सजातीय समन्वय वलय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[बीजगणितीय ज्यामिति]] में, [[बीजगणितीय विविधता]] ''V'' की सजातीय समन्वय अंगूठी ''R'' को बीजगणितीय विविधता के रूप में दिया गया है#किसी दिए गए आयाम के [[प्रक्षेप्य स्थान]] की विविधता ''N'' परिभाषा के अनुसार [[भागफल अंगूठी]] है


:''आर'' = ''के''[''एक्स''<sub>0</sub>, एक्स<sub>1</sub>, एक्स<sub>2</sub>, ..., एक्स<sub>''N''</sub>] /मैं


जहां I, V को परिभाषित करने वाला [[सजातीय आदर्श]] है, K बीजगणितीय रूप से बंद क्षेत्र है जिस पर V को परिभाषित किया गया है, और
[[बीजगणितीय ज्यामिति|'''बीजगणितीय ज्यामिति''']] में, किसी दिए गए आयाम ''N'' के प्रक्षेप्य स्थान की उप-विविधता के रूप में दी गई बीजगणितीय विविधता ''V'' की '''सजातीय समन्वय  वलय'''  ''R'' परिभाषा के अनुसार [[भागफल अंगूठी|भागफल  वलय]]  है


:के[एक्स<sub>0</sub>, एक्स<sub>1</sub>, एक्स<sub>2</sub>, ..., एक्स<sub>''N''</sub>]
:''R'' = ''K''[''X''<sub>0</sub>, ''X''<sub>1</sub>, ''X''<sub>2</sub>, ..., ''X<sub>N</sub>''] / ''I''


N + 1 चर X में [[बहुपद वलय]] है<sub>''i''</sub>. इसलिए बहुपद वलय स्वयं प्रक्षेप्य स्थान का सजातीय समन्वय वलय है, और आधार के किसी दिए गए विकल्प के लिए चर [[सजातीय निर्देशांक]] हैं (प्रक्षेप्य स्थान के अंतर्निहित [[सदिश स्थल]] में)आधार के चुनाव का मतलब है कि यह परिभाषा आंतरिक नहीं है, लेकिन [[सममित बीजगणित]] का उपयोग करके इसे ऐसा बनाया जा सकता है।
जहां ''I, V'' को परिभाषित करने वाला [[सजातीय आदर्श|सजातीय अनुकूल]] है, ''K'' बीजगणितीय रूप से संवृत क्षेत्र है जिस पर ''V'' को परिभाषित किया गया है, और
 
:''K''[''X''<sub>0</sub>, ''X''<sub>1</sub>, ''X''<sub>2</sub>, ..., ''X<sub>N</sub>'']
 
N + 1 वेरिएबल ````X<sub>''i''</sub> में [[बहुपद वलय]] है. इसलिए बहुपद वलय स्वयं प्रक्षेप्य स्थान का सजातीय समन्वय वलय है, और आधार के किसी दिए गए विकल्प के लिए वेरिएबल ````[[सजातीय निर्देशांक]] हैं (प्रक्षेप्य स्थान के अंतर्निहित [[सदिश स्थल]] में) है। इस प्रकार से आधार के चुनाव का प्रकार है कि यह परिभाषा आंतरिक नहीं है, चूंकि [[सममित बीजगणित]] का उपयोग करके इसे ऐसा बनाया जा सकता है।  


==निरूपण==
==निरूपण==


चूँकि V को विविधता माना जाता है, और इसलिए यह अप्रासंगिक बीजगणितीय सेट है, आदर्श I को [[प्रमुख आदर्श]] के रूप में चुना जा सकता है, और इसलिए R [[अभिन्न डोमेन]] है। समान परिभाषा का उपयोग सामान्य सजातीय आदर्शों के लिए किया जा सकता है, लेकिन परिणामी समन्वय रिंगों में गैर-शून्य निलपोटेंट तत्व और शून्य के अन्य विभाजक शामिल हो सकते हैं। [[योजना सिद्धांत]] के दृष्टिकोण से इन मामलों को प्रोज निर्माण के माध्यम से ही स्तर पर निपटाया जा सकता है।
चूँकि V को विविधता माना जाता है, और इसलिए यह अप्रासंगिक बीजगणितीय समुच्चय है, इस प्रकार से अनुकूल ''I'' को [[प्रमुख आदर्श|प्रमुख अनुकूल]] के रूप में चुना जा सकता है, और इसलिए R [[अभिन्न डोमेन]] है।और समान परिभाषा का उपयोग सामान्य सजातीय अनुकूलों के लिए किया जा सकता है, चूंकि परिणामी समन्वय वलय  में गैर-शून्य निलपोटेंट मूल  और शून्य के अन्य विभाजक सम्मिलित ```` हो सकते हैं। [[योजना सिद्धांत]] के दृष्टिकोण से इन स्तिथियों  को प्रोज निर्माण के माध्यम से ही स्तर पर निष्कासन किया जा सकता है।


सभी एक्स द्वारा उत्पन्न अप्रासंगिक आदर्श जे<sub>''i''</sub> खाली सेट से मेल खाता है, क्योंकि सभी सजातीय निर्देशांक प्रक्षेप्य स्थान के बिंदु पर गायब नहीं हो सकते हैं।
सभी ''X<sub>i</sub>'' द्वारा उत्पन्न अप्रासंगिक [[प्रमुख आदर्श|अनुकूल]] ''J'' रिक्त समुच्चय  से मेल खाता है, क्योंकि सभी सजातीय निर्देशांक प्रक्षेप्य स्थान के एक बिंदु पर विलुप्त  नहीं हो सकते हैं।


