लिंक (क्नॉट सिद्धांत): Difference between revisions
No edit summary |
No edit summary |
||
Line 18: | Line 18: | ||
अधिकांशतः लिंक शब्द का प्रयोग गोले के किसी उपमान का वर्णन करने के लिए किया जाता है <math>S^n</math> गोलाकारों की एक सीमित संख्या के असंयुक्त संघ के लिए भिन्न रूपी, <math>S^j</math>. | अधिकांशतः लिंक शब्द का प्रयोग गोले के किसी उपमान का वर्णन करने के लिए किया जाता है <math>S^n</math> गोलाकारों की एक सीमित संख्या के असंयुक्त संघ के लिए भिन्न रूपी, <math>S^j</math>. | ||
इस प्रकार पूर्ण व्यापकता में, लिंक शब्द अनिवार्य रूप से गाँठ शब्द के समान है - संदर्भ यह है कि किसी के पास मैनिफोल्ड एन का एक सबमैनिफोल्ड एम है (जिसे तुच्छ रूप से एम्बेडेड माना जाता है) और N में M की गैर-तुच्छ एम्बेडिंग, गैर-तुच्छ है इस अर्थ में कि दूसरा एम्बेडिंग पहले से समस्थानिक नहीं है। यदि एम को डिस्कनेक्ट किया गया है, तो एम्बेडिंग को एक लिंक कहा जाता है (या लिंक किया गया कहा जाता है)। यदि M जुड़ा हुआ है, तो इसे गाँठ कहा जाता है। | इस प्रकार पूर्ण व्यापकता में, लिंक शब्द अनिवार्य रूप से गाँठ शब्द के समान है - संदर्भ यह है कि किसी के पास मैनिफोल्ड एन का एक सबमैनिफोल्ड एम है (जिसे तुच्छ रूप से एम्बेडेड माना जाता है) और N में M की गैर-तुच्छ एम्बेडिंग, गैर-तुच्छ है इस अर्थ में कि दूसरा एम्बेडिंग पहले से समस्थानिक नहीं है। यदि एम को डिस्कनेक्ट किया गया है, तो एम्बेडिंग को एक लिंक कहा जाता है (या '''लिंक''' किया गया कहा जाता है)। यदि M जुड़ा हुआ है, तो इसे गाँठ कहा जाता है। | ||
=== उलझनें, डोरी की कड़ियाँ, और चोटियाँ === | === उलझनें, डोरी की कड़ियाँ, और चोटियाँ === | ||
Line 52: | Line 52: | ||
|issue=6 | |issue=6 | ||
|doi-access=free | |doi-access=free | ||
}}</ref> - उलझन एक एम्बेडिंग है | }}</ref> - '''उलझन''' एक एम्बेडिंग है | ||
:<math>T\colon X \to \mathbf{R}^2 \times I</math> | :<math>T\colon X \to \mathbf{R}^2 \times I</math> | ||
सीमा के साथ एक (चिकनी) कॉम्पैक्ट 1-मैनिफोल्ड की <math>(X,\partial X)</math> समतल समय अंतराल में <math>I=[0,1],</math> ऐसी कि सीमा <math>T(\partial X)</math> में अंतर्निहित है | सीमा के साथ एक (चिकनी) कॉम्पैक्ट 1-मैनिफोल्ड की <math>(X,\partial X)</math> समतल समय अंतराल में <math>I=[0,1],</math> ऐसी कि सीमा <math>T(\partial X)</math> में अंतर्निहित है | ||
:<math>\mathbf{R} \times \{0,1\}</math> (<math>\{0,1\} = \partial I</math>). | :<math>\mathbf{R} \times \{0,1\}</math> (<math>\{0,1\} = \partial I</math>). | ||
