत का विश्लेषण दो अलग-अलग पासबैंड संकेत के रूप में किया जा सकता है, एक इन-फ़ेज़ ( I) आयाम मॉडुलन पासबैंड संकेत और एक चतुर्भुज-चरण (क्यू) आयाम मॉड्यूलेशन पासबैंड संकेत, जहां उनका योग वास्तव में मूल कोण-मॉड्यूलेशन (एफएम या पीएम) पासबैंड संकेत का पुनर्निर्माण करता है। जबकि (एफएम/पीएम) पासबैंड संकेत आयाम मॉडुलन नहीं है, और इसलिए कोई स्पष्ट बाहरी लिफाफा नहीं है, आई और क्यू पासबैंड संकेत में वास्तव में आयाम मॉड्यूलेशन एनवेलप हैं। (हालांकि, नियमित आयाम मॉडुलन के विपरीत, I और क्यू बेसबैंड संकेत के तरंग आकार के समान नहीं होते हैं, भले ही बेसबैंड संकेत का 100 प्रतिशत उनके एनवेलप द्वारा जटिल तरीके से दर्शाया जाता है।) इसलिए, प्रत्येक के लिए I और क्यू पासबैंड संकेत, एक फ्लैट समूह विलंब सुनिश्चित करता है कि न तो I पास बैंड लिफाफा और न ही क्यू पासबैंड एनवेलप में तरंग आकार विकृति होगी, इसलिए जब I पासबैंड संकेत और क्यू पासबैंड संकेत को एक साथ वापस जोड़ा जाता है, तो योग मूल है एफएम/पीएम पासबैंड संकेत, जिसे भी बदला नहीं जाएगा।
पृष्ठभूमि
एक आवधिक संकेत के लिए, एक आवृत्ति घटक गुणों के साथ एक साइन वक्र होता है जिसमें समय-आधारित आवृत्ति और चरण शामिल होते हैं।
एक मूल साइन वक्र उत्पन्न करना
साइन वक्र, समय आधारित आवृत्ति सामग्री के साथ या बिना, एक सर्कल द्वारा उत्पन्न होता है जैसा कि चित्र में दिखाया गया है। इस उदाहरण में, साइन वक्र एक साइन वेव है जिसे का उपयोग करके पता लगाया जाता है त्रिकोणमितीय समारोह।
सदिश का अनुरेखण घूर्णन करते हुए समारोह। चरण 1 प्ले दबाएं। चरण 2 अधिकतम चरण 3 वेबएम स्रोत चुनें
जब एक बढ़ता हुआ कोण सर्कल के चारों ओर एक पूर्ण सीसीडब्ल्यू रोटेशन बनाता है, फ़ंक्शन के पैटर्न का एक चक्र उत्पन्न होता है। 360 डिग्री से आगे के कोण को और बढ़ाना बस फिर से सर्कल के चारों ओर घूमता है, एक और चक्र पूरा करता है, जहां प्रत्येक सफल चक्र एक ही पैटर्न को दोहराता है, जिससे फ़ंक्शन आवधिक हो जाता है। (देखें सदिश घूर्णन... एनीमेशन बाईं ओर।) कोण मान की कोई सीमा नहीं होती है, और इसलिए पैटर्न जितनी बार स्वयं को दोहराता है उसकी भी कोई सीमा नहीं होती है। इस वजह से, साइन वक्र की कोई शुरुआत नहीं है और कोई अंत नहीं है। एक साइन वक्रल फ़ंक्शन त्रिकोणमितीय कार्यों में से किसी एक या दोनों पर आधारित होता है तथा .
सिद्धांत
एलटीआई प्रणाली सिद्धांत में, नियंत्रण सिद्धांत, और डिजिटल संकेत प्रोसेसिंग या एनालॉग संकेत प्रोसेसिंग में, इनपुट संकेत के बीच संबंध, और आउटपुट संकेत, , एक LTI प्रणाली एक कनवल्शन ऑपरेशन द्वारा शासित होती है:
या, आवृत्ति डोमेन में,
कहाँ पे
तथा
.