प्रक्षेप्य Nullstellensatz प्रक्षेप्य किस्मों और सजातीय आदर्शों I जिनमें J शामिल नहीं है, के बीच विशेषण पत्राचार देता है।
प्रक्षेप्य Nullstellensatz प्रक्षेप्य विविधताों और सजातीय अनुकूल ''I'' जिनमें ''J'' सम्मिलित  नहीं है, के मध्य  एक विशेषण पत्राचार देता है।


==संकल्प और सहजीवन==
==संकल्प और सहजीवन==


बीजगणितीय ज्यामिति के लिए होमोलॉजिकल बीजगणित तकनीकों के अनुप्रयोग में, [[डेविड हिल्बर्ट]] (हालांकि आधुनिक शब्दावली अलग है) के बाद से आर के मुक्त रिज़ॉल्यूशन को लागू करना पारंपरिक रहा है, जिसे बहुपद रिंग पर वर्गीकृत मॉड्यूल के रूप में माना जाता है। इससे Syzygy (गणित) के बारे में जानकारी मिलती है, अर्थात् आदर्श I के जेनरेटरों के बीच संबंध। शास्त्रीय परिप्रेक्ष्य में, ऐसे जेनरेटर केवल वे समीकरण होते हैं जिन्हें V को परिभाषित करने के लिए लिखा जाता है। यदि V [[ऊनविम पृष्ठ]] है तो केवल समीकरण की आवश्यकता होती है, और इसके लिए पूर्ण प्रतिच्छेदन समीकरणों की संख्या को संहिताकरण के रूप में लिया जा सकता है; लेकिन सामान्य प्रक्षेप्य विविधता में समीकरणों का कोई परिभाषित सेट नहीं है जो इतना पारदर्शी हो। विस्तृत अध्ययन, उदाहरण के लिए [[विहित वक्र]] और [[एबेलियन किस्मों को परिभाषित करने वाले समीकरण]], इन मामलों को संभालने के लिए व्यवस्थित तकनीकों की ज्यामितीय रुचि दिखाते हैं। यह विषय अपने शास्त्रीय रूप में [[उन्मूलन सिद्धांत]] से भी विकसित हुआ है, जिसमें न्यूनीकरण मॉड्यूलो I को एल्गोरिथम प्रक्रिया माना जाता है (अब व्यवहार में ग्रोबनेर बेस द्वारा नियंत्रित किया जाता है)।
इस प्रकार से बीजगणितीय ज्यामिति के लिए होमोलॉजिकल बीजगणित तकनीकों के अनुप्रयोग में, [[डेविड हिल्बर्ट]] (चूंकि  आधुनिक शब्दावली अलग है) के पश्चात से ''R'' के फ्री  रिज़ॉल्यूशन को प्रयुक्त  करना पारंपरिक रहा है, और जिसे बहुपद वलय  पर वर्गीकृत मॉड्यूल के रूप में माना जाता है। इससे सिज़ीजी (गणित) के पश्चात सूचना मिलती है, अर्थात् अनुकूल ''I'' के जेनरेटरों के मध्य  संबंध है । मौलिक  परिप्रेक्ष्य में, ऐसे जेनरेटर केवल वे समीकरण होते हैं जिन्हें V को परिभाषित करने के लिए लिखा जाता है। यदि V [[ऊनविम पृष्ठ|हाइपरसर्फेस]] है तो केवल समीकरण की आवश्यकता होती है, और इसके लिए पूर्ण प्रतिच्छेदन समीकरणों की संख्या को संहिताकरण के रूप में लिया जा सकता है; चूंकि सामान्य प्रक्षेप्य विविधता में समीकरणों का कोई परिभाषित समुच्चय नहीं है जो इतना पारदर्शी होते है। और विस्तृत अध्ययन, इस प्रकार से उदाहरण के लिए [[विहित वक्र]] और [[एबेलियन किस्मों को परिभाषित करने वाले समीकरण|एबेलियन विविधताों को परिभाषित करने वाले समीकरण]], इन स्तिथियों  को संभालने के लिए व्यवस्थित तकनीकों की ज्यामितीय रुचि दिखाते हैं। यह विषय अपने मौलिक  रूप में [[उन्मूलन सिद्धांत]] से भी विकसित हुआ है, जिसमें न्यूनीकरण मॉड्यूलो समिलित है I को एल्गोरिथम प्रक्रिया माना जाता है (अब वास्तविक में ग्रोबनेर बेस द्वारा नियंत्रित किया जाता है)।  
 
सामान्य कारणों से K[X की तुलना में [[ श्रेणीबद्ध मॉड्यूल |श्रेणीबद्ध मॉड्यूल]] के रूप में R के निःशुल्क रिज़ॉल्यूशन हैं<sub>0</sub>, एक्स<sub>1</sub>, एक्स<sub>2</sub>, ..., एक्स<sub>''N''</sub>]. रिज़ॉल्यूशन को न्यूनतम के रूप में परिभाषित किया गया है यदि प्रत्येक मॉड्यूल में छवि फ्री  मॉड्यूल के रूप में है


सामान्य कारणों से K[X की तुलना में [[ श्रेणीबद्ध मॉड्यूल |श्रेणीबद्ध मॉड्यूल]] के रूप में R के निःशुल्क रिज़ॉल्यूशन हैं<sub>0</sub>, एक्स<sub>1</sub>, एक्स<sub>2</sub>, ..., एक्स<sub>''N''</sub>]. रिज़ॉल्यूशन को न्यूनतम के रूप में परिभाषित किया गया है यदि प्रत्येक मॉड्यूल में छवि मुक्त मॉड्यूल के रूप में है
सामान्य कारणों से ''K''[''X''<sub>0</sub>, ''X''<sub>1</sub>, ''X''<sub>2</sub>, ..., ''X<sub>N</sub>''] पर ग्रेडेड मॉड्यूल के रूप में R के निःशुल्क रिज़ॉल्यूशन हैं। एक रिज़ॉल्यूशन को न्यूनतम के रूप में परिभाषित किया गया है यदि प्रत्येक मॉड्यूल में छवि फ्री  मॉड्यूल के रूप में जाना जाता है


