मेल्टिंग-पॉइंट डिप्रेशन: Difference between revisions

From Vigyanwiki
mNo edit summary
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 7: Line 7:
किसी [[थोक सामग्री]] के गलनांक का तापमान उसके आकार पर निर्भर नहीं करता है। यद्यपि, जैसे-जैसे सामग्री का आयाम परमाणु पैमाने की ओर घटता जाता है, गलनांक का तापमान भौतिक आयामों के साथ बढ़ता जाता है। [[नैनोमीटर]] आयाम वाली धातुओं के लिए गलनांक के तापमान में कमी दसियों से सैकड़ों डिग्री के क्रम में हो सकती है।<ref name="Jiang">{{cite journal | title = मुक्त और एल्युमिना समर्थित Fe-C नैनोकणों के तापीय व्यवहार का सैद्धांतिक अध्ययन| journal = Phys. Rev. B |volume = 75 |issue=20 |page = 205426 |year = 2007| doi =10.1103/PhysRevB.75.205426|arxiv = cond-mat/0612562 |bibcode = 2007PhRvB..75t5426J |s2cid=41977362 | last1 = Jiang | first1 = Aiqin | last2 = Awasthi | first2 = Neha | last3 = Kolmogorov | first3 = Aleksey N. | last4 = Setyawan | first4 = Wahyu | last5 = Börjesson | first5 = Anders | last6 = Bolton | first6 = Kim | last7 = Harutyunyan | first7 = Avetik R. | last8 = Curtarolo | first8 = Stefano }}</ref><ref name="Sun">{{cite journal|journal = Thermochimica Acta |title = एल्यूमीनियम नैनोकणों का पिघलने वाला व्यवहार| volume = 463 |issue=1–2 |page = 32 |year =2007 | doi =10.1016/j.tca.2007.07.007 | last1=Sun | first1=J. | last2=Simon | first2=S.L. }}</ref><ref name="Lopeandia">{{cite journal |journal = Thermochimica Acta |volume = 461 |issue=1–2 |page = 82 |year =2007| title =Size-dependent melting and supercooling of Ge nanoparticles embedded in a SiO<sub>2</sub> thin film| doi =10.1016/j.tca.2007.04.010|last1 = Lopeandía |first1 = A.F. |last2 = Rodríguez-Viejo |first2 = J. }}</ref>
किसी [[थोक सामग्री]] के गलनांक का तापमान उसके आकार पर निर्भर नहीं करता है। यद्यपि, जैसे-जैसे सामग्री का आयाम परमाणु पैमाने की ओर घटता जाता है, गलनांक का तापमान भौतिक आयामों के साथ बढ़ता जाता है। [[नैनोमीटर]] आयाम वाली धातुओं के लिए गलनांक के तापमान में कमी दसियों से सैकड़ों डिग्री के क्रम में हो सकती है।<ref name="Jiang">{{cite journal | title = मुक्त और एल्युमिना समर्थित Fe-C नैनोकणों के तापीय व्यवहार का सैद्धांतिक अध्ययन| journal = Phys. Rev. B |volume = 75 |issue=20 |page = 205426 |year = 2007| doi =10.1103/PhysRevB.75.205426|arxiv = cond-mat/0612562 |bibcode = 2007PhRvB..75t5426J |s2cid=41977362 | last1 = Jiang | first1 = Aiqin | last2 = Awasthi | first2 = Neha | last3 = Kolmogorov | first3 = Aleksey N. | last4 = Setyawan | first4 = Wahyu | last5 = Börjesson | first5 = Anders | last6 = Bolton | first6 = Kim | last7 = Harutyunyan | first7 = Avetik R. | last8 = Curtarolo | first8 = Stefano }}</ref><ref name="Sun">{{cite journal|journal = Thermochimica Acta |title = एल्यूमीनियम नैनोकणों का पिघलने वाला व्यवहार| volume = 463 |issue=1–2 |page = 32 |year =2007 | doi =10.1016/j.tca.2007.07.007 | last1=Sun | first1=J. | last2=Simon | first2=S.L. }}</ref><ref name="Lopeandia">{{cite journal |journal = Thermochimica Acta |volume = 461 |issue=1–2 |page = 82 |year =2007| title =Size-dependent melting and supercooling of Ge nanoparticles embedded in a SiO<sub>2</sub> thin film| doi =10.1016/j.tca.2007.04.010|last1 = Lopeandía |first1 = A.F. |last2 = Rodríguez-Viejo |first2 = J. }}</ref>


गलनांक-बिंदु अवसाद [[ nanowire | नैनोवायर]], [[कार्बन नैनोट्यूब]] और [[ nanoparticle | नैनोकणों]] में सबसे अधिक स्पष्ट है, जो सभी एक ही सामग्री की भारी मात्रा की तुलना में कम तापमान पर पिघलते हैं। गलनांक बिंदु में परिवर्तन इसलिए होता है क्योंकि नैनोपैमाने सामग्री में थोक सामग्री की तुलना में बहुत बड़ा सतह-से-आयतन अनुपात होता है, जिससे उनके [[ thermodynamic | थर्मोडायनेमिक]] और तापीय गुणों में भारी परिवर्तन होता है।
गलनांक-बिंदु अवसाद [[ nanowire |नैनोवायर]], [[कार्बन नैनोट्यूब]] और [[ nanoparticle | नैनोकणों]] में सबसे अधिक स्पष्ट है, जो सभी एक ही सामग्री की भारी मात्रा की तुलना में कम तापमान पर पिघलते हैं। गलनांक बिंदु में परिवर्तन इसलिए होता है क्योंकि नैनोपैमाने सामग्री में थोक सामग्री की तुलना में बहुत बड़ा सतह-से-आयतन अनुपात होता है, जिससे उनके [[ thermodynamic | थर्मोडायनेमिक]] और तापीय गुणों में भारी परिवर्तन होता है।


उनके निर्माण और सैद्धांतिक मॉडलिंग के कारण, गलनांक-बिंदु अवसाद का अध्ययन ज्यादातर नैनोकणों के लिए किया गया था। नैनोकण का गलनांक का तापमान तेजी से घटता है क्योंकि कण महत्वपूर्ण व्यास तक पहुंचता है, समान्यता सामान्य अभियांत्रिकी धातुओं के लिए <50 nm ।<ref name="Jiang" /><ref name="Sun" /><ref name="Lai">{{cite journal |journal= Phys. Rev. Lett. |volume = 77 |pages = 99–102 |year =1996|title = Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements |doi=10.1103/PhysRevLett.77.99 |pmid=10061781 |bibcode=1996PhRvL..77...99L |issue=1|last1 = Lai |first1 = S. L. |last2 = Guo |first2 = J. Y. |last3 = Petrova |first3 = V. |last4 = Ramanath |first4 = G. |last5 = Allen |first5 = L. H. }}</ref>  
उनके निर्माण और सैद्धांतिक मॉडलिंग के कारण, गलनांक-बिंदु अवसाद का अध्ययन ज्यादातर नैनोकणों के लिए किया गया था। नैनोकण का गलनांक का तापमान तेजी से घटता है क्योंकि कण महत्वपूर्ण व्यास तक पहुंचता है, समान्यता सामान्य अभियांत्रिकी धातुओं के लिए <50 nm ।<ref name="Jiang" /><ref name="Sun" /><ref name="Lai">{{cite journal |journal= Phys. Rev. Lett. |volume = 77 |pages = 99–102 |year =1996|title = Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements |doi=10.1103/PhysRevLett.77.99 |pmid=10061781 |bibcode=1996PhRvL..77...99L |issue=1|last1 = Lai |first1 = S. L. |last2 = Guo |first2 = J. Y. |last3 = Petrova |first3 = V. |last4 = Ramanath |first4 = G. |last5 = Allen |first5 = L. H. }}</ref>  


[[Image:Melting Point Au.jpg|thumb|right|500px|नैनोकण व्यास के एक फलन के रूप में सोने के लिए एक सामान्यीकृत गलनांक की अवस्था। थोक गलनांक के तापमान और कण के गलनांक के तापमान को क्रमशः TMB और TM निरूपित किया जाता है। निकट गोलाकार धातु नैनोकणों के लिए प्रायोगिक गलनांक वाले वक्र समान आकार के वक्र प्रदर्शित करते हैं।<ref name="Buffat">{{cite journal| journal = Phys. Rev. A | volume = 13 |issue=6  | page = 2287 | year = 1976|title = सोने के कणों के पिघलने के तापमान पर आकार का प्रभाव| doi=10.1103/PhysRevA.13.2287 | bibcode=1976PhRvA..13.2287B|url=http://infoscience.epfl.ch/record/100337 | last1 = Buffat | first1 = Ph. | last2 = Borel | first2 = J-P. }}</ref>]]गलनांक-बिंदु अवसाद नैनोकणों से जुड़े अनुप्रयोगों के लिए एक बहुत ही महत्वपूर्ण मुद्दा है, क्योंकि यह ठोस चरण की कार्यात्मक सीमा को कम करता है। नैनोकणों का वर्तमान में [[उत्प्रेरक]], [[सेंसर]], औषधीय, प्रकाशीय, चुंबकीय, तापीय, इलेक्ट्रॉनिक और वैकल्पिक ऊर्जा अनुप्रयोगों में प्रमुख भूमिकाओं के लिए उपयोग या प्रस्तावित किया जाता हैं।<ref name="Wildgoose">{{cite journal|journal = Small |volume = 2 |title= Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes: Methods and Applications| pages = 182–93 |year = 2005|doi= 10.1002/smll.200500324 |pmid = 17193018 |issue = 2|last1 = Wildgoose |first1 = Gregory G. |last2 = Banks |first2 = Craig E. |last3 = Compton |first3 = Richard G. }}</ref> इनमें से कई अनुप्रयोगों में ऊंचे तापमान पर काम करने के लिए नैनोकणों को ठोस अवस्था में होना चाहिए।
[[Image:Melting Point Au.jpg|thumb|right|500px|नैनोकण व्यास के एक फलन के रूप में सोने के लिए एक सामान्यीकृत गलनांक की अवस्था। थोक गलनांक के तापमान और कण के गलनांक के तापमान को क्रमशः TMB और TM निरूपित किया जाता है। निकट गोलाकार धातु नैनोकणों के लिए प्रायोगिक गलनांक वाले वक्र समान आकार के वक्र प्रदर्शित करते हैं।<ref name="Buffat">{{cite journal| journal = Phys. Rev. A | volume = 13 |issue=6  | page = 2287 | year = 1976|title = सोने के कणों के पिघलने के तापमान पर आकार का प्रभाव| doi=10.1103/PhysRevA.13.2287 | bibcode=1976PhRvA..13.2287B|url=http://infoscience.epfl.ch/record/100337 | last1 = Buffat | first1 = Ph. | last2 = Borel | first2 = J-P. }}</ref>]]गलनांक-बिंदु अवसाद नैनोकणों से जुड़े अनुप्रयोगों के लिए एक बहुत ही महत्वपूर्ण मुद्दा है, क्योंकि यह ठोस अवस्था की कार्यात्मक सीमा को कम करता है। नैनोकणों का वर्तमान में [[उत्प्रेरक]], [[सेंसर]], औषधीय, प्रकाशीय, चुंबकीय, तापीय, इलेक्ट्रॉनिक और वैकल्पिक ऊर्जा अनुप्रयोगों में प्रमुख भूमिकाओं के लिए उपयोग या प्रस्तावित किया जाता हैं।<ref name="Wildgoose">{{cite journal|journal = Small |volume = 2 |title= Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes: Methods and Applications| pages = 182–93 |year = 2005|doi= 10.1002/smll.200500324 |pmid = 17193018 |issue = 2|last1 = Wildgoose |first1 = Gregory G. |last2 = Banks |first2 = Craig E. |last3 = Compton |first3 = Richard G. }}</ref> इनमें से कई अनुप्रयोगों में ऊंचे तापमान पर काम करने के लिए नैनोकणों को ठोस अवस्था में होना चाहिए।


