सांख्यिकीय अस्थिरता: Difference between revisions
m (Sugatha moved page सांख्यिकीय उतार-चढ़ाव to सांख्यिकीय अस्थिरता without leaving a redirect) |
No edit summary |
||
Line 17: | Line 17: | ||
*थर्मल अस्थिरता | *थर्मल अस्थिरता | ||
*सार्वभौमिक चालकता में अस्थिरता | *सार्वभौमिक चालकता में अस्थिरता | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 09/07/2023]] | [[Category:Created On 09/07/2023]] |
Revision as of 11:02, 19 July 2023
सांख्यिकीय अस्थिरता कई समान यादृच्छिक प्रक्रियाओं से प्राप्त मात्राओं में अस्थिरता है। वे मूलभूत और अपरिहार्य हैं। यह सिद्ध किया जा सकता है कि समान प्रक्रियाओं की संख्या के वर्गमूल के रूप में सापेक्ष अस्थिरता कम हो जाती है।
सांख्यिकीय यांत्रिकी और उष्मागतिकी के कई परिणामों के लिए सांख्यिकीय अस्थिरता उत्तरदायी हैं, जिनमें इलेक्ट्रॉनिक्स में शॉट नॉइज़ जैसी घटनाएं भी सम्मिलित हैं।
विवरण
जब कई यादृच्छिक प्रक्रियाएं होती हैं, तो यह दिखाया जा सकता है कि परिणामों में अस्थिरता होता है (समय में भिन्नता होती है) और अस्थिरता प्रक्रियाओं की संख्या के वर्गमूल के विपरीत आनुपातिक होते हैं।
उदाहरण
एक उदाहरण के रूप में जिससे सभी परिचित होंगे, यदि एक निष्पक्ष सिक्के को कई बार उछाला जाता है और हेड और टेल की संख्या गिना जाता है, तो हेड और टेल का अनुपात 1 के बहुत करीब होगा (लगभग उतने ही हेड जितने टेल); लेकिन केवल कुछ ही थ्रो के बाद, टेल के ऊपर हेड्स की अत्यधिक अधिकता या इसके विपरीत परिणाम साधारण हैं; यदि कुछ थ्रो के साथ एक प्रयोग बार-बार दोहराया जाता है, तो परिणामों में बहुत अस्थिरता होगी।
विद्युत धारा इतनी निम्न है कि पी-एन जंक्शन के माध्यम से प्रवाहित होने में बहुत अधिक इलेक्ट्रॉन सम्मिलित नहीं हैं, यह सांख्यिकीय अस्थिरता के लिए अतिसंवेदनशील है क्योंकि प्रति यूनिट समय (वर्तमान) में इलेक्ट्रॉनों की वास्तविक संख्या में अस्थिरता होगा; यह पता लगाने योग्य और अपरिहार्य विद्युत नॉइज़ उत्पन्न करता है जिसे शॉट नॉइज़ के रूप में जाना जाता है।
यह भी देखें
- प्रारंभिक अस्थिरता
- क्वांटम अस्थिरता
- थर्मल अस्थिरता
- सार्वभौमिक चालकता में अस्थिरता