:φ:एफ<sub>''i''</sub> → एफ<sub>''i'' − 1</sub>
:φ:''F<sub>i</sub>'' ''F<sub>i</sub>'' <sub>− 1</sub>
संकल्प में जेएफ में निहित है<sub>''i'' − 1,</sub> जहाँ J अप्रासंगिक आदर्श है। नाकायमा के लेम्मा के परिणामस्वरूप, φ फिर एफ में दिया गया आधार लेता है<sub>''i''</sub> एफ में जनरेटर के न्यूनतम सेट के लिए<sub>''i'' − 1</sub>. न्यूनतम मुक्त रिज़ॉल्यूशन की अवधारणा मजबूत अर्थ में अच्छी तरह से परिभाषित है: श्रृंखला परिसरों के समरूपता [[तक]] अद्वितीय और किसी भी मुक्त रिज़ॉल्यूशन में प्रत्यक्ष योग के रूप में घटित होती है। चूँकि [[श्रृंखला जटिल]] R के लिए आंतरिक है, इसलिए कोई 'ग्रेडेड बेट्टी नंबर' β को परिभाषित कर सकता है<sub>''i, j''</sub> एफ से आने वाली ग्रेड-जे छवियों की संख्या के रूप में<sub>''i''</sub> (अधिक सटीक रूप से, φ को सजातीय बहुपदों के मैट्रिक्स के रूप में सोचने से, उस सजातीय डिग्री की प्रविष्टियों की गिनती दाईं ओर से प्राप्त ग्रेडिंग द्वारा बढ़ जाती है)। दूसरे शब्दों में, सभी मुक्त मॉड्यूल में वजन का अनुमान रिज़ॉल्यूशन से लगाया जा सकता है, और वर्गीकृत बेट्टी संख्या रिज़ॉल्यूशन के दिए गए मॉड्यूल में दिए गए वजन के जनरेटर की संख्या की गणना करती है। किसी दिए गए प्रक्षेप्य एम्बेडिंग में वी के इन अपरिवर्तनीयों के गुण वक्रों के मामले में भी सक्रिय शोध प्रश्न खड़े करते हैं।<ref>[[David Eisenbud]], ''The Geometry of Syzygies'', (2005, {{isbn|978-0-387-22215-8}}), pp. 5–8.</ref>
इस प्रकार के संकल्प में ''JF<sub>i</sub>'' <sub>− 1,</sub> निहित है, जहां J अप्रासंगिक आदर्श है। तब नाकायमा के लेम्मा के परिणाम के रूप में, φ फिर ''F<sub>i</sub>'' में दिए गए आधार को ''F<sub>i</sub>'' <sub>− 1</sub> में जनरेटर के न्यूनतम समुच्चय  में ले जाता है। और न्यूनतम फ्री  रिज़ॉल्यूशन की अवधारणा को एक समष्टि  अर्थ में सही प्रकार से परिभाषित किया गया है: श्रृंखला परिसरों के समरूपता [[तक]] अद्वितीय और किसी भी फ्री  रिज़ॉल्यूशन में प्रत्यक्ष योग के रूप में घटित होता है। चूंकि यह [[श्रृंखला जटिल|श्रृंखला समष्टि]] R के लिए आंतरिक है, इसलिए कोई ग्रेडेड बेट्टी संख्या β<sub>''i, j''</sub>j को ''F<sub>i</sub>'' से आने वाली ग्रेड-जे छवियों की संख्या के रूप में परिभाषित कर सकता है (अधिक स्पष्ट  रूप से, φ को सजातीय बहुपदों के मैट्रिक्स के रूप में विचार, उस सजातीय डिग्री की प्रविष्टियों की गिनती दाईं ओर से प्राप्त ग्रेडिंग द्वारा बढ़ जाती है)। दूसरे शब्दों में, सभी फ्री  मॉड्यूल में भार का अनुमान रिज़ॉल्यूशन से लगाया जा सकता है, और वर्गीकृत बेट्टी संख्या रिज़ॉल्यूशन के दिए गए मॉड्यूल में दिए गए भार के जनरेटर की संख्या की गणना करती है। किसी दिए गए प्रक्षेप्य एम्बेडिंग में ''V''  के इन अपरिवर्तनीयों के गुण वक्रों के स्तिथियों  में भी सक्रिय शोध प्रश्न उत्पन्न करते हैं।<ref>[[David Eisenbud]], ''The Geometry of Syzygies'', (2005, {{isbn|978-0-387-22215-8}}), pp. 5–8.</ref>  


ऐसे उदाहरण हैं जहां न्यूनतम मुक्त रिज़ॉल्यूशन स्पष्ट रूप से ज्ञात है। [[तर्कसंगत सामान्य वक्र]] के लिए यह ईगॉन-नॉर्थकॉट कॉम्प्लेक्स है। प्रक्षेप्य स्थान में [[अण्डाकार वक्र]]ों के लिए रिज़ॉल्यूशन का निर्माण ईगॉन-नॉर्थकॉट परिसरों के मानचित्रण शंकु के रूप में किया जा सकता है।<ref>Eisenbud, Ch. 6.</ref>
इस प्रकार से उदाहरण हैं जहां न्यूनतम फ्री  रिज़ॉल्यूशन स्पष्ट रूप से ज्ञात है। [[तर्कसंगत सामान्य वक्र]] के लिए यह ईगॉन-नॉर्थकॉट श्रृंखला समष्टि है। प्रक्षेप्य स्थान में [[अण्डाकार वक्र|वृत्ताकार वक्र]] के लिए रिज़ॉल्यूशन का निर्माण ईगॉन-नॉर्थकॉट श्रृंखला समष्टि के मानचित्रण शंकु के रूप में किया जा सकता है।<ref>Eisenbud, Ch. 6.</ref>  
==नियमितता==
==नियमितता==