== माप तकनीक ==
== माप तकनीक ==


दो तकनीकें नैनोकणों के गलनांक के मापन की अनुमति देती हैं। [[ संचरण इलेक्ट्रॉन माइक्रोस्कोप | संचरण इलेक्ट्रॉन सूक्ष्मदर्शी]] (TEM) के इलेक्ट्रॉन किरण का उपयोग नैनोकणों को पिघलाने के लिए किया जा सकता है।<ref name="Takagi">{{cite journal| author =Takagi, M. |title = पतली धातु फिल्मों के तरल-ठोस संक्रमण का इलेक्ट्रॉन-विवर्तन अध्ययन| journal = J. Phys. Soc. Jpn. |volume = 9 |issue = 3|page = 359 |year =1954| doi =10.1143/JPSJ.9.359 |bibcode = 1954JPSJ....9..359T }}</ref><ref name="Allen">{{cite journal|journal = Thin Solid Films |volume = 144 |issue=2 |page = 297 |year = 1986| title = शुद्ध धातुओं का छोटा कण पिघलना| doi= 10.1016/0040-6090(86)90422-0|bibcode = 1986TSF...144..297A |last1 = Allen |first1 = G.L. |last2 = Bayles |first2 = R.A. |last3 = Gile |first3 = W.W. |last4 = Jesser |first4 = W.A. }}</ref> गलनांक के तापमान का अनुमान किरण की तीव्रता से लगाया जाता है, जबकि ठोस से तरल में चरण संक्रमण को इंगित करने के लिए विवर्तन स्थितियों में परिवर्तन होता है। यह विधि पिघलते समय नैनोकणों को सीधे देखने की अनुमति देती है, जिससे कण आकार के व्यापक वितरण के साथ नमूनों का परीक्षण और लक्षण वर्णन करना संभव हो जाता है। TEM उस दबाव सीमा को सीमित करता है जिस पर गलनांक बिंदु अवसाद का परीक्षण किया जा सकता है।
दो तकनीकें नैनोकणों के गलनांक के मापन की अनुमति देती हैं। [[ संचरण इलेक्ट्रॉन माइक्रोस्कोप |संचरण इलेक्ट्रॉन सूक्ष्मदर्शी]] (TEM) के इलेक्ट्रॉन किरण का उपयोग नैनोकणों को पिघलाने के लिए किया जा सकता है।<ref name="Takagi">{{cite journal| author =Takagi, M. |title = पतली धातु फिल्मों के तरल-ठोस संक्रमण का इलेक्ट्रॉन-विवर्तन अध्ययन| journal = J. Phys. Soc. Jpn. |volume = 9 |issue = 3|page = 359 |year =1954| doi =10.1143/JPSJ.9.359 |bibcode = 1954JPSJ....9..359T }}</ref><ref name="Allen">{{cite journal|journal = Thin Solid Films |volume = 144 |issue=2 |page = 297 |year = 1986| title = शुद्ध धातुओं का छोटा कण पिघलना| doi= 10.1016/0040-6090(86)90422-0|bibcode = 1986TSF...144..297A |last1 = Allen |first1 = G.L. |last2 = Bayles |first2 = R.A. |last3 = Gile |first3 = W.W. |last4 = Jesser |first4 = W.A. }}</ref> गलनांक के तापमान का अनुमान किरण की तीव्रता से लगाया जाता है, जबकि ठोस से तरल अवस्था में संक्रमण को इंगित करने के लिए विवर्तन स्थितियों में परिवर्तन होता है। यह विधि पिघलते समय नैनोकणों को सीधे देखने की अनुमति देती है, जिससे कण आकार के व्यापक वितरण के साथ नमूनों का परीक्षण और लक्षण वर्णन करना संभव हो जाता है। TEM उस दबाव सीमा को सीमित करता है जिस पर गलनांक बिंदु अवसाद का परीक्षण किया जा सकता है।


हाल ही में, शोधकर्ताओं ने नैनो[[कैलोरीमीटर]] विकसित किए हैं जो सीधे नैनोकणों के [[तापीय धारिता]] और गलनांक के तापमान को मापते हैं।<ref name="Lai"/> नैनोकैलोरीमीटर थोक कैलोरीमीटर के समान आंकड़े प्रदान करते हैं, यद्यपि कणों का समर्थन करने वाले सब्सट्रेट की उपस्थिति के लिए अतिरिक्त गणनाओं को ध्यान में रखना चाहिए। नैनोकणों के एक संकीर्ण आकार के वितरण की आवश्यकता होती है क्योंकि प्रक्रिया उपयोगकर्ताओं को गलनांक की प्रक्रिया के दौरान नमूना देखने की अनुमति नहीं देती है। प्रयोग के दौरान पिघले हुए कणों के सटीक आकार को चिह्नित करने का कोई तरीका नहीं है।
हाल ही में, शोधकर्ताओं ने नैनो[[कैलोरीमीटर]] विकसित किए हैं जो सीधे नैनोकणों के [[तापीय धारिता]] और गलनांक के तापमान को मापते हैं।<ref name="Lai"/> नैनोकैलोरीमीटर थोक कैलोरीमीटर के समान आंकड़े प्रदान करते हैं, यद्यपि कणों का समर्थन करने वाले सब्सट्रेट की उपस्थिति के लिए अतिरिक्त गणनाओं को ध्यान में रखना चाहिए। नैनोकणों के एक संकीर्ण आकार के वितरण की आवश्यकता होती है क्योंकि प्रक्रिया उपयोगकर्ताओं को गलनांक की प्रक्रिया के दौरान नमूना देखने की अनुमति नहीं देती है। प्रयोग के दौरान पिघले हुए कणों के सटीक आकार को चिह्नित करने का कोई तरीका नहीं है।
Line 24: Line 24:
== भौतिकी ==
== भौतिकी ==


थोक सामग्रियों की तुलना में नैनोकणों का सतह से आयतन अनुपात बहुत अधिक होता है। बढ़ी हुई सतह से आयतन अनुपात का मतलब है कि सतह के परमाणुओं का नैनोकण के रासायनिक और भौतिक गुणों पर बहुत अधिक प्रभाव पड़ता है। सतह के परमाणु ठोस चरण में कम चिपकने वाली ऊर्जा के साथ बंधते हैं क्योंकि उनके पास ठोस के थोक में परमाणुओं की तुलना में निकटता में कम पड़ोसी परमाणु होते हैं। प्रत्येक [[रासायनिक बंध]]न एक परमाणु एक पड़ोसी परमाणु के साथ साझा करता है जो एकजुट ऊर्जा प्रदान करता है, इसलिए कम बंधन वाले परमाणुओं और पड़ोसी परमाणुओं में कम एकजुट ऊर्जा होती है। समीकरण 1 के अनुसार नैनोकण की संसंजक ऊर्जा की गणना सैद्धांतिक रूप से कण आकार के कार्य के रूप में की गई है।<ref name="Qi">{{cite journal |journal = J. Mater. Sci. Lett. | volume = 21 |issue=22  |page = 1743 |title = नैनोपार्टिकल की संसंजक ऊर्जा पर आकार का प्रभाव| year =2002|doi= 10.1023/A:1020904317133|s2cid=137302841 | last1 = Qi | first1 = W. H. | last2 = Wang | first2 = M. P. }}</ref>
थोक सामग्रियों की तुलना में नैनोकणों का सतह-से-आयतन अनुपात बहुत अधिक होता है। सतह से आयतन अनुपात में वृद्धि का मतलब है कि सतह के परमाणुओं का नैनोकण के रासायनिक और भौतिक गुणों पर बहुत अधिक प्रभाव पड़ता है। सतह के परमाणु ठोस अवस्था में कम संसंजक ऊर्जा के साथ जुड़ते हैं क्योंकि ठोस के बड़े हिस्से में परमाणुओं की तुलना में उनके पास कम पड़ोसी परमाणु होते हैं। प्रत्येक [[रासायनिक बंध]]न जो एक परमाणु अपने पड़ोसी परमाणु के साथ साझा करता है जो संसक्त ऊर्जा प्रदान करता है, इसलिए कम बंधन वाले परमाणुओं और पड़ोसी परमाणुओं में कम संसक्त ऊर्जा होती है। नैनोकण की संसंजक ऊर्जा की गणना सैद्धांतिक रूप समीकरण 1 के अनुसार से कण आकार के फलन के रूप में की गई है।<ref name="Qi">{{cite journal |journal = J. Mater. Sci. Lett. | volume = 21 |issue=22  |page = 1743 |title = नैनोपार्टिकल की संसंजक ऊर्जा पर आकार का प्रभाव| year =2002|doi= 10.1023/A:1020904317133|s2cid=137302841 | last1 = Qi | first1 = W. H. | last2 = Wang | first2 = M. P. }}</ref>


<math>E = E_B(1-\frac{d}{D})</math>
<math>E = E_B(1-\frac{d}{D})</math>\
कहा पे: डी = नैनोकण आकार <br />
::d = परमाणु आकार
::इ<sub>b</sub> = थोक की एकजुट ऊर्जा


जैसा कि समीकरण 1 से पता चलता है, नैनोकणों की प्रभावी संसंजक ऊर्जा थोक सामग्री के पास पहुंचती है क्योंकि सामग्री परमाणु आकार सीमा (D>>d) से परे फैली हुई है।
कहा पे: D= नैनोकण आकार  


नैनोकणों की सतह पर या उसके निकट स्थित परमाणुओं ने संसंजक बंधों की संख्या कम होने के कारण संसंजक ऊर्जा कम कर दी है। [[लेनार्ड-जोन्स क्षमता]] के अनुसार एक परमाणु पास के सभी परमाणुओं के साथ एक आकर्षक बल का अनुभव करता है।
d = परमाणु आकार


  [[Image:Lennard-Jones.jpg|thumb|right|700px|एक लेनार्ड-जोन्स संभावित ऊर्जा वक्र। मॉडल सामान्य दूरी पर 2 परमाणुओं के बीच संवादात्मक ऊर्जा दिखाता है, d/d<sub>0</sub>, जहां <sub>0</sub>= परमाणु व्यास। अंतःक्रियात्मक ऊर्जा आकर्षक होती है जहाँ वक्र ऋणात्मक होता है, और ऊर्जा का परिमाण परमाणुओं की एक जोड़ी के बीच एकजुट ऊर्जा का प्रतिनिधित्व करता है। ध्यान दें कि आकर्षक क्षमता एक रासायनिक बंधन की लंबाई से परे एक लंबी सीमा तक फैली हुई है, इसलिए परमाणु अपने निकटतम पड़ोसियों की तुलना में परमाणुओं के साथ एकजुट ऊर्जा का अनुभव करते हैं।]]किसी परमाणु की संसंजक ऊर्जा का सीधा संबंध परमाणु को ठोस से मुक्त करने के लिए आवश्यक तापीय ऊर्जा से होता है। लिंडमैन की कसौटी के अनुसार, किसी पदार्थ का गलनांक का तापमान उसकी संसंजक ऊर्जा के समानुपाती होता है।<sub>v</sub> (टी<sub>M</sub>= जैसे<sub>v</sub>).<ref name="Nanda">{{cite journal| journal = Phys. Rev. A |volume = 66 |issue = 1 |page = 013208 |title = निम्न-आयामी प्रणालियों के आकार-निर्भर पिघलने के लिए तरल-बूंद मॉडल| year =2002|doi= 10.1103/PhysRevA.66.013208 |bibcode = 2002PhRvA..66a3208N |last1 = Nanda |first1 = K. K. |last2 = Sahu |first2 = S. N. |last3 = Behera |first3 = S. N. }}</ref> चूंकि सतह के निकट परमाणुओं में कम बंधन होते हैं और संसंजक ऊर्जा कम होती है, इसलिए उन्हें ठोस चरण से मुक्त होने के लिए कम ऊर्जा की आवश्यकता होती है। इस प्रभाव से उच्च सतह से आयतन अनुपात सामग्री का गलनांक अवसाद होता है। इसी कारण से, नैनो सामग्री की सतह थोक सामग्री की तुलना में कम तापमान पर पिघल सकती है।<ref name="Frenken">{{cite journal| journal = Phys. Rev. Lett. |volume = 54| issue =2 |pages = 134–137 | year =1985|title = सतह के पिघलने का अवलोकन| doi=10.1103/PhysRevLett.54.134 | pmid=10031263 | bibcode=1985PhRvL..54..134F| hdl = 1887/71364 | hdl-access =free | last1=Frenken | first1=Joost W. M. | last2=Veen | first2=J. F. van der }}</ref>
E<sub>b</sub>  = थोक की संसक्त ऊर्जा
किसी सामग्री के सैद्धांतिक आकार पर निर्भर गलनांक बिंदु की गणना शास्त्रीय थर्मोडायनामिक विश्लेषण के माध्यम से की जा सकती है। नतीजा समीकरण 2 में दिखाया गया गिब्स-थॉमसन समीकरण है।<ref name="Sun"/>
 
जैसा कि समीकरण 1 से पता चलता है, एक नैनोकणों की प्रभावी संसंजक ऊर्जा थोक सामग्री के पास पहुंचती है क्योंकि सामग्री परमाणु आकार सीमा (D>>d) से आगे बढ़ती है।
 
नैनोकणों की सतह पर या उसके निकट स्थित परमाणुओं ने संसंजक बंधों की संख्या कम होने के कारण संसंजक ऊर्जा कम हो गई है। [[लेनार्ड-जोन्स क्षमता]] के अनुसार एक परमाणु अपने आस-पास के सभी परमाणुओं के साथ एक आकर्षक बल का अनुभव करता है।
 