यहां एलटीआई प्रणाली की समय-क्षेत्रीय आवेग प्रतिक्रिया है और , , , इनपुट के लाप्लास रूपांतर हैं , आउटपुट , और आवेग प्रतिक्रिया , क्रमश। एलटीआई प्रणाली का स्थानांतरण कार्य कहा जाता है और, आवेग प्रतिक्रिया की तरह , एलटीआई प्रणाली की इनपुट-आउटपुट विशेषताओं को पूरी तरह से परिभाषित करता है।
मान लीजिए कि ऐसी प्रणाली एक अर्ध-साइन वक्रल संकेत द्वारा संचालित होती है, जैसे कि एक साइन लहर जिसमें एक आयाम लिफाफा होता है जो आवृत्ति के सापेक्ष धीरे-धीरे बदल रहा है साइन वक्र का। गणितीय रूप से, इसका मतलब है कि अर्ध-साइन वक्रल ड्राइविंग संकेत का रूप है
और धीरे-धीरे बदलते आयाम लिफाफा मतलब कि
तब इस तरह के एक एलटीआई सिस्टम का आउटपुट बहुत अच्छी तरह से अनुमानित है
यहां समूह विलंब है और चरण विलंब है, और वे नीचे दिए गए भावों द्वारा दिए गए हैं (और संभावित रूप से कोणीय आवृत्ति के कार्य हैं ) साइन वक्र का चरण, जैसा कि शून्य क्रॉसिंग की स्थिति से संकेत मिलता है, चरण विलंब के बराबर राशि से समय में विलंब होती है, . समूह की विलंब से साइन वक्र का लिफाफा समय पर विलंबित होता है, .
एक रैखिक चरण प्रणाली में (नॉन-इनवर्टिंग गेन के साथ), दोनों तथा स्थिर हैं (अर्थात, से स्वतंत्र) ) और बराबर, और उनका सामान्य मूल्य सिस्टम के समग्र विलंब के बराबर होता है; और सिस्टम के अलिखित चरण (लहरें) (अर्थात् ) ऋणात्मक है, परिमाण आवृत्ति के साथ रैखिक रूप से बढ़ रहा है .
अधिक सामान्यतः, यह दिखाया जा सकता है कि स्थानांतरण फ़ंक्शन वाले एलटीआई सिस्टम के लिए इकाई आयाम के एक चरण द्वारा संचालित,
आउटपुट है
जहां चरण बदलाव है
इसके अतिरिक्त, यह दिखाया जा सकता है कि समूह विलंबित है, , और चरण विलंब, , आवृत्ति-निर्भर हैं।[6]उनकी गणना फेज अनरैपिंग फेज शिफ्ट से की जा सकती है द्वारा
.
