स्कैटर्ड क्रम: Difference between revisions
From Vigyanwiki
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{otheruses4| | {{otheruses4|क्रम सिद्धांत|ऑस्ट्रेलियाई पोस्ट-पंक बैंड|स्कैटर्ड क्रम}} | ||
गणितीय क्रम सिद्धांत में, '''स्कैटर्ड क्रम''' [[रैखिक क्रम]] है जिसमें एक से अधिक तत्वों के साथ कोई [[सघन क्रम|सघन रूप]] से क्रमित उपसमुच्चय नहीं होता है।<ref>{{cite book|author=Egbert Harzheim | गणितीय क्रम सिद्धांत में, '''स्कैटर्ड क्रम''' [[रैखिक क्रम]] है जिसमें एक से अधिक तत्वों के साथ कोई [[सघन क्रम|सघन रूप]] से क्रमित उपसमुच्चय नहीं होता है।<ref>{{cite book|author=Egbert Harzheim |
Revision as of 21:55, 12 July 2023
गणितीय क्रम सिद्धांत में, स्कैटर्ड क्रम रैखिक क्रम है जिसमें एक से अधिक तत्वों के साथ कोई सघन रूप से क्रमित उपसमुच्चय नहीं होता है।[1]
फ़ेलिक्स हॉसडॉर्फ़ के कारण लक्षण वर्णन में कहा गया है कि सभी स्कैटर्ड क्रमों का वर्ग रैखिक क्रमित का सबसे छोटा वर्ग है जिसमें सिंगलटन क्रम सम्मिलित हैं और यह सुव्यवस्थित और रिवर्स सुव्यवस्थित व्यय के अनुसार विवृत है।
लेवर का प्रमेय (गणनीय क्रमों पर रोलैंड फ्रैसे के अनुमान को सामान्यीकृत करते हुए) कहता है कि स्कैटर्ड क्रमों के गणनीय संघों के वर्ग पर एम्बेडिंग संबंध उत्तम रूप से अर्ध-क्रम है।[2]स्कैटर्ड क्रम की क्रम टोपोलॉजी स्कैटर्ड समिष्ट है। जैसा कि शब्दकोषीय क्रम से देखा जा सकता है, इसका विपरीत निहितार्थ मान्य नहीं है।
संदर्भ
- ↑ Egbert Harzheim (2005). "6.6 Scattered sets". ऑर्डर किए गए सेट. Springer. pp. 193–201. ISBN 0-387-24219-8.
- ↑ Harzheim, Theorem 6.17, p. 201; Laver, Richard (1971). "On Fraïssé's order type conjecture". Annals of Mathematics. 93 (1): 89–111. doi:10.2307/1970754. JSTOR 1970754.