  [[Image:Lennard-Jones.jpg|thumb|right|700px|एक लेनार्ड-जोन्स स्थितिज ऊर्जा वक्र। नमूना सामान्य दूरी पर 2 परमाणुओं के बीच संवादात्मक ऊर्जा दिखाता है, d/d<sub>0</sub>, जहां d<sub>0</sub>= परमाणु व्यास। अंतःक्रियात्मक ऊर्जा आकर्षक होती है जहाँ वक्र ऋणात्मक होता है, और ऊर्जा का परिमाण परमाणुओं की एक जोड़ी के बीच संसक्त ऊर्जा का प्रतिनिधित्व करता है। ध्यान दें कि आकर्षक क्षमता एक रासायनिक बंधन की लंबाई से परे एक लंबी सीमा तक फैली हुई है, इसलिए परमाणु अपने निकटतम पड़ोसियों की तुलना में परमाणुओं के साथ संसक्त ऊर्जा का अनुभव करते हैं।]]किसी परमाणु की संसंजक ऊर्जा का सीधा संबंध परमाणु को ठोस से मुक्त करने के लिए आवश्यक तापीय ऊर्जा से होता है। लिंडमैन की कसौटी के अनुसार, किसी पदार्थ का गलनांक का तापमान उसकी संसंजक ऊर्जा,a<sub>v</sub> (T<sub>M</sub>= Ca<sub>v</sub>) के समानुपाती होता है।<ref name="Nanda">{{cite journal| journal = Phys. Rev. A |volume = 66 |issue = 1 |page = 013208 |title = निम्न-आयामी प्रणालियों के आकार-निर्भर पिघलने के लिए तरल-बूंद मॉडल| year =2002|doi= 10.1103/PhysRevA.66.013208 |bibcode = 2002PhRvA..66a3208N |last1 = Nanda |first1 = K. K. |last2 = Sahu |first2 = S. N. |last3 = Behera |first3 = S. N. }}</ref> चूंकि सतह के निकट परमाणुओं में कम बंधन होते हैं और संसंजक ऊर्जा कम होती है, इसलिए उन्हें ठोस अवस्था से मुक्त होने के लिए कम ऊर्जा की आवश्यकता होती है। उच्च सतह से आयतन अनुपात सामग्री का गलनांक अवसाद इस प्रभाव के परिणामस्वरूप होता है। इसी कारण से, नैनो सामग्री की सतह थोक सामग्री की तुलना में कम तापमान पर पिघल सकती है।<ref name="Frenken">{{cite journal| journal = Phys. Rev. Lett. |volume = 54| issue =2 |pages = 134–137 | year =1985|title = सतह के पिघलने का अवलोकन| doi=10.1103/PhysRevLett.54.134 | pmid=10031263 | bibcode=1985PhRvL..54..134F| hdl = 1887/71364 | hdl-access =free | last1=Frenken | first1=Joost W. M. | last2=Veen | first2=J. F. van der }}</ref>
किसी सामग्री के सैद्धांतिक आकार पर निर्भर गलनांक बिंदु की गणना शास्त्रीय ऊष्मागतिकीय विश्लेषण के माध्यम से की जा सकती है। इसका परिणाम समीकरण 2 में दिखाया गया गिब्स-थॉमसन समीकरण है।<ref name="Sun" />


<math>T_M(d) = T_{MB}(1-\frac{4\sigma\,_{sl}}{H_f\rho\,_sd})</math>
<math>T_M(d) = T_{MB}(1-\frac{4\sigma\,_{sl}}{H_f\rho\,_sd})</math>
जहां टी<sub>MB</sub> = थोक गलनांक का तापमान <br />
:: σ<sub>sl</sub> = ठोस-तरल इंटरफ़ेस ऊर्जा
::एच<sub>f</sub> = संलयन की थोक गर्मी
:: ρ<sub>s</sub> = ठोस का घनत्व
::d = कण व्यास


== सेमीकंडक्टर/सहसंयोजक नैनोपार्टिकल्स ==
जहां  T<sub>MB</sub> = थोक गलनांक का तापमान <br />                  σ<sub>sl</sub> = ठोस-तरल अंतराफलक ऊर्जा
 
H<sub>f</sub> = संलयन की थोक ऊष्मा
 
ρ<sub>s</sub> = ठोस का घनत्व
 
d = कण व्यास
== अर्धचालक/सहसंयोजक नैनोकण ==
 
समीकरण 2 किसी धातु के नैनोकण के गलनांक और उसके व्यास के बीच सामान्य संबंध देता है। यद्यपि, हाल के काम से संकेत मिलता है कि [[अर्धचालक]] और सहसंयोजक रूप से बंधे नैनोकणों के गलनांक बिंदु का कण आकार पर एक अलग निर्भरता हो सकती है।<ref name="Farrell">{{cite journal| journal =Journal of Vacuum Science and Technology B |volume = 25 |issue=4  | page = 1441 |year =2007| title = बंधन ऊर्जा, वाष्प दबाव, और अर्धचालक नैनोकणों का गलनांक| doi= 10.1116/1.2748415|bibcode = 2007JVSTB..25.1441F |url=https://zenodo.org/record/1236098|last1 = Farrell |first1 = H. H. |last2 = Van Siclen |first2 = C. D. }}</ref> बंधनों का सहसंयोजक चरित्र इन सामग्रियों के गलनांक वाले भौतिकी को बदलते हैं। शोधकर्ताओं ने प्रदर्शित किया है कि समीकरण 3 सहसंयोजक बंधित सामग्रियों में गलनांक बिंदु अवसाद को अधिक सटीक रूप से दर्शाता है।<ref name="Farrell" />


समीकरण 2 एक धातु नैनोकण के गलनांक और उसके व्यास के बीच सामान्य संबंध देता है। यद्यपि, हाल के काम [[अर्धचालक]] के गलनांक बिंदु को इंगित करते हैं और सहसंयोजक बंधुआ नैनोकणों का कण आकार पर एक अलग निर्भरता हो सकती है।<ref name="Farrell">{{cite journal| journal =Journal of Vacuum Science and Technology B |volume = 25 |issue=4  | page = 1441 |year =2007| title = बंधन ऊर्जा, वाष्प दबाव, और अर्धचालक नैनोकणों का गलनांक| doi= 10.1116/1.2748415|bibcode = 2007JVSTB..25.1441F |url=https://zenodo.org/record/1236098|last1 = Farrell |first1 = H. H. |last2 = Van Siclen |first2 = C. D. }}</ref> बांड के सहसंयोजक चरित्र इन सामग्रियों के गलनांक वाले भौतिकी को बदलते हैं। शोधकर्ताओं ने प्रदर्शित किया है कि समीकरण 3 अधिक सटीक रूप से सहसंयोजक बंधित सामग्रियों में गलनांक बिंदु अवसाद का मॉडल करता है।<ref name="Farrell"/>
<math>T_M(d)=T_{MB}(1-(\frac{c}{d})^2)</math><br />          जहां T<sub>MB</sub>=थोक गलनांक का तापमान<br />                   c = सामग्री स्थिरांक


<math>T_M(d)=T_{MB}(1-(\frac{c}{d})^2)</math><br />
d=कण व्यास
जहां टी<sub>MB</sub>=थोक गलनांक का तापमान<br />
:: सी = सामग्री स्थिर
::d=कण व्यास


समीकरण 3 इंगित करता है कि गलनांक समीकरण में कण आकार निर्भरता की द्विघात प्रकृति के कारण सहसंयोजक नैनोकणों में गलनांक बिंदु अवसाद कम स्पष्ट है।
समीकरण 3 इंगित करता है कि गलनांक समीकरण में कण आकार निर्भरता की द्विघात प्रकृति के कारण सहसंयोजक नैनोकणों में गलनांक बिंदु अवसाद कम स्पष्ट है।
Line 58: Line 62:
== प्रस्तावित तंत्र ==
== प्रस्तावित तंत्र ==


नैनोकणों के लिए विशिष्ट गलनांक की प्रक्रिया वर्तमान में अज्ञात है। वैज्ञानिक समुदाय वर्तमान में नैनोकण गलनांक के संभावित मॉडल के रूप में कई तंत्रों को स्वीकार करता है।<ref name="Farrell"/>संबंधित मॉडलों में से प्रत्येक नैनोकणों के गलनांक के लिए प्रभावी रूप से प्रयोगात्मक आंकड़े से मेल खाता है। नीचे दिए गए चार मॉडलों में से तीन शास्त्रीय ऊष्मप्रवैगिकी के आधार पर विभिन्न दृष्टिकोणों का उपयोग करके गलनांक के तापमान को एक समान रूप में प्राप्त करते हैं।
नैनोकणों के लिए विशिष्ट गलनांक की प्रक्रिया वर्तमान में अज्ञात है। वैज्ञानिक समुदाय वर्तमान में नैनोकण गलनांक के स्थितिज नमूना के रूप में कई तंत्रों को स्वीकार करता है।<ref name="Farrell"/> संबंधित मॉडलों में से प्रत्येक नैनोकणों के गलनांक के लिए प्रभावी रूप से प्रयोगात्मक आंकड़े से मेल खाता है। नीचे दिए गए चार मॉडलों में से तीन शास्त्रीय ऊष्मप्रवैगिकी के आधार पर विभिन्न दृष्टिकोणों का उपयोग करके गलनांक के तापमान को एक समान रूप में प्राप्त करते हैं।


=== तरल ड्रॉप मॉडल ===
=== तरल ड्रॉप मॉडल/ तरल बूँद नमूना ===


लिक्विड ड्रॉप मॉडल (एलडीएम) मानता है कि एक ही तापमान पर एक संपूर्ण नैनोकण ठोस से तरल में परिवर्तित हो जाता है।<ref name="Nanda"/>यह विशेषता मॉडल को अलग करती है, क्योंकि अन्य मॉडल थोक परमाणुओं से पहले नैनोकणों की सतह के गलनांक की भविष्यवाणी करते हैं। यदि एलडीएम सही है, तो एक ठोस नैनोकण को ​​अन्य मॉडलों की भविष्यवाणी की तुलना में अधिक तापमान सीमा पर काम करना चाहिए। एलडीएम मानता है कि नैनोकणों की सतह के परमाणु कण में सभी परमाणुओं के गुणों पर हावी होते हैं। नैनोकण में सभी परमाणुओं के लिए कण की संसंजक ऊर्जा समान होती है।
तरल बूँद नमूना (LDM) मानता है कि एक ही तापमान पर एक संपूर्ण नैनोकण ठोस से तरल में परिवर्तित हो जाता है।<ref name="Nanda"/> यह विशेषता नमूना को अलग करती है, क्योंकि अन्य नमूना थोक परमाणुओं से पहले नैनोकणों की सतह के गलनांक की भविष्यवाणी करते हैं। यदि LDM सही है, तो एक ठोस नैनोकण को ​​अन्य मॉडलों की भविष्यवाणी की तुलना में अधिक तापमान सीमा पर कार्य करना चाहिए। LDM मानता है कि नैनोकणों की सतह के परमाणु कण में सभी परमाणुओं के गुणों पर हावी होते हैं। नैनोकण में सभी परमाणुओं के लिए कण की संसंजक ऊर्जा समान होती है।


एलडीएम मात्रा और सतह की मुक्त ऊर्जा के कार्य के रूप में नैनोकणों की बाध्यकारी ऊर्जा का प्रतिनिधित्व करता है।<ref name="Nanda"/>समीकरण 4 लिक्विड-ड्रॉप मॉडल के अनुसार सामान्यीकृत, आकार पर निर्भर गलनांक का तापमान देता है।
LDM मात्रा और सतह की मुक्त ऊर्जा के कार्य के रूप में नैनोकणों की बाध्यकारी ऊर्जा का प्रतिनिधित्व करता है।<ref name="Nanda"/> समीकरण 4 तरल-बूँद नमूना के अनुसार किसी सामग्री का सामान्यीकृत, आकार पर निर्भर गलनांक का तापमान देता है।


<math>T_M(d)=\frac{4T_{MB}}{H_fd}\left(\sigma\,_{sv}-\sigma\,_{lv}\left(\frac{\rho\,_s}{\rho\,_l}\right)^{2/3}\right)</math>
<math>T_M(d)=\frac{4T_{MB}}{H_fd}\left(\sigma\,_{sv}-\sigma\,_{lv}\left(\frac{\rho\,_s}{\rho\,_l}\right)^{2/3}\right)</math>
कहां : पी<sub>sv</sub>=ठोस-वाष्प इंटरफ़ेस ऊर्जा<br />
:: σ<sub>lv</sub>= तरल-वाष्प इंटरफ़ेस ऊर्जा
::एच<sub>f</sub>= संलयन की थोक गर्मी
:: ρ<sub>s</sub>= ठोस का घनत्व
:: ρ<sub>l</sub>= द्रव का घनत्व
::d=नैनोकण का व्यास


