स्कैटर्ड क्रम: Difference between revisions
From Vigyanwiki
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{otheruses4|order theory|the Australian post-punk band|Scattered Order}} | {{otheruses4|order theory|the Australian post-punk band|Scattered Order}} | ||
गणितीय क्रम सिद्धांत में, | गणितीय क्रम सिद्धांत में, '''स्कैटर्ड क्रम''' [[रैखिक क्रम]] है जिसमें एक से अधिक तत्वों के साथ कोई [[सघन क्रम|सघन रूप]] से क्रमित उपसमुच्चय नहीं होता है।<ref>{{cite book|author=Egbert Harzheim | ||
|title=ऑर्डर किए गए सेट|url=https://archive.org/details/orderedsets00harz_675 | |title=ऑर्डर किए गए सेट|url=https://archive.org/details/orderedsets00harz_675 | ||
|url-access=limited | |url-access=limited | ||
|year=2005|publisher=Springer|isbn=0-387-24219-8|contribution=6.6 Scattered sets|pages=[https://archive.org/details/orderedsets00harz_675/page/n199 193]–201}}</ref>[[फ़ेलिक्स हॉसडॉर्फ़]] के कारण लक्षण वर्णन में कहा गया है कि सभी | |year=2005|publisher=Springer|isbn=0-387-24219-8|contribution=6.6 Scattered sets|pages=[https://archive.org/details/orderedsets00harz_675/page/n199 193]–201}}</ref> | ||
[[फ़ेलिक्स हॉसडॉर्फ़]] के कारण लक्षण वर्णन में कहा गया है कि सभी स्कैटर्ड क्रमों का वर्ग रैखिक क्रमित का सबसे छोटा वर्ग है जिसमें सिंगलटन क्रम सम्मिलित हैं और यह सुव्यवस्थित और रिवर्स सुव्यवस्थित व्यय के अनुसार विवृत है। | |||
लेवर का प्रमेय ([[गणनीय]] आदेशों पर रोलैंड फ्रैसे के अनुमान को सामान्यीकृत करते हुए) कहता है कि बिखरे हुए आदेशों के गणनीय संघों के वर्ग पर एम्बेडिंग संबंध अच्छी तरह से अर्ध-आदेश है।<ref>Harzheim, Theorem 6.17, p. 201; {{cite journal|first=Richard|last=Laver|authorlink= Richard Laver |title=On Fraïssé's order type conjecture|journal=[[Annals of Mathematics]]|volume=93|year=1971|number=1|pages=89–111|jstor=1970754 | doi = 10.2307/1970754}}</ref>बिखरे हुए क्रम की [[ऑर्डर टोपोलॉजी]] बिखरी हुई समिष्ट है। जैसा कि [[शब्दकोषीय क्रम]] से देखा जा सकता है, इसका विपरीत निहितार्थ मान्य नहीं है <math>\mathbb Q\times\mathbb Z</math>. | लेवर का प्रमेय ([[गणनीय]] आदेशों पर रोलैंड फ्रैसे के अनुमान को सामान्यीकृत करते हुए) कहता है कि बिखरे हुए आदेशों के गणनीय संघों के वर्ग पर एम्बेडिंग संबंध अच्छी तरह से अर्ध-आदेश है।<ref>Harzheim, Theorem 6.17, p. 201; {{cite journal|first=Richard|last=Laver|authorlink= Richard Laver |title=On Fraïssé's order type conjecture|journal=[[Annals of Mathematics]]|volume=93|year=1971|number=1|pages=89–111|jstor=1970754 | doi = 10.2307/1970754}}</ref>बिखरे हुए क्रम की [[ऑर्डर टोपोलॉजी]] बिखरी हुई समिष्ट है। जैसा कि [[शब्दकोषीय क्रम]] से देखा जा सकता है, इसका विपरीत निहितार्थ मान्य नहीं है <math>\mathbb Q\times\mathbb Z</math>. |
Revision as of 21:32, 12 July 2023
गणितीय क्रम सिद्धांत में, स्कैटर्ड क्रम रैखिक क्रम है जिसमें एक से अधिक तत्वों के साथ कोई सघन रूप से क्रमित उपसमुच्चय नहीं होता है।[1]
फ़ेलिक्स हॉसडॉर्फ़ के कारण लक्षण वर्णन में कहा गया है कि सभी स्कैटर्ड क्रमों का वर्ग रैखिक क्रमित का सबसे छोटा वर्ग है जिसमें सिंगलटन क्रम सम्मिलित हैं और यह सुव्यवस्थित और रिवर्स सुव्यवस्थित व्यय के अनुसार विवृत है।
लेवर का प्रमेय (गणनीय आदेशों पर रोलैंड फ्रैसे के अनुमान को सामान्यीकृत करते हुए) कहता है कि बिखरे हुए आदेशों के गणनीय संघों के वर्ग पर एम्बेडिंग संबंध अच्छी तरह से अर्ध-आदेश है।[2]बिखरे हुए क्रम की ऑर्डर टोपोलॉजी बिखरी हुई समिष्ट है। जैसा कि शब्दकोषीय क्रम से देखा जा सकता है, इसका विपरीत निहितार्थ मान्य नहीं है .
संदर्भ
- ↑ Egbert Harzheim (2005). "6.6 Scattered sets". ऑर्डर किए गए सेट. Springer. pp. 193–201. ISBN 0-387-24219-8.
- ↑ Harzheim, Theorem 6.17, p. 201; Laver, Richard (1971). "On Fraïssé's order type conjecture". Annals of Mathematics. 93 (1): 89–111. doi:10.2307/1970754. JSTOR 1970754.