कास्टेलनुवो-मम्फोर्ड नियमितता को प्रोजेक्टिव किस्म को परिभाषित करने वाले आदर्श I के न्यूनतम रिज़ॉल्यूशन से पढ़ा जा सकता है। आरोपित बदलावों के संदर्भ में ए<sub>''i'', ''j''</sub> आई-वें मॉड्यूल एफ में<sub>''i''</sub>, यह a के i पर अधिकतम है<sub>''i'', ''j''</sub> − मैं; इसलिए यह तब छोटा होता है जब बदलाव केवल 1 की वृद्धि से बढ़ता है क्योंकि हम रिज़ॉल्यूशन में बाईं ओर जाते हैं (केवल रैखिक सहजीवन)।<ref>Eisenbud, Ch. 4.</ref>
कास्टेलनुवो-मम्फोर्ड नियमितता को प्रोजेक्टिव विविधता को परिभाषित करने वाले आदर्श हैI चूंकि के न्यूनतम रिज़ॉल्यूशन से पढ़ा जा सकता है। इस प्रकार से ''i''-th मॉड्यूल Fi में आरोपित "शिफ्ट्स" ''a<sub>i</sub>''<sub>, ''j''</sub> के संदर्भ में, यह ''a<sub>i</sub>''<sub>, ''j''</sub> − ''i'';  के i पर अधिकतम है; इसलिए यह तब छोटा होता है जब परवर्तन केवल 1 की वृद्धि से बढ़ता है क्योंकि हम रिज़ॉल्यूशन में बाईं ओर जाते हैं (केवल रैखिक सहजीवन)।<ref>Eisenbud, Ch. 4.</ref>
==प्रोजेक्टिव सामान्यता==
==प्रोजेक्टिव सामान्यता==


यदि R [[एकीकृत रूप से बंद डोमेन]] है, तो इसके प्रोजेक्टिव एम्बेडिंग में विविधता V 'प्रोजेक्टिवली सामान्य' है। इस स्थिति का तात्पर्य है कि वी [[सामान्य किस्म]] है, लेकिन इसके विपरीत नहीं: प्रक्षेप्य सामान्यता की संपत्ति प्रक्षेप्य एम्बेडिंग से स्वतंत्र नहीं है, जैसा कि तीन आयामों में तर्कसंगत चतुर्थक वक्र के उदाहरण से दिखाया गया है।<ref>[[Robin Hartshorne]], ''Algebraic Geometry'' (1977), p. 23.</ref> अन्य समतुल्य स्थिति प्रक्षेप्य स्थान पर [[टॉटोलॉजिकल लाइन बंडल]] के दोहरे द्वारा काटे गए वी पर [[विभाजकों की रैखिक प्रणाली]] और डी = 1, 2, 3, ... के लिए इसकी डी-वें शक्तियों के संदर्भ में है; जब V बीजगणितीय वक्र#एकवचन|गैर-एकवचन है, तो यह प्रक्षेप्य रूप से सामान्य है यदि और केवल तभी जब ऐसी प्रत्येक रैखिक प्रणाली [[पूर्ण रैखिक प्रणाली]] हो।<ref>Hartshorne, p. 159.</ref> वैकल्पिक रूप से कोई टॉटोलॉजिकल लाइन बंडल के दोहरे को प्रक्षेप्य स्थान पर [[सेरे ट्विस्ट शीफ़]] O(1) के रूप में सोच सकता है, और संरचना शीफ ​​O को मोड़ने के लिए इसका उपयोग कर सकता है।<sub>''V''</sub> कितनी भी बार, मान लीजिए k बार, शीफ़ O प्राप्त करना<sub>''V''</sub>()तब V को 'k-नॉर्मल' कहा जाता है यदि O(k) के वैश्विक खंड O के वैश्विक खंडों को विशेष रूप से मैप करते हैं<sub>''V''</sub>(k), किसी दिए गए k के लिए, और यदि V 1-सामान्य है तो इसे 'रैखिक रूप से सामान्य' कहा जाता है। गैर-एकवचन विविधता प्रक्षेप्य रूप से सामान्य है यदि और केवल यदि यह सभी k ≥ 1 के लिए k-सामान्य है। रैखिक सामान्यता को ज्यामितीय रूप से भी व्यक्त किया जा सकता है: V के रूप में प्रक्षेप्य विविधता को उच्च आयाम के प्रक्षेप्य स्थान से आइसोमोर्फिक [[रैखिक प्रक्षेपण]] द्वारा प्राप्त नहीं किया जा सकता है , उचित रैखिक उपस्थान में लेटने के तुच्छ तरीके को छोड़कर। रैखिक सामान्यता की स्थितियों को कम करने के लिए पर्याप्त [[ वेरोनीज़ मानचित्रण |वेरोनीज़ मानचित्रण]] का उपयोग करके प्रक्षेप्य सामान्यता का इसी तरह अनुवाद किया जा सकता है।
यदि R [[एकीकृत रूप से बंद डोमेन|एकीकृत रूप से संवृत डोमेन]] है, तो इसके प्रक्षेप्य एम्बेडिंग में विविधता V प्रक्षेप्य रूप से सामान्य है। इस स्थिति का तात्पर्य है कि वी एक [[सामान्य किस्म|सामान्य विविधता]] है, लेकिन इसके विपरीत नहीं: प्रक्षेप्य सामान्यता की संपत्ति प्रक्षेप्य एम्बेडिंग से स्वतंत्र नहीं है, जैसा कि तीन आयामों में तर्कसंगत चतुर्थक वक्र के उदाहरण से दिखाया गया है।<ref>[[Robin Hartshorne]], ''Algebraic Geometry'' (1977), p. 23.</ref> एक अन्य समतुल्य स्थिति प्रक्षेप्य स्थान पर [[टॉटोलॉजिकल लाइन बंडल]] के दोहरे द्वारा काटे गए वी पर [[विभाजकों की रैखिक प्रणाली]] ''d'' = 1, 2, 3, ... ; के लिए इसकी ''d''-th पॉवर के संदर्भ में है; जब V गैर-एकवचन है, तो यह प्रक्षेप्य रूप से सामान्य है यदि और केवल यदि ऐसी प्रत्येक रैखिक प्रणाली एक [[पूर्ण रैखिक प्रणाली]] है।<ref>Hartshorne, p. 159.</ref> वैकल्पिक रूप से कोई टॉटोलॉजिकल लाइन बंडल के दोहरे को प्रक्षेप्य स्थान पर [[सेरे ट्विस्ट शीफ़]] ''O''(1) के रूप में सोच सकता है, और इसका उपयोग किसी भी संख्या में संरचना शीफ ''O<sub>V</sub>'' को मोड़ने के लिए कर सकता है, मान लीजिए k बार, एक शीफ ''O<sub>V</sub>''(''k'') प्राप्त कर सकता है। . तब V को k-सामान्य कहा जाता है यदि ''O''(''k'') के वैश्विक खंड किसी दिए गए k के लिए ''O<sub>V</sub>''(''k'') के लिए विशेष रूप से मानचित्रित होते हैं, और यदि V 1-सामान्य है तो इसे रैखिक रूप से सामान्य कहा जाता है। एक गैर-एकवचन विविधता प्रक्षेप्य रूप से सामान्य है यदि और केवल यदि यह सभी ''k'' ≥ 1 के लिए k-सामान्य है। रैखिक सामान्यता को ज्यामितीय रूप से भी व्यक्त किया जा सकता है: ''V''  के रूप में प्रक्षेप्य विविधता को उच्च आयाम के प्रक्षेप्य स्थान से एक आइसोमोर्फिक [[रैखिक प्रक्षेपण]] द्वारा प्राप्त नहीं किया जा सकता है , उचित रैखिक उपस्थान में लेटने के तुच्छ तरीके को छोड़कर। रैखिक सामान्यता की स्थितियों को कम करने के लिए पर्याप्त [[विभाजकों की रैखिक प्रणाली|वेरोनीज़ मानचित्रण]] का उपयोग करके प्रक्षेप्य सामान्यता का इसी तरह अनुवाद किया जा सकता है।