=== तरल खोल न्यूक्लिएशन मॉडल ===
कहां : p<sub>sv</sub>=ठोस-वाष्प अंतराफलक ऊर्जा<br />        σ<sub>lv</sub>= तरल-वाष्प अंतराफलक ऊर्जा


लिक्विड शेल न्यूक्लिएशन मॉडल (एलएसएन) भविष्यवाणी करता है कि परमाणुओं की एक सतह परत कण के थोक से पहले पिघल जाती है।<ref name="Sakai">{{cite journal| author =Sakai, H. | journal = Surf. Sci. | volume = 351 | issue = 1–3 | page = 285 | year = 1996| title = सतह से छोटे कणों का पिघलना| doi= 10.1016/0039-6028(95)01263-X |bibcode = 1996SurSc.351..285S | s2cid = 93267163 }}</ref> एलएसएन के अनुसार एक नैनोकण का गलनांक का तापमान इसकी वक्रता की त्रिज्या का एक कार्य है। बड़े नैनोकण वक्रता के अपने बड़े त्रिज्या के परिणामस्वरूप अधिक तापमान पर पिघलते हैं।
H<sub>f</sub>= संलयन की थोक ऊष्मा


मॉडल [[लैंडौ क्षमता]] का उपयोग करके दो प्रतिस्पर्धी ऑर्डर पैरामीटर के एक समारोह के रूप में गलनांक की स्थिति की गणना करता है। एक आदेश पैरामीटर एक ठोस नैनोकण का प्रतिनिधित्व करता है, जबकि दूसरा तरल चरण का प्रतिनिधित्व करता है। प्रत्येक आदेश पैरामीटर कण त्रिज्या का एक कार्य है।
ρ<sub>s</sub>= ठोस का घनत्व


तरल और ठोस चरणों के लिए परवलयिक लैंडौ क्षमता की गणना किसी दिए गए तापमान पर की जाती है, जिसमें कम लैंडौ क्षमता को कण में किसी भी बिंदु पर संतुलन स्थिति माना जाता है। सतह के गलनांक की तापमान सीमा में, परिणाम दिखाते हैं कि आदेशित राज्य का लैंडौ वक्र कण के केंद्र के पास इष्ट है जबकि अव्यवस्थित अवस्था का लैंडौ वक्र कण की सतह के पास छोटा होता है।
ρ<sub>l</sub>= द्रव का घनत्व


Landau घटता कण के केंद्र से एक विशिष्ट त्रिज्या पर प्रतिच्छेद करता है। संभावितों के अलग-अलग प्रतिच्छेदन का मतलब है कि एलएसएन किसी दिए गए तापमान पर ठोस और तरल चरणों के बीच एक तेज, स्थिर इंटरफ़ेस की भविष्यवाणी करता है। किसी दिए गए तापमान पर तरल परत की सटीक मोटाई प्रतिस्पर्धी लैंडौ क्षमता के बीच संतुलन बिंदु है।
d=नैनोकण का व्यास
=== तरल खोल न्यूक्लिएशन(केंद्रक) नमूना ===


समीकरण 5 वह स्थिति देता है जिस पर एलएसएन मॉडल के अनुसार एक संपूर्ण नैनोकण पिघल जाता है।<ref name="Wang">{{cite journal|journal = J. Phys. Chem. B | volume = 106 |issue=41 | page = 10701 |year = 2002| title = एक नैनोसॉलिड के गलनांक और सतह के परमाणु की संसंजक ऊर्जा के बीच सहसंबंध| doi= 10.1021/jp025868l| last1 = Sun | first1 = Chang Q. | last2 = Wang | first2 = Y. | last3 = Tay | first3 = B. K. | last4 = Li | first4 = S. | last5 = Huang | first5 = H. | last6 = Zhang | first6 = Y. B. }}</ref>
तरल खोल न्यूक्लिएशन(केंद्रक) नमूना (LSN) भविष्यवाणी करता है कि परमाणुओं की एक सतह परत कण के थोक से पहले पिघल जाती है।<ref name="Sakai">{{cite journal| author =Sakai, H. | journal = Surf. Sci. | volume = 351 | issue = 1–3 | page = 285 | year = 1996| title = सतह से छोटे कणों का पिघलना| doi= 10.1016/0039-6028(95)01263-X |bibcode = 1996SurSc.351..285S | s2cid = 93267163 }}</ref> LSN के अनुसार एक नैनोकण का गलनांक का तापमान इसकी वक्रता की त्रिज्या का एक कार्य है। बड़े नैनोकण अपनी बड़ी वक्रता त्रिज्या के परिणामस्वरूप अधिक तापमान पर पिघल जाते हैं।


<math>T_M(d)=\frac{4T_{MB}}{H_fd}(\frac{\sigma\,_{sv}}{1-\frac{d_0}{d}}-\sigma\,_{lv}(1-\frac{\rho\,_s}{\rho\,_l}))</math><br />
नमूना [[लैंडौ क्षमता]] का उपयोग करके दो प्रतिस्पर्धी आदेश पैरामीटर के एक प्रकार्य के रूप में गलनांक की स्थिति की गणना करता है। एक आदेश पैरामीटर एक ठोस नैनोकण का प्रतिनिधित्व करता है, जबकि दूसरा तरल अवस्था का प्रतिनिधित्व करता है। प्रत्येक आदेश पैरामीटर कण त्रिज्या का एक कार्य है।
जहां घ<sub>0</sub>= परमाणु व्यास


=== तरल न्यूक्लिएशन और विकास मॉडल ===
तरल और ठोस चरणों के लिए परवलयिक लैंडौ क्षमता की गणना किसी दिए गए तापमान पर की जाती है, जिसमें कम लैंडौ क्षमता को कण में किसी भी बिंदु पर संतुलन स्थिति माना जाता है। सतह के गलनांक की तापमान सीमा में, परिणाम बताते हैं कि क्रमित अवस्था का लैंडौ वक्र कण के केंद्र के पास पसंदीदा होता है जबकि अव्यवस्थित अवस्था का लैंडौ वक्र कण की सतह के पास छोटा होता है।


लिक्विड न्यूक्लिएशन एंड ग्रोथ मॉडल (LNG) नैनोकणों के गलनांक को सतह पर शुरू की गई प्रक्रिया के रूप में मानता है।<ref name="Size">{{cite journal|author=Sun, C. Q. | title = Size dependence of nanostructures: impact or bond order deficiency | url = http://www.ntu.edu.sg/home/ECQSun/rtf/PSSC-size.pdf| journal = Progress in Solid State Chemistry | volume =35 | pages = 1–159 |year =2007|doi= 10.1016/j.progsolidstchem.2006.03.001}}</ref> सतह शुरू में पिघलती है, और तरल-ठोस इंटरफ़ेस पूरे नैनोकण के माध्यम से तेज़ी से आगे बढ़ता है। एलएनजी गिब्स-डुहेम संबंधों के माध्यम से गलनांक की स्थिति को परिभाषित करता है, ठोस और तरल चरणों, प्रत्येक चरण के आयतन और सतह क्षेत्रों, और नैनोकणों के आकार के बीच इंटरफेसियल ऊर्जा पर निर्भर गलनांक वाले तापमान समारोह को उत्पन्न करता है। मॉडल की गणना से पता चलता है कि तरल चरण छोटे नैनोकणों के लिए कम तापमान पर बनता है। एक बार जब तरल चरण बन जाता है, तो मुक्त ऊर्जा की स्थिति जल्दी बदल जाती है और गलनांक का पक्ष लेती है। एलएनजी मॉडल के अनुसार समीकरण 6 एक गोलाकार नैनोकण के लिए गलनांक की स्थिति देता है।<ref name="Wang"/>
लैंडौ वक्र कण के केंद्र से एक विशिष्ट त्रिज्या पर प्रतिच्छेद करता है। संभावितों के अलग-अलग प्रतिच्छेदन का मतलब है कि LSN किसी दिए गए तापमान पर ठोस और तरल चरणों के बीच एक तेज, स्थिर अंतराफलक की भविष्यवाणी करता है। किसी दिए गए तापमान पर तरल परत की सटीक मोटाई प्रतिस्पर्धी लैंडौ क्षमता के बीच संतुलन बिंदु है।


<math>T_M(d)=\frac{2T_{MB}}{H_fd}(\sigma\,_{sl}-\sigma\,_{lv}3(\sigma\,_{sv}-\sigma\,_{lv}\frac{\rho\,_s}{\rho\,_l}))</math>
समीकरण 5 वह स्थिति देता है जिस पर LSN नमूना के अनुसार एक संपूर्ण नैनोकण पिघल जाता है।<ref name="Wang">{{cite journal|journal = J. Phys. Chem. B | volume = 106 |issue=41 | page = 10701 |year = 2002| title = एक नैनोसॉलिड के गलनांक और सतह के परमाणु की संसंजक ऊर्जा के बीच सहसंबंध| doi= 10.1021/jp025868l| last1 = Sun | first1 = Chang Q. | last2 = Wang | first2 = Y. | last3 = Tay | first3 = B. K. | last4 = Li | first4 = S. | last5 = Huang | first5 = H. | last6 = Zhang | first6 = Y. B. }}</ref>


<math>T_M(d)=\frac{4T_{MB}}{H_fd}(\frac{\sigma\,_{sv}}{1-\frac{d_0}{d}}-\sigma\,_{lv}(1-\frac{\rho\,_s}{\rho\,_l}))</math><br /> जहां d<sub>0</sub>= परमाणु व्यास


===बॉन्ड-ऑर्डर-लेंथ-स्ट्रेंथ (बोल्स) मॉडल ===
=== तरल न्यूक्लिएशन(केंद्रक) और विकास नमूना ===


बॉन्ड-ऑर्डर-लम्बाई-ताकत (बीओएलएस) मॉडल गलनांक बिंदु अवसाद को समझाने के लिए एक परमाणु दृष्टिकोण को नियोजित करता है।<ref name="Wang"/>यह मॉडल शास्त्रीय थर्मोडायनामिक दृष्टिकोण के बजाय व्यक्तिगत परमाणुओं की संसक्त ऊर्जा पर केंद्रित है। बीओएलएस मॉडल अलग-अलग परमाणुओं के गलनांक के तापमान को उनके चिपकने वाले बंधनों के योग से गणना करता है। नतीजतन, बीओएलएस नैनोकण के थोक की तुलना में कम तापमान पर नैनोकणों की सतह परतों की भविष्यवाणी करता है।
तरल न्यूक्लिएशन(केंद्रक) और विकास नमूना (LNG) नैनोकणों के गलनांक को सतह पर शुरू की गई प्रक्रिया के रूप में मानता है।<ref name="Size">{{cite journal|author=Sun, C. Q. | title = Size dependence of nanostructures: impact or bond order deficiency | url = http://www.ntu.edu.sg/home/ECQSun/rtf/PSSC-size.pdf| journal = Progress in Solid State Chemistry | volume =35 | pages = 1–159 |year =2007|doi= 10.1016/j.progsolidstchem.2006.03.001}}</ref> सतह शुरू में पिघलती है, और तरल-ठोस अंतराफलक पूरे नैनोकण के माध्यम से तेज़ी से आगे बढ़ता है। LNG गिब्स-डुहेम संबंधों के माध्यम से गलनांक की स्थिति को परिभाषित करता है, ठोस और तरल चरणों, प्रत्येक अवस्था के आयतन और सतह क्षेत्रों, और नैनोकणों के आकार के बीच इंटरफेसियल ऊर्जा पर निर्भर गलनांक वाले तापमान प्रकार्य को उत्पन्न करता है। नमूना की गणना से पता चलता है कि तरल अवस्था छोटे नैनोकणों के लिए कम तापमान पर बनता है। एक बार जब तरल अवस्था बन जाता है, तो मुक्त ऊर्जा की स्थिति जल्दी बदल जाती है और गलनांक का पक्ष लेती है। LNG नमूना के अनुसार समीकरण 6 एक गोलाकार नैनोकण के लिए गलनांक की स्थिति देता है।<ref name="Wang"/>