एक उलझन का प्रकार मैनिफोल्ड X है‚ एक निश्चित एम्बेडिंग <math>\partial X.</math> भी है | एक उलझन का '''प्रकार''' मैनिफोल्ड X है‚ एक निश्चित एम्बेडिंग <math>\partial X.</math> भी है | ||
सामान्यतः, सीमा के साथ जुड़ा हुआ कॉम्पैक्ट 1-मैनिफोल्ड एक अंतराल है <math>I=[0,1]</math> या एक वृत्त <math>S^1</math> (कॉम्पैक्टनेस खुले अंतराल को बाहर कर देती है <math>(0,1)</math> और आधा खुला अंतराल <math>[0,1),</math> इनमें से कोई भी गैर-तुच्छ एम्बेडिंग उत्पन्न नहीं करता है क्योंकि खुले सिरे का कारण है कि उन्हें एक बिंदु तक छोटा किया जा सकता है), इसलिए संभवतः डिस्कनेक्ट किया गया कॉम्पैक्ट 1-मैनिफोल्ड एन अंतराल का एक संग्रह है <math>I=[0,1]</math> और एम वृत्त <math>S^1.</math> वह स्थिति जिसमें X की सीमा स्थित है | सामान्यतः, सीमा के साथ जुड़ा हुआ कॉम्पैक्ट 1-मैनिफोल्ड एक अंतराल है <math>I=[0,1]</math> या एक वृत्त <math>S^1</math> (कॉम्पैक्टनेस खुले अंतराल को बाहर कर देती है <math>(0,1)</math> और आधा खुला अंतराल <math>[0,1),</math> इनमें से कोई भी गैर-तुच्छ एम्बेडिंग उत्पन्न नहीं करता है क्योंकि खुले सिरे का कारण है कि उन्हें एक बिंदु तक छोटा किया जा सकता है), इसलिए संभवतः डिस्कनेक्ट किया गया कॉम्पैक्ट 1-मैनिफोल्ड एन अंतराल का एक संग्रह है <math>I=[0,1]</math> और एम वृत्त <math>S^1.</math> वह स्थिति जिसमें X की सीमा स्थित है | ||
Line 68: | Line 68: | ||
और फिर द्वि-आयामी क्षैतिज दिशा में जाने में सक्षम होना (<math>\mathbf{R}^2</math>) | और फिर द्वि-आयामी क्षैतिज दिशा में जाने में सक्षम होना (<math>\mathbf{R}^2</math>) | ||
इन पंक्तियों के मध्य; कोई इन्हें एक गाँठ आरेख के अनुरूप, एक उलझन आरेख बनाने के लिए प्रक्षेपित कर सकता है। | इन पंक्तियों के मध्य; कोई इन्हें एक गाँठ आरेख के अनुरूप, एक '''उलझन आरेख''' बनाने के लिए प्रक्षेपित कर सकता है। | ||
टेंगल्स में लिंक (यदि ''X'' में केवल वृत्त सम्मिलित हैं), ब्रैड्स और इसके अतिरिक्त अन्य सम्मिलित हैं - उदाहरण के लिए, दो रेखाओं को एक साथ जोड़ने वाला एक किनारा और जिसके चारों ओर एक वृत्त जुड़ा हुआ है। | टेंगल्स में लिंक (यदि ''X'' में केवल वृत्त सम्मिलित हैं), ब्रैड्स और इसके अतिरिक्त अन्य सम्मिलित हैं - उदाहरण के लिए, दो रेखाओं को एक साथ जोड़ने वाला एक किनारा और जिसके चारों ओर एक वृत्त जुड़ा हुआ है। | ||
Line 74: | Line 74: | ||