वी के प्रोजेक्टिव एम्बेडिंग को जन्म देने वाले दिए गए बहुत बड़े लाइन बंडल के दृष्टिकोण से इस मुद्दे को देखते हुए, ऐसे लाइन बंडल ([[उलटा पुलिंदा]]) को 'सामान्य रूप से उत्पन्न' कहा जाता है यदि एम्बेडेड वी प्रोजेक्टिव रूप से सामान्य है। प्रक्षेप्य सामान्यता पहली शर्त एन है<sub>0</sub> ग्रीन और लाज़र्सफेल्ड द्वारा परिभाषित स्थितियों का क्रम। इसके लिए
''V'' के प्रोजेक्टिव एम्बेडिंग को प्रकार  देने वाले दिए गए अधिक उच्च लाइन बंडल के दृष्टिकोण से इस नियम  को देखते हुए, ऐसे लाइन बंडल ([[उलटा पुलिंदा|विपरीत बंडल]]) को सामान्य रूप से उत्पन्न कहा जाता है यदि एम्बेडेड ''V'' प्रोजेक्टिव रूप से सामान्य है। प्रक्षेप्य सामान्यता ग्रीन और लाज़र्सफेल्ड द्वारा परिभाषित स्थितियों के अनुक्रम की पहली स्थिति ''N''<sub>0</sub> है। इसलिए