BOLS तंत्र बताता है कि यदि एक बंधन टूट जाता है तो शेष पड़ोसी छोटे और मजबूत हो जाते हैं। कम समन्वित परमाणुओं की संसंजक ऊर्जा, या बंधन ऊर्जा का योग, गलनांक, वाष्पीकरण और अन्य चरण संक्रमण सहित तापीय स्थिरता को निर्धारित करता है। कम सीएन नैनोकण की सतह के पास परमाणुओं के बीच संतुलन बंधन की लंबाई को बदलता है। बांड संतुलन की लंबाई की ओर आराम करते हैं, परमाणुओं के बीच प्रति बंधन को जोड़ने वाली ऊर्जा को बढ़ाते हैं, विशिष्ट [[अंतर-परमाणु क्षमता]] के सटीक रूप से स्वतंत्र होते हैं। यद्यपि, सतह के परमाणुओं के लिए एकीकृत संसंजक ऊर्जा थोक परमाणुओं की तुलना में कम समन्वय संख्या और संसंजक ऊर्जा में समग्र कमी के कारण बहुत कम है।
<math>T_M(d)=\frac{2T_{MB}}{H_fd}(\sigma\,_{sl}-\sigma\,_{lv}3(\sigma\,_{sv}-\sigma\,_{lv}\frac{\rho\,_s}{\rho\,_l}))</math>
===बॉन्ड-आदेश-लंबाई-शक्ति (BOLS) नमूना ===


कोर-शेल कॉन्फ़िगरेशन का उपयोग करते हुए, नैनोकणों के गलनांक अवसाद में सबसे बाहरी दो परमाणु परतों का प्रभुत्व होता है, फिर भी कोर इंटीरियर में परमाणु उनकी थोक प्रकृति बने रहते हैं।
बॉन्ड-आदेश-लम्बाई-ताकत (BOLS) नमूना गलनांक बिंदु अवसाद को समझाने के लिए एक परमाणु दृष्टिकोण को नियोजित करता है।<ref name="Wang"/> यह नमूना शास्त्रीय ऊष्मागतिकीय दृष्टिकोण के शिवाय व्यक्तिगत परमाणुओं की संसक्त ऊर्जा पर केंद्रित है। BOLS नमूना अलग-अलग परमाणुओं के गलनांक के तापमान की गणना उनके संयोजी बंधों के योग से करता है। परिणामस्वरूप, BOLS भविष्यवाणी करता है कि नैनोकण की सतह परतें नैनोकण के बड़े हिस्से की तुलना में कम तापमान पर पिघलेंगी।


बीओएलएस मॉडल और कोर-शेल संरचना को यांत्रिक शक्ति, रासायनिक और तापीय स्थिरता, जाली गतिशीलता (प्रकाशीय और ध्वनिक फोनन), फोटॉन उत्सर्जन और अवशोषण, इलेक्ट्रॉनिक कोलेवल शिफ्ट और [[समारोह का कार्य]] मॉड्यूलेशन जैसे नैनोस्ट्रक्चर के अन्य आकार निर्भरता पर लागू किया गया है। , विभिन्न तापमानों पर चुंबकत्व, और इलेक्ट्रॉन ध्रुवीकरण आदि के कारण डाइलेक्ट्रिक्स। उपर्युक्त आकार निर्भरता में प्रयोगात्मक अवलोकनों का पुनरुत्पादन महसूस किया गया है। मापा आकार निर्भरता के लिए बीओएलएस भविष्यवाणियों से मिलान करके एक पृथक परमाणु के ऊर्जा स्तर और व्यक्तिगत डिमर की कंपन आवृत्ति जैसी मात्रात्मक जानकारी प्राप्त की गई है।<ref name="Size"/>
BOLS तंत्र बताता है कि यदि एक बंधन टूट जाता है तो शेष पड़ोसी छोटे और मजबूत हो जाते हैं। कम समन्वित परमाणुओं की संसंजक ऊर्जा, या बंधन ऊर्जा का योग,तापीय स्थिरता को निर्धारित करता है, जिसमें गलनांक, वाष्पीकरण और अन्य अवस्था संक्रमण सम्मलित हैं। कम किया गया CN नैनोकण की सतह के पास परमाणुओं के बीच संतुलन बंधन की लंबाई को बदलता है। बांड संतुलन की लंबाई की ओर शिथिल हो जाते हैं, जिससे परमाणुओं के बीच प्रति बंधन को जोड़ने वाली ऊर्जा को बढ़ाते हैं, जो विशिष्ट [[अंतर-परमाणु क्षमता]] के सटीक रूप से स्वतंत्र होती हैं। यद्यपि, सतह के परमाणुओं के लिए एकीकृत संसंजक ऊर्जा कम समन्वय संख्या और संसंजक ऊर्जा में समग्र कमी के कारण थोक परमाणुओं की तुलना में बहुत कम है।


कोर-खोल विन्यास का उपयोग करते हुए, नैनोकणों के गलनांक बिंदु अवसाद में सबसे बाहरी दो परमाणु परतों का प्रभुत्व होता है, फिर भी कोर आंतरिक में परमाणु उनकी थोक प्रकृति बनाए रखते हैं।


BOLS नमूना और कोर-खोल संरचना को नैनोसंरचनाएँ की अन्य आकार निर्भरताओं जैसे यांत्रिक शक्ति, रासायनिक और तापीय स्थिरता, जाली गतिशीलता (प्रकाशीय और ध्वनिक फोनन), फोटॉन उत्सर्जन और अवशोषण, इलेक्ट्रॉनिक कोलेवल शिफ्ट और [[समारोह का कार्य|प्रकार्य का कार्य]] मॉड्यूलेशन पर लागू किया गया है, विभिन्न तापमानों पर चुंबकत्व, और इलेक्ट्रॉन ध्रुवीकरण आदि के कारण ढांकता हुआ। उपर्युक्त आकार निर्भरता में प्रयोगात्मक अवलोकनों का पुनरुत्पादन महसूस किया गया है। मात्रात्मक जानकारी, जैसे कि एक पृथक परमाणु का ऊर्जा स्तर और व्यक्तिगत डिमर(मंदक) की कंपन आवृत्ति, BOLS भविष्यवाणियों को मापा आकार निर्भरता से मिलान करके प्राप्त की गई है।<ref name="Size"/>
== कण आकार ==
== कण आकार ==


नैनोकणों का आकार नैनोकणों के गलनांक को प्रभावित करता है। एक संपूर्ण क्षेत्र से पहलू, किनारे और विचलन सभी गलनांक बिंदु अवसाद के परिमाण को बदलते हैं।<ref name="Nanda"/>ये आकार परिवर्तन सतह से आयतन के अनुपात को प्रभावित करते हैं, जो एक नैनोसंरचना की संसक्त ऊर्जा और तापीय गुणों को प्रभावित करता है। समीकरण 7 अपने आकार और आकार के आधार पर एक नैनोकण के सैद्धांतिक गलनांक के लिए एक सामान्य आकार सही सूत्र देता है।<ref name="Nanda"/>
नैनोकणों का आकार नैनोकणों के गलनांक को प्रभावित करता है। एक संपूर्ण क्षेत्र से पहलू, किनारे और विचलन सभी गलनांक बिंदु अवसाद के परिमाण को बदलते हैं।<ref name="Nanda"/>ये आकार परिवर्तन सतह से आयतन के अनुपात को प्रभावित करते हैं, जो एक नैनोसंरचना की संसक्त ऊर्जा और तापीय गुणों को प्रभावित करता है। समीकरण 7 एक नैनोकण के सैद्धांतिक गलनांक बिंदु के लिए उसके आकार और आकार के आधार पर  एक सामान्य आकार सही सूत्र देता है।<ref name="Nanda"/>
 
<math>T_M(d)=T_{MB}(1-\frac{c}{zd})</math><br />
कहा पे: c=सामग्री स्थिरांक <br />
::z=कण का आकार पैरामीटर
 
आकार का पैरामीटर गोले के लिए 1 और बहुत लंबे तार के लिए 3/2 है, यह दर्शाता है कि नैनोकणों की तुलना में नैनोवायरों में गलनांक-बिंदु अवसाद को दबा दिया जाता है। पिछले प्रायोगिक आंकड़े से पता चलता है कि नैनोपैमाने टिन प्लेटलेट्स थोक गलनांक वाले तापमान के 10 °C की संकीर्ण सीमा के भीतर पिघलते हैं।<ref name="Allen"/>गोलाकार टिन नैनोकणों की तुलना में इन प्लेटलेट्स के गलनांक अवसाद को दबा दिया गया था।<ref name="Lai"/>


<math>T_M(d)=T_{MB}(1-\frac{c}{zd})</math><br />    कहा पे: c=सामग्री स्थिरांक <br />                z=कण का आकार पैरामीटर


आकार का पैरामीटर गोले के लिए 1 और बहुत लंबे तार के लिए 3/2 है, यह दर्शाता है कि नैनोकणों की तुलना में नैनोवायरों में गलनांक-बिंदु अवसाद को दबा दिया जाता है। पिछले प्रायोगिक आंकड़े से पता चलता है कि नैनोपैमाने टिन प्लेटलेट्स थोक गलनांक वाले तापमान के 10 °C की संकीर्ण सीमा के भीतर पिघलते हैं।<ref name="Allen"/>गोलाकार टिन नैनोकणों की तुलना में इन प्लेटलेट्स का गलनांक अवसाद दबा हुआ था।<ref name="Lai"/>
== सब्सट्रेट ==
== सब्सट्रेट ==


कई नैनोकणों के गलनांक वाले सिमुलेशन का सिद्धांत है कि सहायक सब्सट्रेट एक नैनोकण के गलनांक-बिंदु अवसाद की सीमा को प्रभावित करता है।<ref name="Jiang"/><ref name="Couchman">{{cite journal| journal = Nature | volume = 269 | page = 481 | year = 1977| title =धातुओं में पिघलने के तापमान की आकार निर्भरता का थर्मोडायनामिक सिद्धांत| doi= 10.1038/269481a0 | issue=5628|bibcode = 1977Natur.269..481C |s2cid=4196869 | last1 = Couchman | first1 = P. R. | last2 = Jesser | first2 = W. A. }}</ref> ये मॉडल सब्सट्रेट सामग्री के बीच ऊर्जावान बातचीत के लिए खाते हैं। एक मुक्त नैनोकण, जैसा कि कई सैद्धांतिक मॉडल मानते हैं, नैनोकण और सब्सट्रेट के बीच एकजुट ऊर्जा की अनुपस्थिति के कारण एक समर्थित कण की तुलना में एक अलग गलनांक का तापमान (समान्यता कम) होता है। यद्यपि, एक फ्रीस्टैंडिंग नैनोकण के गुणों का मापन असंभव रहता है, इसलिए प्रयोग के माध्यम से इंटरैक्शन की सीमा को सत्यापित नहीं किया जा सकता है। अंततः, सबस्ट्रेट्स वर्तमान में सभी नैनोकण अनुप्रयोगों के लिए नैनोकणों का समर्थन करते हैं, इसलिए सब्सट्रेट/नैनोकण इंटरैक्शन हमेशा मौजूद होते हैं और गलनांक बिंदु अवसाद को प्रभावित करते हैं।
कई नैनोकणों के गलनांक वाले सतत अनुकरण का सिद्धांत है कि सहायक सब्सट्रेट एक नैनोकण के गलनांक-बिंदु अवसाद की सीमा को प्रभावित करता है।<ref name="Jiang"/><ref name="Couchman">{{cite journal| journal = Nature | volume = 269 | page = 481 | year = 1977| title =धातुओं में पिघलने के तापमान की आकार निर्भरता का थर्मोडायनामिक सिद्धांत| doi= 10.1038/269481a0 | issue=5628|bibcode = 1977Natur.269..481C |s2cid=4196869 | last1 = Couchman | first1 = P. R. | last2 = Jesser | first2 = W. A. }}</ref> ये नमूना सब्सट्रेट सामग्री के बीच ऊर्जावान अंतःक्रियाओं के लिए जिम्मेदार हैं। एक मुक्त नैनोकण, जैसा कि कई सैद्धांतिक नमूना मानते हैं, नैनोकण और सब्सट्रेट के बीच संसक्त ऊर्जा की अनुपस्थिति के कारण एक समर्थित कण की तुलना में एक अलग गलनांक का तापमान (समान्यता कम) होता है। यद्यपि, एक फ्रीस्टैंडिंग(स्वतंत्र) नैनोकण के गुणों का मापन असंभव रहता है, इसलिए प्रयोग के माध्यम से परस्पर क्रिया की सीमा को सत्यापित नहीं किया जा सकता है। अंततः, सबस्ट्रेट्स वर्तमान में सभी नैनोकण अनुप्रयोगों के लिए नैनोकणों का समर्थन करते हैं, इसलिए सब्सट्रेट/नैनोकण की परस्पर क्रिया हमेशा मौजूद रहती है और गलनांक बिंदु अवसाद को प्रभावित करते हैं।
 