इस संदर्भ में, चोटी को एक ऐसी उलझन के रूप में परिभाषित किया जाता है जो सदैव नीचे की ओर जाती है - जिसके व्युत्पन्न में सदैव ऊर्ध्वाधर (''I'') दिशा में एक गैर-शून्य घटक होता है। इस प्रकार विशेष रूप से, इसमें केवल अंतराल सम्मिलित होने चाहिए, न कि अपने आप में दोहराव; चूँकि, इस पर कोई विवरण नहीं दिया गया है कि लाइन के सिरे कहाँ हैं। | इस संदर्भ में, चोटी को एक ऐसी उलझन के रूप में परिभाषित किया जाता है जो सदैव नीचे की ओर जाती है - जिसके व्युत्पन्न में सदैव ऊर्ध्वाधर (''I'') दिशा में एक गैर-शून्य घटक होता है। इस प्रकार विशेष रूप से, इसमें केवल अंतराल सम्मिलित होने चाहिए, न कि अपने आप में दोहराव; चूँकि, इस पर कोई विवरण नहीं दिया गया है कि लाइन के सिरे कहाँ हैं। | ||
एक स्ट्रिंग लिंक एक उलझन है जिसमें केवल अंतराल होते हैं, प्रत्येक स्ट्रैंड के सिरों को (0,0), (0,1), (1,0), (1,1), (2,0) पर स्थित होना आवश्यक है। 2, 1),... - अर्थात, पूर्णांकों को जोड़ना और उसी क्रम में समाप्त करना जिस क्रम में वह प्रारंभ हुए थे (कोई अन्य निश्चित बिंदुओं के समूह का उपयोग कर सकता है); यदि इसमें ℓ घटक हैं, तब हम इसे ℓ-घटक स्ट्रिंग लिंक कहते हैं। एक स्ट्रिंग लिंक को ब्रैड होने की आवश्यकता नहीं है - यह अपने आप में दोगुना हो सकता है, इस प्रकार जैसे कि दो-घटक स्ट्रिंग लिंक जिसमें एक [[ओवरहैंड गाँठ]] होती है। एक चोटी जो एक स्ट्रिंग लिंक भी है, [[शुद्ध चोटी]] कहलाती है, और ऐसी सामान्य धारणा से मेल खाती है। | एक '''स्ट्रिंग लिंक''' एक उलझन है जिसमें केवल अंतराल होते हैं, प्रत्येक स्ट्रैंड के सिरों को (0,0), (0,1), (1,0), (1,1), (2,0) पर स्थित होना आवश्यक है। 2, 1),... - अर्थात, पूर्णांकों को जोड़ना और उसी क्रम में समाप्त करना जिस क्रम में वह प्रारंभ हुए थे (कोई अन्य निश्चित बिंदुओं के समूह का उपयोग कर सकता है); यदि इसमें ℓ घटक हैं, तब हम इसे ℓ-घटक स्ट्रिंग लिंक कहते हैं। एक स्ट्रिंग लिंक को ब्रैड होने की आवश्यकता नहीं है - यह अपने आप में दोगुना हो सकता है, इस प्रकार जैसे कि दो-घटक स्ट्रिंग लिंक जिसमें एक [[ओवरहैंड गाँठ]] होती है। एक चोटी जो एक स्ट्रिंग लिंक भी है, [[शुद्ध चोटी]] कहलाती है, और ऐसी सामान्य धारणा से मेल खाती है। | ||
टेंगल्स और स्ट्रिंग लिंक का मुख्य विधि मूल्य यह है कि उनमें बीजगणितीय संरचना होती है। इस प्रकार टेंगल्स की आइसोटोपी कक्षाएं एक [[टेंसर श्रेणी]] बनाती हैं, जहां श्रेणी संरचना के लिए, कोई दो टेंगल्स की रचना कर सकता है यदि एक का निचला सिरा दूसरे के शीर्ष सिरे के सामान्तर होता है (जिससे कि सीमाओं को एक साथ जोड़ा जा सके), उन्हें ढेर करके - वह नहीं