:<math>\bigoplus_{d=0}^\infty H^0(V, L^d)</math>
:<math>\bigoplus_{d=0}^\infty H^0(V, L^d)</math>
प्रक्षेप्य स्थान के सजातीय समन्वय रिंग पर वर्गीकृत मॉड्यूल के रूप में माना जाता है, और न्यूनतम मुक्त रिज़ॉल्यूशन लिया जाता है। हालत एन<sub>p</sub> पहले पी ग्रेडेड बेट्टी नंबरों पर लागू किया गया, जिसके लिए जरूरी है कि वे j > i + 1 होने पर गायब हो जाएं।<ref>See e.g. Elena Rubei, ''On Syzygies of Abelian Varieties'', Transactions of the American Mathematical Society, Vol. 352, No. 6 (Jun., 2000), pp. 2569–2579.</ref> वक्रों के लिए ग्रीन ने वह स्थिति N दिखाई<sub>''p''</sub> तब संतुष्ट होता है जब deg(L) ≥ 2g + 1 + p, जो कि p = 0 के लिए [[गुइडो कैस्टेलनुवोवो]] का शास्त्रीय परिणाम था।<ref>Giuseppe Pareschi, ''Syzygies of Abelian Varieties'', Journal of the American Mathematical Society, Vol. 13, No. 3 (Jul., 2000), pp. 651–664.</ref>
प्रक्षेप्य स्थान के सजातीय समन्वय रिंग पर वर्गीकृत मॉड्यूल के रूप में माना जाता है, और न्यूनतम मुक्त रिज़ॉल्यूशन लिया जाता है। हालत एन<sub>p</sub> पहले पी ग्रेडेड बेट्टी नंबरों पर लागू किया गया, जिसके लिए जरूरी है कि वे j > i + 1 होने पर गायब हो जाएं।<ref>See e.g. Elena Rubei, ''On Syzygies of Abelian Varieties'', Transactions of the American Mathematical Society, Vol. 352, No. 6 (Jun., 2000), pp. 2569–2579.</ref> वक्रों के लिए ग्रीन ने वह स्थिति N दिखाई<sub>''p''</sub> तब संतुष्ट होता है जब deg(L) ≥ 2g + 1 + p, जो कि p = 0 के लिए [[गुइडो कैस्टेलनुवोवो]] का शास्त्रीय परिणाम था।<ref>Giuseppe Pareschi, ''Syzygies of Abelian Varieties'', Journal of the American Mathematical Society, Vol. 13, No. 3 (Jul., 2000), pp. 651–664.</ref>
प्रक्षेप्य स्थान के सजातीय समन्वय रिंग पर वर्गीकृत मॉड्यूल के रूप में माना जाता है, और न्यूनतम फ्री रिज़ॉल्यूशन लिया जाता है। नियम  ''N<sub>p</sub>'' पहले पी ग्रेडेड बेट्टी नंबरों पर लागू होती है, जिसके लिए आवश्यक है कि जब  ''j'' > ''i'' + 1 हो तो वे गायब हो जाएं।<ref>See e.g. Elena Rubei, ''On Syzygies of Abelian Varieties'', Transactions of the American Mathematical Society, Vol. 352, No. 6 (Jun., 2000), pp. 2569–2579.</ref> वक्रों के लिए ग्रीन ने दिखाया कि स्थिति ''N<sub>p</sub>'' तब संतुष्ट होती है जब deg(''L'') ≥ 2''g'' + 1 + ''p'', जो कि p = 0 के लिए [[गुइडो कैस्टेलनुवोवो]] का एक शास्त्रीय परिणाम था<ref>Giuseppe Pareschi, ''Syzygies of Abelian Varieties'', Journal of the American Mathematical Society, Vol. 13, No. 3 (Jul., 2000), pp. 651–664.</ref>
==यह भी देखें==
==यह भी देखें==
*प्रक्षेपी विविधता
*प्रक्षेपी विविधता

Revision as of 07:07, 21 July 2023


बीजगणितीय ज्यामिति में, किसी दिए गए आयाम N के प्रक्षेप्य स्थान की उप-विविधता के रूप में दी गई बीजगणितीय विविधता V की सजातीय समन्वय वलय R परिभाषा के अनुसार भागफल वलय है

R = K[X0, X1, X2, ..., XN] / I

जहां I, V को परिभाषित करने वाला सजातीय अनुकूल है, K बीजगणितीय रूप से संवृत क्षेत्र है जिस पर V को परिभाषित किया गया है, और

K[X0, X1, X2, ..., XN]

N + 1 वेरिएबल ````Xi में बहुपद वलय है. इसलिए बहुपद वलय स्वयं प्रक्षेप्य स्थान का सजातीय समन्वय वलय है, और आधार के किसी दिए गए विकल्प के लिए वेरिएबल ````सजातीय निर्देशांक हैं (प्रक्षेप्य स्थान के अंतर्निहित सदिश स्थल में) है। इस प्रकार से आधार के चुनाव का प्रकार है कि यह परिभाषा आंतरिक नहीं है, चूंकि सममित बीजगणित का उपयोग करके इसे ऐसा बनाया जा सकता है।

निरूपण

चूँकि V को विविधता माना जाता है, और इसलिए यह अप्रासंगिक बीजगणितीय समुच्चय है, इस प्रकार से अनुकूल I को प्रमुख अनुकूल के रूप में चुना जा सकता है, और इसलिए R अभिन्न डोमेन है।और समान परिभाषा का उपयोग सामान्य सजातीय अनुकूलों के लिए किया जा सकता है, चूंकि परिणामी समन्वय वलय में गैर-शून्य निलपोटेंट मूल और शून्य के अन्य विभाजक सम्मिलित ```` हो सकते हैं। योजना सिद्धांत के दृष्टिकोण से इन स्तिथियों को प्रोज निर्माण के माध्यम से ही स्तर पर निष्कासन किया जा सकता है।

सभी Xi द्वारा उत्पन्न अप्रासंगिक अनुकूल J रिक्त समुच्चय से मेल खाता है, क्योंकि सभी सजातीय निर्देशांक प्रक्षेप्य स्थान के एक बिंदु पर विलुप्त नहीं हो सकते हैं।

प्रक्षेप्य Nullstellensatz प्रक्षेप्य विविधताों और सजातीय अनुकूल I जिनमें J सम्मिलित नहीं है, के मध्य एक विशेषण पत्राचार देता है।