== घुलनशीलता ==
 
आकार-दबाव सन्निकटन के भीतर, जो सतह के तनाव और कण की वक्रता से प्रेरित तनाव पर विचार करता है, यह दिखाया गया था कि कण का आकार एक यूटेक्टिक बिंदु (Fe-C) की संरचना और तापमान को प्रभावित करता है।<ref name="Jiang"/> Fe में C की घुलनशीलता<ref name="Harutyunyan">{{cite journal|title = Fe नैनो-क्लस्टर में कम कार्बन घुलनशीलता और एकल-दीवार वाले कार्बन नैनोट्यूब के विकास के लिए निहितार्थ| journal = Phys. Rev. Lett. | volume =100| issue = 19 | page = 195502 |year = 2008|doi= 10.1103/PhysRevLett.100.195502 | pmid=18518458 | bibcode=2008PhRvL.100s5502H|arxiv = 0803.3191 |s2cid=1319460 | last1 = Harutyunyan | first1 = A. R. | last2 = Awasthi | first2 = N. | last3 = Jiang | first3 = A. | last4 = Setyawan | first4 = W. | last5 = Mora | first5 = E. | last6 = Tokune | first6 = T. | last7 = Bolton | first7 = K. | last8 = Curtarolo | first8 = S. }}</ref> और फे: मो नैनोक्लस्टर्स।<ref name="Curtarolo">{{cite journal|title = Influence of Mo on the Fe:Mo:C nano-catalyst thermodynamics for single-walled carbon nanotube growth | journal = Phys. Rev. B | volume = 78 |issue=5 | page = 054105 |year = 2008|doi= 10.1103/PhysRevB.78.054105|bibcode = 2008PhRvB..78e4105C |arxiv = 0803.3206 |s2cid=34332297 | last1 = Curtarolo | first1 = Stefano | last2 = Awasthi | first2 = Neha | last3 = Setyawan | first3 = Wahyu | last4 = Jiang | first4 = Aiqin | last5 = Bolton | first5 = Kim | last6 = Tokune | first6 = Toshio | last7 = Harutyunyan | first7 = Avetik R. }}</ref>
कम घुलनशीलता नैनोकणों के उत्प्रेरक गुणों को प्रभावित कर सकती है। वास्तव में यह दिखाया गया है कि Fe-C मिश्रणों की आकार-प्रेरित अस्थिरता सबसे पतले नैनोट्यूब के लिए थर्मोडायनामिक सीमा का प्रतिनिधित्व करती है जिसे Fe नैनोकैटलिस्ट्स से उगाया जा सकता है।<ref name="Harutyunyan"/>


== विलेयता ==


आकार-दबाव सन्निकटन के भीतर, जो सतह के तनाव और कण की वक्रता से प्रेरित तनाव पर विचार करता है, यह दिखाया गया था कि कण का आकार एक गलनक्रांतिक बिंदु (Fe-C) की संरचना और तापमान को प्रभावित करता है,<ref name="Jiang"/> Fe और Fe:Mo नैनोक्लस्टर<ref name="Harutyunyan">{{cite journal|title = Fe नैनो-क्लस्टर में कम कार्बन घुलनशीलता और एकल-दीवार वाले कार्बन नैनोट्यूब के विकास के लिए निहितार्थ| journal = Phys. Rev. Lett. | volume =100| issue = 19 | page = 195502 |year = 2008|doi= 10.1103/PhysRevLett.100.195502 | pmid=18518458 | bibcode=2008PhRvL.100s5502H|arxiv = 0803.3191 |s2cid=1319460 | last1 = Harutyunyan | first1 = A. R. | last2 = Awasthi | first2 = N. | last3 = Jiang | first3 = A. | last4 = Setyawan | first4 = W. | last5 = Mora | first5 = E. | last6 = Tokune | first6 = T. | last7 = Bolton | first7 = K. | last8 = Curtarolo | first8 = S. }}</ref> में C की विलेयता।<ref name="Curtarolo">{{cite journal|title = Influence of Mo on the Fe:Mo:C nano-catalyst thermodynamics for single-walled carbon nanotube growth | journal = Phys. Rev. B | volume = 78 |issue=5 | page = 054105 |year = 2008|doi= 10.1103/PhysRevB.78.054105|bibcode = 2008PhRvB..78e4105C |arxiv = 0803.3206 |s2cid=34332297 | last1 = Curtarolo | first1 = Stefano | last2 = Awasthi | first2 = Neha | last3 = Setyawan | first3 = Wahyu | last4 = Jiang | first4 = Aiqin | last5 = Bolton | first5 = Kim | last6 = Tokune | first6 = Toshio | last7 = Harutyunyan | first7 = Avetik R. }}</ref> विलेयता कम होने से नैनोकणों के उत्प्रेरक गुण प्रभावित हो सकते हैं। वास्तव में यह दिखाया गया है कि Fe-C मिश्रणों की आकार-प्रेरित अस्थिरता सबसे पतले नैनोट्यूब के लिए ऊष्मागतिकीय सीमा का प्रतिनिधित्व करती है जिसे Fe नैनो उत्प्रेरक से उगाया जा सकता है।<ref name="Harutyunyan"/>
== यह भी देखें ==
== यह भी देखें ==
*हिमांक अवसाद
*हिमांक-बिंदु अवसाद
*[[थर्मोपोरोमेट्री और क्रायोपोरोमेट्री]]
*[[थर्मोपोरोमेट्री और क्रायोपोरोमेट्री]]


Line 135: Line 130:
{{reflist|30em}}
{{reflist|30em}}


{{DEFAULTSORT:Melting-Point Depression}}[[Category: चरण संक्रमण]]
{{DEFAULTSORT:Melting-Point Depression}}
 
 


[[Category: Machine Translated Page]]
[[Category:Created On 25/05/2023|Melting-Point Depression]]
[[Category:Created On 25/05/2023]]
[[Category:Lua-based templates|Melting-Point Depression]]
[[Category:Machine Translated Page|Melting-Point Depression]]
[[Category:Pages with script errors|Melting-Point Depression]]
[[Category:Templates Vigyan Ready|Melting-Point Depression]]
[[Category:Templates that add a tracking category|Melting-Point Depression]]
[[Category:Templates that generate short descriptions|Melting-Point Depression]]
[[Category:Templates using TemplateData|Melting-Point Depression]]
[[Category:चरण संक्रमण|Melting-Point Depression]]

Latest revision as of 10:22, 24 July 2023

यह लेख बहुत छोटे कण आकार के कारण गलनांक/हिमांक बिंदु अवसाद से संबंधित है। किसी अन्य यौगिक के मिश्रण के कारण होने वाले अवसाद के लिए हिमांक अवसाद देखें।

गलनांक अवसाद किसी पदार्थ के आकार में कमी के साथ उसके गलनांक में कमी करने की घटना है। यह घटना नैनोपैमाने सामग्रियों में बहुत प्रमुख है, जो थोक सामग्रियों की तुलना में सैकड़ों डिग्री कम तापमान पर पिघलती है।

परिचय

किसी थोक सामग्री के गलनांक का तापमान उसके आकार पर निर्भर नहीं करता है। यद्यपि, जैसे-जैसे सामग्री का आयाम परमाणु पैमाने की ओर घटता जाता है, गलनांक का तापमान भौतिक आयामों के साथ बढ़ता जाता है। नैनोमीटर आयाम वाली धातुओं के लिए गलनांक के तापमान में कमी दसियों से सैकड़ों डिग्री के क्रम में हो सकती है।[1][2][3]

गलनांक-बिंदु अवसाद नैनोवायर, कार्बन नैनोट्यूब और नैनोकणों में सबसे अधिक स्पष्ट है, जो सभी एक ही सामग्री की भारी मात्रा की तुलना में कम तापमान पर पिघलते हैं। गलनांक बिंदु में परिवर्तन इसलिए होता है क्योंकि नैनोपैमाने सामग्री में थोक सामग्री की तुलना में बहुत बड़ा सतह-से-आयतन अनुपात होता है, जिससे उनके थर्मोडायनेमिक और तापीय गुणों में भारी परिवर्तन होता है।

उनके निर्माण और सैद्धांतिक मॉडलिंग के कारण, गलनांक-बिंदु अवसाद का अध्ययन ज्यादातर नैनोकणों के लिए किया गया था। नैनोकण का गलनांक का तापमान तेजी से घटता है क्योंकि कण महत्वपूर्ण व्यास तक पहुंचता है, समान्यता सामान्य अभियांत्रिकी धातुओं के लिए <50 nm ।[1][2][4]

नैनोकण व्यास के एक फलन के रूप में सोने के लिए एक सामान्यीकृत गलनांक की अवस्था। थोक गलनांक के तापमान और कण के गलनांक के तापमान को क्रमशः TMB और TM निरूपित किया जाता है। निकट गोलाकार धातु नैनोकणों के लिए प्रायोगिक गलनांक वाले वक्र समान आकार के वक्र प्रदर्शित करते हैं।[5]

गलनांक-बिंदु अवसाद नैनोकणों से जुड़े अनुप्रयोगों के लिए एक बहुत ही महत्वपूर्ण मुद्दा है, क्योंकि यह ठोस अवस्था की कार्यात्मक सीमा को कम करता है। नैनोकणों का वर्तमान में उत्प्रेरक, सेंसर, औषधीय, प्रकाशीय, चुंबकीय, तापीय, इलेक्ट्रॉनिक और वैकल्पिक ऊर्जा अनुप्रयोगों में प्रमुख भूमिकाओं के लिए उपयोग या प्रस्तावित किया जाता हैं।[6] इनमें से कई अनुप्रयोगों में ऊंचे तापमान पर काम करने के लिए नैनोकणों को ठोस अवस्था में होना चाहिए।

माप तकनीक

दो तकनीकें नैनोकणों के गलनांक के मापन की अनुमति देती हैं। संचरण इलेक्ट्रॉन सूक्ष्मदर्शी (TEM) के इलेक्ट्रॉन किरण का उपयोग नैनोकणों को पिघलाने के लिए किया जा सकता है।[7][8] गलनांक के तापमान का अनुमान किरण की तीव्रता से लगाया जाता है, जबकि ठोस से तरल अवस्था में संक्रमण को इंगित करने के लिए विवर्तन स्थितियों में परिवर्तन होता है। यह विधि पिघलते समय नैनोकणों को सीधे देखने की अनुमति देती है, जिससे कण आकार के व्यापक वितरण के साथ नमूनों का परीक्षण और लक्षण वर्णन करना संभव हो जाता है। TEM उस दबाव सीमा को सीमित करता है जिस पर गलनांक बिंदु अवसाद का परीक्षण किया जा सकता है।

हाल ही में, शोधकर्ताओं ने नैनोकैलोरीमीटर विकसित किए हैं जो सीधे नैनोकणों के तापीय धारिता और गलनांक के तापमान को मापते हैं।[4] नैनोकैलोरीमीटर थोक कैलोरीमीटर के समान आंकड़े प्रदान करते हैं, यद्यपि कणों का समर्थन करने वाले सब्सट्रेट की उपस्थिति के लिए अतिरिक्त गणनाओं को ध्यान में रखना चाहिए। नैनोकणों के एक संकीर्ण आकार के वितरण की आवश्यकता होती है क्योंकि प्रक्रिया उपयोगकर्ताओं को गलनांक की प्रक्रिया के दौरान नमूना देखने की अनुमति नहीं देती है। प्रयोग के दौरान पिघले हुए कणों के सटीक आकार को चिह्नित करने का कोई तरीका नहीं है।

इतिहास

पावलो द्वारा 1909 में गलनांक-बिंदु अवसाद की भविष्यवाणी की गई थी।[9] 1960-70 के दशक में Pb[10], Au[10] और In[11] के नैनोकणों[12] के लिए एक इलेक्ट्रॉन सूक्ष्मदर्शी के अंदर[13] सीधे देखा गया था।[14]

भौतिकी

थोक सामग्रियों की तुलना में नैनोकणों का सतह-से-आयतन अनुपात बहुत अधिक होता है। सतह से आयतन अनुपात में वृद्धि का मतलब है कि सतह के परमाणुओं का नैनोकण के रासायनिक और भौतिक गुणों पर बहुत अधिक प्रभाव पड़ता है। सतह के परमाणु ठोस अवस्था में कम संसंजक ऊर्जा के साथ जुड़ते हैं क्योंकि ठोस के बड़े हिस्से में परमाणुओं की तुलना में उनके पास कम पड़ोसी परमाणु होते हैं। प्रत्येक रासायनिक बंधन जो एक परमाणु अपने पड़ोसी परमाणु के साथ साझा करता है जो संसक्त ऊर्जा प्रदान करता है, इसलिए कम बंधन वाले परमाणुओं और पड़ोसी परमाणुओं में कम संसक्त ऊर्जा होती है। नैनोकण की संसंजक ऊर्जा की गणना सैद्धांतिक रूप समीकरण 1 के अनुसार से कण आकार के फलन के रूप में की गई है।[15]