बनाते हैं वस्तुतः एक श्रेणी बनाते हैं (बिंदुवार) क्योंकि उनकी कोई पहचान नहीं है, क्योंकि एक छोटी सी उलझन भी ऊर्ध्वाधर स्थान लेती है, किन्तु आइसोटोपी तक वह ऐसा करते हैं। इस प्रकार टेन्सर संरचना उलझनों के संयोजन द्वारा दी जाती है - एक उलझन को दूसरे के दाईं ओर रखना। | टेंगल्स और स्ट्रिंग लिंक का मुख्य विधि मूल्य यह है कि उनमें बीजगणितीय संरचना होती है। इस प्रकार टेंगल्स की आइसोटोपी कक्षाएं एक [[टेंसर श्रेणी]] बनाती हैं, जहां श्रेणी संरचना के लिए, कोई दो टेंगल्स की रचना कर सकता है यदि एक का निचला सिरा दूसरे के शीर्ष सिरे के सामान्तर होता है (जिससे कि सीमाओं को एक साथ जोड़ा जा सके), उन्हें ढेर करके - वह नहीं बनाते हैं वस्तुतः एक श्रेणी बनाते हैं (बिंदुवार) क्योंकि उनकी कोई पहचान नहीं है, क्योंकि एक छोटी सी उलझन भी ऊर्ध्वाधर स्थान लेती है, किन्तु आइसोटोपी तक वह ऐसा करते हैं। इस प्रकार टेन्सर संरचना उलझनों के संयोजन द्वारा दी जाती है - एक उलझन को दूसरे के दाईं ओर रखना। |
Revision as of 12:50, 14 July 2023
गणितीय गांठ सिद्धांत में, एक शृंखला गांठों का एक संग्रह है जो प्रतिच्छेद नहीं करती हैं, किन्तु जो एक साथ जुड़ी (या गांठदार) हो सकती हैं। एक गाँठ को एक घटक के साथ एक शृंखला के रूप में वर्णित किया जा सकता है। इस प्रकार कड़ियों और गांठों का अध्ययन गणित की एक शाखा में किया जाता है जिसे गांठ सिद्धांत कहा जाता है। इस परिभाषा में निहित यह है कि एक तुच्छ संदर्भ लिंक है, जिसे सामान्यतः अनलिंक कहा जाता है, किन्तु इस शब्द का उपयोग कभी-कभी ऐसे संदर्भ में भी किया जाता है जहां तुच्छ लिंक की कोई धारणा नहीं होती है।
उदाहरण के लिए, 3-आयामी अंतरिक्ष में एक सह-आयाम 2 लिंक 3-आयामी यूक्लिडियन अंतरिक्ष (या अधिकांशतः 3-गोलाकार) का एक उप-स्थान है, इस प्रकार जिसके जुड़े घटक मंडलियों के होम्योमॉर्फिक हैं।
एक से अधिक घटकों वाले लिंक का सबसे सरल गैर-तुच्छ उदाहरण हॉफ लिंक कहा जाता है, जिसमें दो वृत्त (या अननॉट्स) एक साथ जुड़े होते हैं।
बोरोमीयन रिंगों में वृत्त इस तथ्य के अतिरिक्त सामूहिक रूप से जुड़े हुए हैं कि उनमें से कोई भी दो सामान्यतः जुड़े हुए नहीं हैं। इस प्रकार बोरोमियन वलय एक ब्रूनियन लिंक बनाते हैं और वास्तव में इस तरह के सबसे सरल लिंक का निर्माण करते हैं।
सामान्यीकरण
एक लिंक की धारणा को अनेक तरीकों से सामान्यीकृत किया जा सकता है।
सामान्य अनेक गुना
अधिकांशतः लिंक शब्द का प्रयोग गोले के किसी उपमान का वर्णन करने के लिए किया जाता है गोलाकारों की एक सीमित संख्या के असंयुक्त संघ के लिए भिन्न रूपी, .