अर्थात्, प्रत्येक आवृत्ति पर समूह विलंब चरण के ढलान के ऋणात्मक के बराबर होता है
वह आवृत्ति[7](तात्कालिक आवृत्ति की तुलना)।
नकारात्मक समूह विलंब वाले सर्किट संभव हैं, हालांकि कार्य-कारण का उल्लंघन नहीं किया गया है।[8]
ऑडियो में समूह विलंब
ऑडियो क्षेत्र में और विशेष रूप से ध्वनि प्रजनन क्षेत्र में समूह विलंब का कुछ महत्व है।[9][10]एक ऑडियो प्रजनन श्रृंखला के कई घटक, विशेष रूप से लाउडस्पीकर और मल्टीवे लाउडस्पीकर ऑडियो क्रॉसओवर, ऑडियो संकेत में समूह विलंब का परिचय देते हैं।[2][10]इसलिए आवृत्ति के संबंध में समूह विलंब की श्रव्यता की सीमा जानना महत्वपूर्ण है,[11][12][13]विशेष रूप से यदि ऑडियो श्रृंखला उच्च विश्वस्तता प्रजनन प्रदान करने वाली हो। श्रव्यता तालिका की सर्वोत्तम सीमाएँ Blauert and Laws द्वारा प्रदान की गई हैं।[14]
Frequency (kHz)
Threshold (ms)
Periods (Cycles)
0.5
3.2
1.6
1
2
2
2
1
2
4
1.5
6
8
2
16
फ्लैनगन, मूर और स्टोन ने निष्कर्ष निकाला है कि 1, 2 और 4 kHz पर, गैर-प्रतिवर्ती स्थिति में हेडफ़ोन के साथ लगभग 1.6 ms का समूह विलंब श्रव्य है।[15]अन्य प्रयोगात्मक परिणाम बताते हैं कि जब समूह की आवृत्ति रेंज में 300 हर्ट्ज से 1 किलोहर्ट्ज़ तक की विलंब 1.0 एमएस से कम है, तो यह अश्रव्य है।[12]
एक ऑडियो संकेत के तरंग को एक सिस्टम द्वारा ठीक से पुन: पेश किया जा सकता है जिसमें संकेत की बैंडविड्थ पर एक फ्लैट आवृत्ति प्रतिक्रिया होती है और एक चरण विलंब जो समूह विलंब के बराबर होता है। नमकीन पानी[16]विभेदक समय-विलंब विकृति की अवधारणा को पेश किया, जिसे चरण विलंब और समूह विलंब के बीच अंतर के रूप में परिभाषित किया गया है, जो इसके द्वारा दिया गया है:
.
एक आदर्श प्रणाली को शून्य या नगण्य अंतर समय-विलंब विरूपण प्रदर्शित करना चाहिए।[16]
मल्टी-वे लाउडस्पीकर सिस्टम में क्रॉसओवर नेटवर्क के उपयोग के कारण उत्पन्न होने वाले समूह विलंब विकृति को ठीक करने के लिए डिजिटल संकेत प्रोसेसिंग तकनीकों का उपयोग करना संभव है।[17]इसमें विलंब समीकरण को सफलतापूर्वक लागू करने के लिए लाउडस्पीकर सिस्टम का काफी कम्प्यूटेशनल मॉडलिंग शामिल है,[18]पार्क्स-मैकलेलन फ़िल्टर डिज़ाइन एल्गोरिथम का उपयोग करना | पार्क्स-मैकलेलन एफआईआर इक्विरिपल फ़िल्टर डिज़ाइन एल्गोरिथम।[1][5][19][20]
प्रकाशिकी में समूह विलंब
भौतिकी में और विशेष रूप से प्रकाशिकी में समूह विलंब महत्वपूर्ण है।
एक ऑप्टिकल फाइबर में, समूह विलंब ऑप्टिकल पावर ) के लिए आवश्यक पारगमन समय है, जो किसी दिए गए दूरी की यात्रा करने के लिए किसी दिए गए ट्रांसवर्स मोड के समूह वेग पर यात्रा करता है। ऑप्टिकल फाइबर फैलाव (प्रकाशिकी) माप उद्देश्यों के लिए, ब्याज की मात्रा समूह प्रसार विलंब प्रति इकाई लंबाई है, जो एक विशेष मोड के समूह वेग का पारस्परिक है। एक ऑप्टिकल फाइबर के माध्यम से एक संकेतिंग दूरसंचार के मापा समूह विलंब फाइबर में मौजूद विभिन्न फैलाव प्रकाशिकी तंत्र के कारण तरंग दैर्ध्य निर्भरता प्रदर्शित करता है।