\

कहा पे: D= नैनोकण आकार

d = परमाणु आकार

Eb = थोक की संसक्त ऊर्जा

जैसा कि समीकरण 1 से पता चलता है, एक नैनोकणों की प्रभावी संसंजक ऊर्जा थोक सामग्री के पास पहुंचती है क्योंकि सामग्री परमाणु आकार सीमा (D>>d) से आगे बढ़ती है।

नैनोकणों की सतह पर या उसके निकट स्थित परमाणुओं ने संसंजक बंधों की संख्या कम होने के कारण संसंजक ऊर्जा कम हो गई है। लेनार्ड-जोन्स क्षमता के अनुसार एक परमाणु अपने आस-पास के सभी परमाणुओं के साथ एक आकर्षक बल का अनुभव करता है।

एक लेनार्ड-जोन्स स्थितिज ऊर्जा वक्र। नमूना सामान्य दूरी पर 2 परमाणुओं के बीच संवादात्मक ऊर्जा दिखाता है, d/d0, जहां d0= परमाणु व्यास। अंतःक्रियात्मक ऊर्जा आकर्षक होती है जहाँ वक्र ऋणात्मक होता है, और ऊर्जा का परिमाण परमाणुओं की एक जोड़ी के बीच संसक्त ऊर्जा का प्रतिनिधित्व करता है। ध्यान दें कि आकर्षक क्षमता एक रासायनिक बंधन की लंबाई से परे एक लंबी सीमा तक फैली हुई है, इसलिए परमाणु अपने निकटतम पड़ोसियों की तुलना में परमाणुओं के साथ संसक्त ऊर्जा का अनुभव करते हैं।

किसी परमाणु की संसंजक ऊर्जा का सीधा संबंध परमाणु को ठोस से मुक्त करने के लिए आवश्यक तापीय ऊर्जा से होता है। लिंडमैन की कसौटी के अनुसार, किसी पदार्थ का गलनांक का तापमान उसकी संसंजक ऊर्जा,av (TM= Cav) के समानुपाती होता है।[16] चूंकि सतह के निकट परमाणुओं में कम बंधन होते हैं और संसंजक ऊर्जा कम होती है, इसलिए उन्हें ठोस अवस्था से मुक्त होने के लिए कम ऊर्जा की आवश्यकता होती है। उच्च सतह से आयतन अनुपात सामग्री का गलनांक अवसाद इस प्रभाव के परिणामस्वरूप होता है। इसी कारण से, नैनो सामग्री की सतह थोक सामग्री की तुलना में कम तापमान पर पिघल सकती है।[17]

किसी सामग्री के सैद्धांतिक आकार पर निर्भर गलनांक बिंदु की गणना शास्त्रीय ऊष्मागतिकीय विश्लेषण के माध्यम से की जा सकती है। इसका परिणाम समीकरण 2 में दिखाया गया गिब्स-थॉमसन समीकरण है।[2]

जहां TMB = थोक गलनांक का तापमान
σsl = ठोस-तरल अंतराफलक ऊर्जा

Hf = संलयन की थोक ऊष्मा

ρs = ठोस का घनत्व

d = कण व्यास

अर्धचालक/सहसंयोजक नैनोकण

समीकरण 2 किसी धातु के नैनोकण के गलनांक और उसके व्यास के बीच सामान्य संबंध देता है। यद्यपि, हाल के काम से संकेत मिलता है कि अर्धचालक और सहसंयोजक रूप से बंधे नैनोकणों के गलनांक बिंदु का कण आकार पर एक अलग निर्भरता हो सकती है।[18] बंधनों का सहसंयोजक चरित्र इन सामग्रियों के गलनांक वाले भौतिकी को बदलते हैं। शोधकर्ताओं ने प्रदर्शित किया है कि समीकरण 3 सहसंयोजक बंधित सामग्रियों में गलनांक बिंदु अवसाद को अधिक सटीक रूप से दर्शाता है।[18]


जहां TMB=थोक गलनांक का तापमान
c = सामग्री स्थिरांक

d=कण व्यास

समीकरण 3 इंगित करता है कि गलनांक समीकरण में कण आकार निर्भरता की द्विघात प्रकृति के कारण सहसंयोजक नैनोकणों में गलनांक बिंदु अवसाद कम स्पष्ट है।

प्रस्तावित तंत्र

नैनोकणों के लिए विशिष्ट गलनांक की प्रक्रिया वर्तमान में अज्ञात है। वैज्ञानिक समुदाय वर्तमान में नैनोकण गलनांक के स्थितिज नमूना के रूप में कई तंत्रों को स्वीकार करता है।[18] संबंधित मॉडलों में से प्रत्येक नैनोकणों के गलनांक के लिए प्रभावी रूप से प्रयोगात्मक आंकड़े से मेल खाता है। नीचे दिए गए चार मॉडलों में से तीन शास्त्रीय ऊष्मप्रवैगिकी के आधार पर विभिन्न दृष्टिकोणों का उपयोग करके गलनांक के तापमान को एक समान रूप में प्राप्त करते हैं।

तरल ड्रॉप मॉडल/ तरल बूँद नमूना

तरल बूँद नमूना (LDM) मानता है कि एक ही तापमान पर एक संपूर्ण नैनोकण ठोस से तरल में परिवर्तित हो जाता है।[16] यह विशेषता नमूना को अलग करती है, क्योंकि अन्य नमूना थोक परमाणुओं से पहले नैनोकणों की सतह के गलनांक की भविष्यवाणी करते हैं। यदि LDM सही है, तो एक ठोस नैनोकण को ​​अन्य मॉडलों की भविष्यवाणी की तुलना में अधिक तापमान सीमा पर कार्य करना चाहिए। LDM मानता है कि नैनोकणों की सतह के परमाणु कण में सभी परमाणुओं के गुणों पर हावी होते हैं। नैनोकण में सभी परमाणुओं के लिए कण की संसंजक ऊर्जा समान होती है।

LDM मात्रा और सतह की मुक्त ऊर्जा के कार्य के रूप में नैनोकणों की बाध्यकारी ऊर्जा का प्रतिनिधित्व करता है।[16] समीकरण 4 तरल-बूँद नमूना के अनुसार किसी सामग्री का सामान्यीकृत, आकार पर निर्भर गलनांक का तापमान देता है।

कहां : psv=ठोस-वाष्प अंतराफलक ऊर्जा
σlv= तरल-वाष्प अंतराफलक ऊर्जा

Hf= संलयन की थोक ऊष्मा

ρs= ठोस का घनत्व

ρl= द्रव का घनत्व

d=नैनोकण का व्यास

तरल खोल न्यूक्लिएशन(केंद्रक) नमूना

तरल खोल न्यूक्लिएशन(केंद्रक) नमूना (LSN) भविष्यवाणी करता है कि परमाणुओं की एक सतह परत कण के थोक से पहले पिघल जाती है।[19] LSN के अनुसार एक नैनोकण का गलनांक का तापमान इसकी वक्रता की त्रिज्या का एक कार्य है। बड़े नैनोकण अपनी बड़ी वक्रता त्रिज्या के परिणामस्वरूप अधिक तापमान पर पिघल जाते हैं।

नमूना लैंडौ क्षमता का उपयोग करके दो प्रतिस्पर्धी आदेश पैरामीटर के एक प्रकार्य के रूप में गलनांक की स्थिति की गणना करता है। एक आदेश पैरामीटर एक ठोस नैनोकण का प्रतिनिधित्व करता है, जबकि दूसरा तरल अवस्था का प्रतिनिधित्व करता है। प्रत्येक आदेश पैरामीटर कण त्रिज्या का एक कार्य है।

तरल और ठोस चरणों के लिए परवलयिक लैंडौ क्षमता की गणना किसी दिए गए तापमान पर की जाती है, जिसमें कम लैंडौ क्षमता को कण में किसी भी बिंदु पर संतुलन स्थिति माना जाता है। सतह के गलनांक की तापमान सीमा में, परिणाम बताते हैं कि क्रमित अवस्था का लैंडौ वक्र कण के केंद्र के पास पसंदीदा होता है जबकि अव्यवस्थित अवस्था का लैंडौ वक्र कण की सतह के पास छोटा होता है।

लैंडौ वक्र कण के केंद्र से एक विशिष्ट त्रिज्या पर प्रतिच्छेद करता है। संभावितों के अलग-अलग प्रतिच्छेदन का मतलब है कि LSN किसी दिए गए तापमान पर ठोस और तरल चरणों के बीच एक तेज, स्थिर अंतराफलक की भविष्यवाणी करता है। किसी दिए गए तापमान पर तरल परत की सटीक मोटाई प्रतिस्पर्धी लैंडौ क्षमता के बीच संतुलन बिंदु है।

समीकरण 5 वह स्थिति देता है जिस पर LSN नमूना के अनुसार एक संपूर्ण नैनोकण पिघल जाता है।[20]


जहां d0= परमाणु व्यास

तरल न्यूक्लिएशन(केंद्रक) और विकास नमूना

तरल न्यूक्लिएशन(केंद्रक) और विकास नमूना (LNG) नैनोकणों के गलनांक को सतह पर शुरू की गई प्रक्रिया के रूप में मानता है।[21] सतह शुरू में पिघलती है, और तरल-ठोस अंतराफलक पूरे नैनोकण के माध्यम से तेज़ी से आगे बढ़ता है। LNG गिब्स-डुहेम संबंधों के माध्यम से गलनांक की स्थिति को परिभाषित करता है, ठोस और तरल चरणों, प्रत्येक अवस्था के आयतन और सतह क्षेत्रों, और नैनोकणों के आकार के बीच इंटरफेसियल ऊर्जा पर निर्भर गलनांक वाले तापमान प्रकार्य को उत्पन्न करता है। नमूना की गणना से पता चलता है कि तरल अवस्था छोटे नैनोकणों के लिए कम तापमान पर बनता है। एक बार जब तरल अवस्था बन जाता है, तो मुक्त ऊर्जा की स्थिति जल्दी बदल जाती है और गलनांक का पक्ष लेती है। LNG नमूना के अनुसार समीकरण 6 एक गोलाकार नैनोकण के लिए गलनांक की स्थिति देता है।[20]

बॉन्ड-आदेश-लंबाई-शक्ति (BOLS) नमूना

बॉन्ड-आदेश-लम्बाई-ताकत (BOLS) नमूना गलनांक बिंदु अवसाद को समझाने के लिए एक परमाणु दृष्टिकोण को नियोजित करता है।[20] यह नमूना शास्त्रीय ऊष्मागतिकीय दृष्टिकोण के शिवाय व्यक्तिगत परमाणुओं की संसक्त ऊर्जा पर केंद्रित है। BOLS नमूना अलग-अलग परमाणुओं के गलनांक के तापमान की गणना उनके संयोजी बंधों के योग से करता है। परिणामस्वरूप, BOLS भविष्यवाणी करता है कि नैनोकण की सतह परतें नैनोकण के बड़े हिस्से की तुलना में कम तापमान पर पिघलेंगी।

BOLS तंत्र बताता है कि यदि एक बंधन टूट जाता है तो शेष पड़ोसी छोटे और मजबूत हो जाते हैं। कम समन्वित परमाणुओं की संसंजक ऊर्जा, या बंधन ऊर्जा का योग,तापीय स्थिरता को निर्धारित करता है, जिसमें गलनांक, वाष्पीकरण और अन्य अवस्था संक्रमण सम्मलित हैं। कम किया गया CN नैनोकण की सतह के पास परमाणुओं के बीच संतुलन बंधन की लंबाई को बदलता है। बांड संतुलन की लंबाई की ओर शिथिल हो जाते हैं, जिससे परमाणुओं के बीच प्रति बंधन को जोड़ने वाली ऊर्जा को बढ़ाते हैं, जो विशिष्ट अंतर-परमाणु क्षमता के सटीक रूप से स्वतंत्र होती हैं। यद्यपि, सतह के परमाणुओं के लिए एकीकृत संसंजक ऊर्जा कम समन्वय संख्या और संसंजक ऊर्जा में समग्र कमी के कारण थोक परमाणुओं की तुलना में बहुत कम है।

कोर-खोल विन्यास का उपयोग करते हुए, नैनोकणों के गलनांक बिंदु अवसाद में सबसे बाहरी दो परमाणु परतों का प्रभुत्व होता है, फिर भी कोर आंतरिक में परमाणु उनकी थोक प्रकृति बनाए रखते हैं।