इस प्रकार पूर्ण व्यापकता में, लिंक शब्द अनिवार्य रूप से गाँठ शब्द के समान है - संदर्भ यह है कि किसी के पास मैनिफोल्ड एन का एक सबमैनिफोल्ड एम है (जिसे तुच्छ रूप से एम्बेडेड माना जाता है) और N में M की गैर-तुच्छ एम्बेडिंग, गैर-तुच्छ है इस अर्थ में कि दूसरा एम्बेडिंग पहले से समस्थानिक नहीं है। यदि एम को डिस्कनेक्ट किया गया है, तो एम्बेडिंग को एक लिंक कहा जाता है (या लिंक किया गया कहा जाता है)। यदि M जुड़ा हुआ है, तो इसे गाँठ कहा जाता है।
उलझनें, डोरी की कड़ियाँ, और चोटियाँ
जबकि (1-आयामी) लिंक को हलकों के एम्बेडिंग के रूप में परिभाषित किया गया है, ब्रैड सिद्धांत के अनुसार, एम्बेडेड अंतराल (स्ट्रैंड्स) पर विचार करना अधिकांशतः रोचक और विशेष रूप से विधिक रूप से उपयोगी होता है।
सामान्यतः , कोई एक उलझन पर विचार कर सकता है[1][2] - उलझन एक एम्बेडिंग है
सीमा के साथ एक (चिकनी) कॉम्पैक्ट 1-मैनिफोल्ड की समतल समय अंतराल में ऐसी कि सीमा में अंतर्निहित है
- ().
एक उलझन का प्रकार मैनिफोल्ड X है‚ एक निश्चित एम्बेडिंग भी है
सामान्यतः, सीमा के साथ जुड़ा हुआ कॉम्पैक्ट 1-मैनिफोल्ड एक अंतराल है या एक वृत्त (कॉम्पैक्टनेस खुले अंतराल को बाहर कर देती है और आधा खुला अंतराल इनमें से कोई भी गैर-तुच्छ एम्बेडिंग उत्पन्न नहीं करता है क्योंकि खुले सिरे का कारण है कि उन्हें एक बिंदु तक छोटा किया जा सकता है), इसलिए संभवतः डिस्कनेक्ट किया गया कॉम्पैक्ट 1-मैनिफोल्ड एन अंतराल का एक संग्रह है और एम वृत्त वह स्थिति जिसमें X की सीमा स्थित है
कहता है कि अंतराल या तब दो रेखाओं को जोड़ते हैं या किसी एक रेखा पर दो बिंदुओं को जोड़ते हैं, किन्तु वृत्तबं पर कोई शर्त नहीं लगाते हैं।
कोई व्यक्ति उलझनों को एक ऊर्ध्वाधर दिशा (I) के रूप में देख सकता है, जो दो रेखाओं के मध्य स्थित है और संभवतः उन्हें जोड़ती है
- ( और ),
और फिर द्वि-आयामी क्षैतिज दिशा में जाने में सक्षम होना ()
इन पंक्तियों के मध्य; कोई इन्हें एक गाँठ आरेख के अनुरूप, एक उलझन आरेख बनाने के लिए प्रक्षेपित कर सकता है।
टेंगल्स में लिंक (यदि X में केवल वृत्त सम्मिलित हैं), ब्रैड्स और इसके अतिरिक्त अन्य सम्मिलित हैं - उदाहरण के लिए, दो रेखाओं को एक साथ जोड़ने वाला एक किनारा और जिसके चारों ओर एक वृत्त जुड़ा हुआ है।
इस संदर्भ में, चोटी को एक ऐसी उलझन के रूप में परिभाषित किया जाता है जो सदैव नीचे की ओर जाती है - जिसके व्युत्पन्न में सदैव ऊर्ध्वाधर (I) दिशा में एक गैर-शून्य घटक होता है। इस प्रकार विशेष रूप से, इसमें केवल अंतराल सम्मिलित होने चाहिए, न कि अपने आप में दोहराव; चूँकि, इस पर कोई विवरण नहीं दिया गया है कि लाइन के सिरे कहाँ हैं।