संकल्प और सहजीवन

इस प्रकार से बीजगणितीय ज्यामिति के लिए होमोलॉजिकल बीजगणित तकनीकों के अनुप्रयोग में, डेविड हिल्बर्ट (चूंकि आधुनिक शब्दावली अलग है) के पश्चात से R के फ्री रिज़ॉल्यूशन को प्रयुक्त करना पारंपरिक रहा है, और जिसे बहुपद वलय पर वर्गीकृत मॉड्यूल के रूप में माना जाता है। इससे सिज़ीजी (गणित) के पश्चात सूचना मिलती है, अर्थात् अनुकूल I के जेनरेटरों के मध्य संबंध है । मौलिक परिप्रेक्ष्य में, ऐसे जेनरेटर केवल वे समीकरण होते हैं जिन्हें V को परिभाषित करने के लिए लिखा जाता है। यदि V हाइपरसर्फेस है तो केवल समीकरण की आवश्यकता होती है, और इसके लिए पूर्ण प्रतिच्छेदन समीकरणों की संख्या को संहिताकरण के रूप में लिया जा सकता है; चूंकि सामान्य प्रक्षेप्य विविधता में समीकरणों का कोई परिभाषित समुच्चय नहीं है जो इतना पारदर्शी होते है। और विस्तृत अध्ययन, इस प्रकार से उदाहरण के लिए विहित वक्र और एबेलियन विविधताों को परिभाषित करने वाले समीकरण, इन स्तिथियों को संभालने के लिए व्यवस्थित तकनीकों की ज्यामितीय रुचि दिखाते हैं। यह विषय अपने मौलिक रूप में उन्मूलन सिद्धांत से भी विकसित हुआ है, जिसमें न्यूनीकरण मॉड्यूलो समिलित है I को एल्गोरिथम प्रक्रिया माना जाता है (अब वास्तविक में ग्रोबनेर बेस द्वारा नियंत्रित किया जाता है)।

सामान्य कारणों से K[X की तुलना में श्रेणीबद्ध मॉड्यूल के रूप में R के निःशुल्क रिज़ॉल्यूशन हैं0, एक्स1, एक्स2, ..., एक्सN]. रिज़ॉल्यूशन को न्यूनतम के रूप में परिभाषित किया गया है यदि प्रत्येक मॉड्यूल में छवि फ्री मॉड्यूल के रूप में है

सामान्य कारणों से K[X0, X1, X2, ..., XN] पर ग्रेडेड मॉड्यूल के रूप में R के निःशुल्क रिज़ॉल्यूशन हैं। एक रिज़ॉल्यूशन को न्यूनतम के रूप में परिभाषित किया गया है यदि प्रत्येक मॉड्यूल में छवि फ्री मॉड्यूल के रूप में जाना जाता है

φ:FiFi − 1

इस प्रकार के संकल्प में JFi − 1, निहित है, जहां J अप्रासंगिक आदर्श है। तब नाकायमा के लेम्मा के परिणाम के रूप में, φ फिर Fi में दिए गए आधार को Fi − 1 में जनरेटर के न्यूनतम समुच्चय में ले जाता है। और न्यूनतम फ्री रिज़ॉल्यूशन की अवधारणा को एक समष्टि अर्थ में सही प्रकार से परिभाषित किया गया है: श्रृंखला परिसरों के समरूपता तक अद्वितीय और किसी भी फ्री रिज़ॉल्यूशन में प्रत्यक्ष योग के रूप में घटित होता है। चूंकि यह श्रृंखला समष्टि R के लिए आंतरिक है, इसलिए कोई ग्रेडेड बेट्टी संख्या βi, jj को Fi से आने वाली ग्रेड-जे छवियों की संख्या के रूप में परिभाषित कर सकता है (अधिक स्पष्ट रूप से, φ को सजातीय बहुपदों के मैट्रिक्स के रूप में विचार, उस सजातीय डिग्री की प्रविष्टियों की गिनती दाईं ओर से प्राप्त ग्रेडिंग द्वारा बढ़ जाती है)। दूसरे शब्दों में, सभी फ्री मॉड्यूल में भार का अनुमान रिज़ॉल्यूशन से लगाया जा सकता है, और वर्गीकृत बेट्टी संख्या रिज़ॉल्यूशन के दिए गए मॉड्यूल में दिए गए भार के जनरेटर की संख्या की गणना करती है। किसी दिए गए प्रक्षेप्य एम्बेडिंग में V के इन अपरिवर्तनीयों के गुण वक्रों के स्तिथियों में भी सक्रिय शोध प्रश्न उत्पन्न करते हैं।[1]

इस प्रकार से उदाहरण हैं जहां न्यूनतम फ्री रिज़ॉल्यूशन स्पष्ट रूप से ज्ञात है। तर्कसंगत सामान्य वक्र के लिए यह ईगॉन-नॉर्थकॉट श्रृंखला समष्टि है। प्रक्षेप्य स्थान में वृत्ताकार वक्र के लिए रिज़ॉल्यूशन का निर्माण ईगॉन-नॉर्थकॉट श्रृंखला समष्टि के मानचित्रण शंकु के रूप में किया जा सकता है।[2]

नियमितता

कास्टेलनुवो-मम्फोर्ड नियमितता को प्रोजेक्टिव विविधता को परिभाषित करने वाले आदर्श हैI चूंकि के न्यूनतम रिज़ॉल्यूशन से पढ़ा जा सकता है। इस प्रकार से i-th मॉड्यूल Fi में आरोपित "शिफ्ट्स" ai, j के संदर्भ में, यह ai, ji; के i पर अधिकतम है; इसलिए यह तब छोटा होता है जब परवर्तन केवल 1 की वृद्धि से बढ़ता है क्योंकि हम रिज़ॉल्यूशन में बाईं ओर जाते हैं (केवल रैखिक सहजीवन)।[3]

