हॉपफ मैनिफोल्ड: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 23: | Line 23: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 14/07/2023]] | [[Category:Created On 14/07/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 16:04, 24 July 2023
समष्टि ज्यामिति में, एक होपफ मैनिफोल्ड (Hopf 1948) पूर्णांकों के समूहकी एक मुक्त कार्रवाई द्वारा समष्टि सदिश समिष्ट (शून्य हटाए गए) के भागफल के रूप में प्राप्त किया जाता है, जिसमें होलोमोर्फिक संकुचन द्वारा जनरेटर का कार्य होता है। यहां, एक होलोमोर्फिक संकुचन एक मानचित्र ` है, जैसे कि एक पर्याप्त बड़ा पुनरावृत्ति किसी भी दिए गए कॉम्पैक्ट उपसमुच्चय को 0 के एक इच्छित रूप से छोटे निकट पर मैप करता है।
द्वि-आयामी हॉपफ मैनिफोल्ड्स को हॉपफ सतह कहा जाता है।
उदाहरण
एक विशिष्ट स्थिति में, एक रैखिक संकुचन द्वारा उत्पन्न होता है, सामान्यतः एक विकर्ण आव्यूह , जिसमें एक समष्टि संख्या, होती है। ऐसे मैनिफोल्ड को क्लासिकल हॉफ मैनिफोल्ड कहा जाता है।
गुण
एक हॉपफ मैनिफोल्ड , से भिन्न है। के लिए, यह गैर-काहलर है। वास्तव में, यह सहानुभूतिपूर्ण भी नहीं है क्योंकि दूसरा कोहोमोलोजी समूह शून्य है।
हाइपरकॉम्प्लेक्स संरचना
सम-आयामी हॉफ मैनिफोल्ड्स हाइपरकॉम्प्लेक्स संरचना को स्वीकार करते हैं। हॉपफ सतह क्वाटरनियोनिक आयाम 1 का एकमात्र कॉम्पैक्ट हाइपरकॉम्प्लेक्स मैनिफोल्ड है जो हाइपरकेहलर नहीं है।
संदर्भ
- Hopf, Heinz (1948), "Zur Topologie der komplexen Mannigfaltigkeiten", Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience Publishers, Inc., New York, pp. 167–185, MR 0023054
- Ornea, Liviu (2001) [1994], "Hopf manifold", Encyclopedia of Mathematics, EMS Press