BOLS नमूना और कोर-खोल संरचना को नैनोसंरचनाएँ की अन्य आकार निर्भरताओं जैसे यांत्रिक शक्ति, रासायनिक और तापीय स्थिरता, जाली गतिशीलता (प्रकाशीय और ध्वनिक फोनन), फोटॉन उत्सर्जन और अवशोषण, इलेक्ट्रॉनिक कोलेवल शिफ्ट और प्रकार्य का कार्य मॉड्यूलेशन पर लागू किया गया है, विभिन्न तापमानों पर चुंबकत्व, और इलेक्ट्रॉन ध्रुवीकरण आदि के कारण ढांकता हुआ। उपर्युक्त आकार निर्भरता में प्रयोगात्मक अवलोकनों का पुनरुत्पादन महसूस किया गया है। मात्रात्मक जानकारी, जैसे कि एक पृथक परमाणु का ऊर्जा स्तर और व्यक्तिगत डिमर(मंदक) की कंपन आवृत्ति, BOLS भविष्यवाणियों को मापा आकार निर्भरता से मिलान करके प्राप्त की गई है।[21]

कण आकार

नैनोकणों का आकार नैनोकणों के गलनांक को प्रभावित करता है। एक संपूर्ण क्षेत्र से पहलू, किनारे और विचलन सभी गलनांक बिंदु अवसाद के परिमाण को बदलते हैं।[16]ये आकार परिवर्तन सतह से आयतन के अनुपात को प्रभावित करते हैं, जो एक नैनोसंरचना की संसक्त ऊर्जा और तापीय गुणों को प्रभावित करता है। समीकरण 7 एक नैनोकण के सैद्धांतिक गलनांक बिंदु के लिए उसके आकार और आकार के आधार पर एक सामान्य आकार सही सूत्र देता है।[16]


कहा पे: c=सामग्री स्थिरांक
z=कण का आकार पैरामीटर

आकार का पैरामीटर गोले के लिए 1 और बहुत लंबे तार के लिए 3/2 है, यह दर्शाता है कि नैनोकणों की तुलना में नैनोवायरों में गलनांक-बिंदु अवसाद को दबा दिया जाता है। पिछले प्रायोगिक आंकड़े से पता चलता है कि नैनोपैमाने टिन प्लेटलेट्स थोक गलनांक वाले तापमान के 10 °C की संकीर्ण सीमा के भीतर पिघलते हैं।[8]गोलाकार टिन नैनोकणों की तुलना में इन प्लेटलेट्स का गलनांक अवसाद दबा हुआ था।[4]

सब्सट्रेट

कई नैनोकणों के गलनांक वाले सतत अनुकरण का सिद्धांत है कि सहायक सब्सट्रेट एक नैनोकण के गलनांक-बिंदु अवसाद की सीमा को प्रभावित करता है।[1][22] ये नमूना सब्सट्रेट सामग्री के बीच ऊर्जावान अंतःक्रियाओं के लिए जिम्मेदार हैं। एक मुक्त नैनोकण, जैसा कि कई सैद्धांतिक नमूना मानते हैं, नैनोकण और सब्सट्रेट के बीच संसक्त ऊर्जा की अनुपस्थिति के कारण एक समर्थित कण की तुलना में एक अलग गलनांक का तापमान (समान्यता कम) होता है। यद्यपि, एक फ्रीस्टैंडिंग(स्वतंत्र) नैनोकण के गुणों का मापन असंभव रहता है, इसलिए प्रयोग के माध्यम से परस्पर क्रिया की सीमा को सत्यापित नहीं किया जा सकता है। अंततः, सबस्ट्रेट्स वर्तमान में सभी नैनोकण अनुप्रयोगों के लिए नैनोकणों का समर्थन करते हैं, इसलिए सब्सट्रेट/नैनोकण की परस्पर क्रिया हमेशा मौजूद रहती है और गलनांक बिंदु अवसाद को प्रभावित करते हैं।

विलेयता

आकार-दबाव सन्निकटन के भीतर, जो सतह के तनाव और कण की वक्रता से प्रेरित तनाव पर विचार करता है, यह दिखाया गया था कि कण का आकार एक गलनक्रांतिक बिंदु (Fe-C) की संरचना और तापमान को प्रभावित करता है,[1] Fe और Fe:Mo नैनोक्लस्टर[23] में C की विलेयता।[24] विलेयता कम होने से नैनोकणों के उत्प्रेरक गुण प्रभावित हो सकते हैं। वास्तव में यह दिखाया गया है कि Fe-C मिश्रणों की आकार-प्रेरित अस्थिरता सबसे पतले नैनोट्यूब के लिए ऊष्मागतिकीय सीमा का प्रतिनिधित्व करती है जिसे Fe नैनो उत्प्रेरक से उगाया जा सकता है।[23]

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 Jiang, Aiqin; Awasthi, Neha; Kolmogorov, Aleksey N.; Setyawan, Wahyu; Börjesson, Anders; Bolton, Kim; Harutyunyan, Avetik R.; Curtarolo, Stefano (2007). "मुक्त और एल्युमिना समर्थित Fe-C नैनोकणों के तापीय व्यवहार का सैद्धांतिक अध्ययन". Phys. Rev. B. 75 (20): 205426. arXiv:cond-mat/0612562. Bibcode:2007PhRvB..75t5426J. doi:10.1103/PhysRevB.75.205426. S2CID 41977362.
  2. 2.0 2.1 2.2 Sun, J.; Simon, S.L. (2007). "एल्यूमीनियम नैनोकणों का पिघलने वाला व्यवहार". Thermochimica Acta. 463 (1–2): 32. doi:10.1016/j.tca.2007.07.007.
  3. Lopeandía, A.F.; Rodríguez-Viejo, J. (2007). "Size-dependent melting and supercooling of Ge nanoparticles embedded in a SiO2 thin film". Thermochimica Acta. 461 (1–2): 82. doi:10.1016/j.tca.2007.04.010.
  4. 4.0 4.1 4.2 Lai, S. L.; Guo, J. Y.; Petrova, V.; Ramanath, G.; Allen, L. H. (1996). "Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements". Phys. Rev. Lett. 77 (1): 99–102. Bibcode:1996PhRvL..77...99L. doi:10.1103/PhysRevLett.77.99. PMID 10061781.
  5. Buffat, Ph.; Borel, J-P. (1976). "सोने के कणों के पिघलने के तापमान पर आकार का प्रभाव". Phys. Rev. A. 13 (6): 2287. Bibcode:1976PhRvA..13.2287B. doi:10.1103/PhysRevA.13.2287.
  6. Wildgoose, Gregory G.; Banks, Craig E.; Compton, Richard G. (2005). "Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes: Methods and Applications". Small. 2 (2): 182–93. doi:10.1002/smll.200500324. PMID 17193018.
  7. Takagi, M. (1954). "पतली धातु फिल्मों के तरल-ठोस संक्रमण का इलेक्ट्रॉन-विवर्तन अध्ययन". J. Phys. Soc. Jpn. 9 (3): 359. Bibcode:1954JPSJ....9..359T. doi:10.1143/JPSJ.9.359.
  8. 8.0 8.1 Allen, G.L.; Bayles, R.A.; Gile, W.W.; Jesser, W.A. (1986). "शुद्ध धातुओं का छोटा कण पिघलना". Thin Solid Films. 144 (2): 297. Bibcode:1986TSF...144..297A. doi:10.1016/0040-6090(86)90422-0.
  9. Pawlow, P. (1909). "Ober die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines festen Körpers (Zusatz.)". Zeitschrift für Physikalische Chemie. 65U: 545–548. doi:10.1515/zpch-1909-6532. S2CID 202510144.
  10. 10.0 10.1 Coombes, C. J. (1972). "सीसा और इंडियम के छोटे कणों का पिघलना". Journal of Physics F: Metal Physics. 2 (3): 441–449. Bibcode:1972JPhF....2..441C. doi:10.1088/0305-4608/2/3/013.
  11. Wronski, C R M. (1967). "टिन के छोटे कणों के गलनांक के आकार की निर्भरता". British Journal of Applied Physics. 18 (12): 1731–1737. Bibcode:1967BJAP...18.1731W. doi:10.1088/0508-3443/18/12/308.
  12. Blackman, M.; Sambles, J. R. (1970). "स्थिर तापमान पर वाष्पीकरण के दौरान बहुत छोटे कणों का पिघलना". Nature. 226 (5249): 938. Bibcode:1970Natur.226..938B. doi:10.1038/226938a0. PMID 16057606. S2CID 4246595.
  13. Sambles, J. R. (1971). "An electron microscope study of evaporating gold particles: The Kelvin equation for liquid gold and the lowering of the melting point of solid gold particles". Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 324 (1558): 339–351. Bibcode:1971RSPSA.324..339S. doi:10.1098/rspa.1971.0143. S2CID 97700443.
  14. Sattler, K.D. (2010). Handbook of Nanophysics: Functional Nanomaterials. Handbook of Nanophysics. CRC Press. p. 2.9. ISBN 978-1-4200-7553-3.
  15. Qi, W. H.; Wang, M. P. (2002). "नैनोपार्टिकल की संसंजक ऊर्जा पर आकार का प्रभाव". J. Mater. Sci. Lett. 21 (22): 1743. doi:10.1023/A:1020904317133. S2CID 137302841.
  16. 16.0 16.1 16.2 16.3 16.4 Nanda, K. K.; Sahu, S. N.; Behera, S. N. (2002). "निम्न-आयामी प्रणालियों के आकार-निर्भर पिघलने के लिए तरल-बूंद मॉडल". Phys. Rev. A. 66 (1): 013208. Bibcode:2002PhRvA..66a3208N. doi:10.1103/PhysRevA.66.013208.
  17. Frenken, Joost W. M.; Veen, J. F. van der (1985). "सतह के पिघलने का अवलोकन". Phys. Rev. Lett. 54 (2): 134–137. Bibcode:1985PhRvL..54..134F. doi:10.1103/PhysRevLett.54.134. hdl:1887/71364. PMID 10031263.
  18. 18.0 18.1 18.2 Farrell, H. H.; Van Siclen, C. D. (2007). "बंधन ऊर्जा, वाष्प दबाव, और अर्धचालक नैनोकणों का गलनांक". Journal of Vacuum Science and Technology B. 25 (4): 1441. Bibcode:2007JVSTB..25.1441F. doi:10.1116/1.2748415.
  19. Sakai, H. (1996). "सतह से छोटे कणों का पिघलना". Surf. Sci. 351 (1–3): 285. Bibcode:1996SurSc.351..285S. doi:10.1016/0039-6028(95)01263-X. S2CID 93267163.
  20. 20.0 20.1 20.2 Sun, Chang Q.; Wang, Y.; Tay, B. K.; Li, S.; Huang, H.; Zhang, Y. B. (2002). "एक नैनोसॉलिड के गलनांक और सतह के परमाणु की संसंजक ऊर्जा के बीच सहसंबंध". J. Phys. Chem. B. 106 (41): 10701. doi:10.1021/jp025868l.
  21. 21.0 21.1 Sun, C. Q. (2007). "Size dependence of nanostructures: impact or bond order deficiency" (PDF). Progress in Solid State Chemistry. 35: 1–159. doi:10.1016/j.progsolidstchem.2006.03.001.
  22. Couchman, P. R.; Jesser, W. A. (1977). "धातुओं में पिघलने के तापमान की आकार निर्भरता का थर्मोडायनामिक सिद्धांत". Nature. 269 (5628): 481. Bibcode:1977Natur.269..481C. doi:10.1038/269481a0. S2CID 4196869.
  23. 23.0 23.1 Harutyunyan, A. R.; Awasthi, N.; Jiang, A.; Setyawan, W.; Mora, E.; Tokune, T.; Bolton, K.; Curtarolo, S. (2008). "Fe नैनो-क्लस्टर में कम कार्बन घुलनशीलता और एकल-दीवार वाले कार्बन नैनोट्यूब के विकास के लिए निहितार्थ". Phys. Rev. Lett. 100 (19): 195502. arXiv:0803.3191. Bibcode:2008PhRvL.100s5502H. doi:10.1103/PhysRevLett.100.195502. PMID 18518458. S2CID 1319460.
  24. Curtarolo, Stefano; Awasthi, Neha; Setyawan, Wahyu; Jiang, Aiqin; Bolton, Kim; Tokune, Toshio; Harutyunyan, Avetik R. (2008). "Influence of Mo on the Fe:Mo:C nano-catalyst thermodynamics for single-walled carbon nanotube growth". Phys. Rev. B. 78 (5): 054105. arXiv:0803.3206. Bibcode:2008PhRvB..78e4105C. doi:10.1103/PhysRevB.78.054105. S2CID 34332297.