प्रोजेक्टिव सामान्यता

यदि R एकीकृत रूप से संवृत डोमेन है, तो इसके प्रक्षेप्य एम्बेडिंग में विविधता V प्रक्षेप्य रूप से सामान्य है। इस स्थिति का तात्पर्य है कि वी एक सामान्य विविधता है, लेकिन इसके विपरीत नहीं: प्रक्षेप्य सामान्यता की संपत्ति प्रक्षेप्य एम्बेडिंग से स्वतंत्र नहीं है, जैसा कि तीन आयामों में तर्कसंगत चतुर्थक वक्र के उदाहरण से दिखाया गया है।[4] एक अन्य समतुल्य स्थिति प्रक्षेप्य स्थान पर टॉटोलॉजिकल लाइन बंडल के दोहरे द्वारा काटे गए वी पर विभाजकों की रैखिक प्रणाली d = 1, 2, 3, ... ; के लिए इसकी d-th पॉवर के संदर्भ में है; जब V गैर-एकवचन है, तो यह प्रक्षेप्य रूप से सामान्य है यदि और केवल यदि ऐसी प्रत्येक रैखिक प्रणाली एक पूर्ण रैखिक प्रणाली है।[5] वैकल्पिक रूप से कोई टॉटोलॉजिकल लाइन बंडल के दोहरे को प्रक्षेप्य स्थान पर सेरे ट्विस्ट शीफ़ O(1) के रूप में सोच सकता है, और इसका उपयोग किसी भी संख्या में संरचना शीफ OV को मोड़ने के लिए कर सकता है, मान लीजिए k बार, एक शीफ OV(k) प्राप्त कर सकता है। . तब V को k-सामान्य कहा जाता है यदि O(k) के वैश्विक खंड किसी दिए गए k के लिए OV(k) के लिए विशेष रूप से मानचित्रित होते हैं, और यदि V 1-सामान्य है तो इसे रैखिक रूप से सामान्य कहा जाता है। एक गैर-एकवचन विविधता प्रक्षेप्य रूप से सामान्य है यदि और केवल यदि यह सभी k ≥ 1 के लिए k-सामान्य है। रैखिक सामान्यता को ज्यामितीय रूप से भी व्यक्त किया जा सकता है: V के रूप में प्रक्षेप्य विविधता को उच्च आयाम के प्रक्षेप्य स्थान से एक आइसोमोर्फिक रैखिक प्रक्षेपण द्वारा प्राप्त नहीं किया जा सकता है , उचित रैखिक उपस्थान में लेटने के तुच्छ तरीके को छोड़कर। रैखिक सामान्यता की स्थितियों को कम करने के लिए पर्याप्त वेरोनीज़ मानचित्रण का उपयोग करके प्रक्षेप्य सामान्यता का इसी तरह अनुवाद किया जा सकता है।

V के प्रोजेक्टिव एम्बेडिंग को प्रकार देने वाले दिए गए अधिक उच्च लाइन बंडल के दृष्टिकोण से इस नियम को देखते हुए, ऐसे लाइन बंडल (विपरीत बंडल) को सामान्य रूप से उत्पन्न कहा जाता है यदि एम्बेडेड V प्रोजेक्टिव रूप से सामान्य है। प्रक्षेप्य सामान्यता ग्रीन और लाज़र्सफेल्ड द्वारा परिभाषित स्थितियों के अनुक्रम की पहली स्थिति N0 है। इसलिए

प्रक्षेप्य स्थान के सजातीय समन्वय रिंग पर वर्गीकृत मॉड्यूल के रूप में माना जाता है, और न्यूनतम मुक्त रिज़ॉल्यूशन लिया जाता है। हालत एनp पहले पी ग्रेडेड बेट्टी नंबरों पर लागू किया गया, जिसके लिए जरूरी है कि वे j > i + 1 होने पर गायब हो जाएं।[6] वक्रों के लिए ग्रीन ने वह स्थिति N दिखाईp तब संतुष्ट होता है जब deg(L) ≥ 2g + 1 + p, जो कि p = 0 के लिए गुइडो कैस्टेलनुवोवो का शास्त्रीय परिणाम था।[7]

प्रक्षेप्य स्थान के सजातीय समन्वय रिंग पर वर्गीकृत मॉड्यूल के रूप में माना जाता है, और न्यूनतम फ्री रिज़ॉल्यूशन लिया जाता है। नियम Np पहले पी ग्रेडेड बेट्टी नंबरों पर लागू होती है, जिसके लिए आवश्यक है कि जब j > i + 1 हो तो वे गायब हो जाएं।[8] वक्रों के लिए ग्रीन ने दिखाया कि स्थिति Np तब संतुष्ट होती है जब deg(L) ≥ 2g + 1 + p, जो कि p = 0 के लिए गुइडो कैस्टेलनुवोवो का एक शास्त्रीय परिणाम था[9]

यह भी देखें

टिप्पणियाँ

  1. David Eisenbud, The Geometry of Syzygies, (2005, ISBN 978-0-387-22215-8), pp. 5–8.
  2. Eisenbud, Ch. 6.
  3. Eisenbud, Ch. 4.
  4. Robin Hartshorne, Algebraic Geometry (1977), p. 23.
  5. Hartshorne, p. 159.
  6. See e.g. Elena Rubei, On Syzygies of Abelian Varieties, Transactions of the American Mathematical Society, Vol. 352, No. 6 (Jun., 2000), pp. 2569–2579.
  7. Giuseppe Pareschi, Syzygies of Abelian Varieties, Journal of the American Mathematical Society, Vol. 13, No. 3 (Jul., 2000), pp. 651–664.
  8. See e.g. Elena Rubei, On Syzygies of Abelian Varieties, Transactions of the American Mathematical Society, Vol. 352, No. 6 (Jun., 2000), pp. 2569–2579.
  9. Giuseppe Pareschi, Syzygies of Abelian Varieties, Journal of the American Mathematical Society, Vol. 13, No. 3 (Jul., 2000), pp. 651–664.

संदर्भ