एक स्ट्रिंग लिंक एक उलझन है जिसमें केवल अंतराल होते हैं, प्रत्येक स्ट्रैंड के सिरों को (0,0), (0,1), (1,0), (1,1), (2,0) पर स्थित होना आवश्यक है। 2, 1),... - अर्थात, पूर्णांकों को जोड़ना और उसी क्रम में समाप्त करना जिस क्रम में वह प्रारंभ हुए थे (कोई अन्य निश्चित बिंदुओं के समूह का उपयोग कर सकता है); यदि इसमें ℓ घटक हैं, तब हम इसे ℓ-घटक स्ट्रिंग लिंक कहते हैं। एक स्ट्रिंग लिंक को ब्रैड होने की आवश्यकता नहीं है - यह अपने आप में दोगुना हो सकता है, इस प्रकार जैसे कि दो-घटक स्ट्रिंग लिंक जिसमें एक ओवरहैंड गाँठ होती है। एक चोटी जो एक स्ट्रिंग लिंक भी है, शुद्ध चोटी कहलाती है, और ऐसी सामान्य धारणा से मेल खाती है।
टेंगल्स और स्ट्रिंग लिंक का मुख्य विधि मूल्य यह है कि उनमें बीजगणितीय संरचना होती है। इस प्रकार टेंगल्स की आइसोटोपी कक्षाएं एक टेंसर श्रेणी बनाती हैं, जहां श्रेणी संरचना के लिए, कोई दो टेंगल्स की रचना कर सकता है यदि एक का निचला सिरा दूसरे के शीर्ष सिरे के सामान्तर होता है (जिससे कि सीमाओं को एक साथ जोड़ा जा सके), उन्हें ढेर करके - वह नहीं बनाते हैं वस्तुतः एक श्रेणी बनाते हैं (बिंदुवार) क्योंकि उनकी कोई पहचान नहीं है, क्योंकि एक छोटी सी उलझन भी ऊर्ध्वाधर स्थान लेती है, किन्तु आइसोटोपी तक वह ऐसा करते हैं। इस प्रकार टेन्सर संरचना उलझनों के संयोजन द्वारा दी जाती है - एक उलझन को दूसरे के दाईं ओर रखना।
एक निश्चित ℓ के लिए, ℓ-घटक स्ट्रिंग लिंक की आइसोटोपी कक्षाएं एक मोनॉइड बनाती हैं (कोई सभी ℓ-घटक स्ट्रिंग लिंक बना सकता है, और एक पहचान होती है), किन्तु एक समूह नहीं, क्योंकि स्ट्रिंग लिंक की आइसोटोपी कक्षाओं में व्युत्क्रम की आवश्यकता नहीं होती है। चूँकि, स्ट्रिंग लिंक के समवर्ती वर्गों (और इस प्रकार समरूप वर्ग) में व्युत्क्रम होता है, इस प्रकार जहाँ स्ट्रिंग लिंक को उल्टा करके व्युत्क्रम दिया जाता है, और इस प्रकार एक समूह बनता है।
प्रत्येक लिंक को एक स्ट्रिंग लिंक बनाने के लिए भिन्न किया जा सकता है, चूंकि यह अद्वितीय नहीं है और लिंक के इनवेरिएंट को कभी-कभी स्ट्रिंग लिंक के इनवेरिएंट के रूप में समझा जा सकता है - उदाहरण के लिए, मिल्नोर के इनवेरिएंट के स्थितियों में यह है। बंद चोटियों से तुलना करें.
यह भी देखें
- अतिशयोक्तिपूर्ण लिंक
- अनलिंक करें
- लिंक समूह
संदर्भ
- ↑ Habegger, Nathan; Lin, X.S. (1990), "The classification of links up to homotopy", Journal of the American Mathematical Society, 2, American Mathematical Society, 3 (2): 389–419, doi:10.2307/1990959, JSTOR 1990959
- ↑ Habegger, Nathan; Masbaum, Gregor (2000), "The Kontsevich integral and Milnor's invariants", Topology, 39 (6): 1253–1289, CiteSeerX 10.1.1.31.6675, doi:10.1016/S0040-9383(99)00041-5