समूह विलंब के लिए सभी आवृत्तियों पर स्थिर होना अक्सर वांछनीय होता है; अन्यथा संकेत का अस्थायी धुंधलापन होता है। क्योंकि समूह विलंब है , इसलिए यह इस प्रकार है कि एक निरंतर समूह विलंब प्राप्त किया जा सकता है यदि उपकरण या माध्यम के स्थानांतरण फ़ंक्शन में रैखिक चरण प्रतिक्रिया होती है (यानी, जहां समूह विलंब करता है एक स्थिरांक है। चरण की गैर-रैखिकता की डिग्री एक स्थिर मूल्य से समूह विलंब के विचलन को इंगित करती है।
सही समय विलंब
एक संचारण उपकरण को वास्तविक समय विलंब (टीटीडी) कहा जाता है यदि समय विलंब विद्युत संकेत की आवृत्ति से स्वतंत्र होता है।[21][22] टीटीडी दोषरहित और कम-नुकसान, फैलाव मुक्त, पारेषण लाइनों की एक महत्वपूर्ण विशेषता है। टीटीडी एक व्यापक तात्कालिक संकेत बैंडविड्थ संकेत प्रोसेसिंग के लिए अनुमति देता है जिसमें स्पंदित ऑपरेशन के दौरान पल्स ब्रॉडिंग जैसे लगभग कोई संकेत विरूपण नहीं होता है।
यह भी देखें
ऑडियो सिस्टम माप
बेसेल फिल्टर
आंखों का पैटर्न
समूह वेग - किसी माध्यम में प्रकाश का समूह वेग प्रति इकाई लंबाई समूह विलंब का व्युत्क्रम होता है।[23]
↑ 1.01.11.2 Rabiner, Lawrence R.; Gold, Bernard (1975). Theory and Application of Digital Signal Processing. Englewood Cliffs, New Jersey: Prentice-Hall, Inc. ISBN0-13-914101-4.
↑ Lathi, B. P. (2005). Linear Systems and Signals (Second ed.). Oxford University Press, Inc. ISBN978-0-19-515833-5.
↑ Oppenheim, Alan V.; Schafer, R. W.; Buck, J. R. (1999). Discrete-Time Signal Processing. Upper Saddle River, New Jersey: Prentice-Hall, Inc. ISBN0-13-754920-2.
↑ 5.05.1 Oppenheim, Alan V.; Schafer, Ronald W. (2014). Discrete-Time Signal Processing. England: Pearson Education Limited. ISBN978-1-292-02572-8.
↑ Ambardar, Ashok (1999). Analog and Digital Signal Processing (Second ed.). Cengage Learning. ISBN9780534954093.
↑ Oppenheim, Alan V.; Willsky, Alan S.; Nawab, Hamid (1997). Signals and Systems. Upper Saddle River, New Jersey: Prentice-Hall, Inc. ISBN0-13-814757-4.
↑ Plomp, R.; Steeneken, H. J. M. (1969). "Effect of Phase on the Timbre of Complex Tones". The Journal of the Acoustical Society of America. 46 (2B): 409–421. doi:10.1121/1.1911705. PMID5804112.
↑ 10.010.1 Ashley, J. (1980). Group and phase delay requirements for loudspeaker systems. ICASSP '80. IEEE International Conference on Acoustics, Speech, and Signal Processing. Vol. 5. pp. 1030–1033. doi:10.1109/ICASSP.1980.1170852.
↑ 12.012.1Liski, J.; Mäkivirta, A.; Välimäki, V. (2018). Audibility of loudspeaker group-delay characteristics(PDF). 144th Audio Engineering Society International Convention, Paper Number 10008. Audio Engineering Society. pp. 879–888. Retrieved 2022-05-21.
↑ McClellan, J.; Parks, T.; Rabiner, L. (1973). "A computer program for designing optimum FIR linear phase digital filters". IEEE Transactions on Audio and Electroacoustics. 21 (6): 506–526. doi:10.1109/TAU.1973.1162525.
↑ Oppenheim, Alan V.; Schafer, Ronald W. (2010). Discrete-Time Signal Processing. England: Pearson Education Limited. ISBN978-0-13-198842-2.