खंडशः रैखिक मैनिफोल्ड: Difference between revisions
m (8 revisions imported from alpha:खंडशः_रैखिक_मैनिफोल्ड) |
No edit summary |
||
Line 41: | Line 41: | ||
*{{cite arXiv | last=Rudyak | first=Yuli B. | year=2001 | title=Piecewise linear structures on topological manifolds | eprint=math.AT/0105047 }} | *{{cite arXiv | last=Rudyak | first=Yuli B. | year=2001 | title=Piecewise linear structures on topological manifolds | eprint=math.AT/0105047 }} | ||
{{refend}} | {{refend}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category: | |||
[[Category:Created On 08/07/2023]] | [[Category:Created On 08/07/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Lua-based templates]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:कई गुना]] | |||
[[Category:ज्यामितीय टोपोलॉजी]] | |||
[[Category:मैनिफोल्ड्स पर संरचनाएँ]] |
Latest revision as of 16:16, 25 July 2023
गणित में, खंडशः रैखिक मैनिफोल्ड (पीसवाइज लाइनर (पीएल) मैनिफोल्ड) टोपोलॉजिकल मैनिफ़ोल्ड है, जिस पर पीसवाइज लाइनर संरचना होती है। इस प्रकार की संरचना को एटलस (टोपोलॉजी) के माध्यम से परिभाषित किया जा सकता है, जैसे कि कोई इसमें पीसवाइज लाइनर कार्यद्वारा मानचित्र (टोपोलॉजी) से मानचित्र तक जा सकता है।चूंकि यह त्रिकोणासन (टोपोलॉजी) की टोपोलॉजिकल अभिप्राय से थोड़ा अधिक जटिल होते है।[lower-alpha 1]
इस प्रकार से पीएल मैनिफोल्ड्स की समरूपता को पीएल होमियोमोर्फिज्म कहा जाता है.
मैनिफोल्ड्स की अन्य श्रेणियों से संबंध
इस प्रकार से पीएल, या अधिक स्पष्ट रूप से पीडीआईएफएफ, डीआईएफएफ ( स्मूथ मैनिफोल्ड्स की श्रेणी) और टॉप (टोपोलॉजिकल मैनिफोल्ड्स की श्रेणी) के मध्य उपस्तिथ किये जाते है: और यह डीआईएफएफ की तुलना में स्पष्ट रूप से उत्तम व्यवहार करता है इस प्रकार से - उदाहरण के लिए, सामान्यीकृत पोंकारे अनुमान पीएल में सत्य होते है (संभव के साथ) आयाम 4 का अपवाद, जहां यह डीआईएफएफ के समान है), किन्तु सामान्यतः डीआईएफएफ में असत्य होते है - किन्तु टीओपी से भी अशिष्ट व्यवहार किया जाता है, जैसा कि सर्जरी सिद्धांत में बताया गया है।
स्मूथ मैनिफोल्ड्स
स्मूथ मैनिफोल्ड्स में कैनोनिकल पीएल संरचनाएं होती हैं - त्रिकोणासन (टोपोलॉजी) पर व्हाइटहेड के प्रमेय के अनुसार, वे विशिष्ट रूप से त्रिकोणीय होते हैं। (व्हाइटहेड 1940)[1][2] - किन्तु पीएल मैनिफोल्ड्स में सदैव स्मूथ संरचनाएं नहीं होती हैं - वे सदैव स्मूथ नहीं होती हैं। इस प्रकार संबंध को पीडीआईएफएफ श्रेणी को प्रारंभ करके विस्तृत किया जा सकता है, जिसमें डीआईएफएफ और पीएल दोनों सम्मिलित किये जाते हैं, और पीएल के समान होते है।
इस प्रकार से पीएल को डीआईएफएफ से उत्तम व्यवहार करने का विधि यह है कि कोई पीएल में शंकु (टोपोलॉजी) प्राप्त कर सकते है, किन्तु डीआईएफएफ में नहीं - शंकु बिंदु पीएल में स्वीकार्य है।
अतः परिणाम यह है कि सामान्यीकृत पोंकारे अनुमान चार से अधिक आयामों के लिए पीएल में सत्य है - प्रमाण होमोटॉपी क्षेत्र लेना है, दो गेंदों को हटा दें, एच-कोबॉर्डिज्म प्रमेय क्रियान्वित करें जिससे यह निष्कर्ष निकाला जा सके कि यह बेलन है, और फिर वृत्तको पुनः प्राप्त करने के लिए शंकु संलग्न किया जाता है । यह अंतिम चरण पीएल में कार्य करता है किन्तु डीआईएफएफ में कार्य नहीं करता है , इस प्रकार से विदेशी क्षेत्र को बढ़ावा देना है।
टोपोलॉजिकल मैनिफोल्ड्स
प्रत्येक टोपोलॉजिकल मैनिफोल्ड पीएल संरचना को स्वीकार नहीं करता है, और जो ऐसा करते हैं, वह पीएल संरचना को अद्वितीय होने की आवश्यकता नहीं होती है - इसमें असीमित रूप से कई हो सकते हैं। अतः हाउप्टवरमुटुंग में इसका विस्तार से वर्णन किया गया है।
इस प्रकार से पीएल संरचना को टोपोलॉजिकल मैनिफोल्ड पर रखने में बाधा किर्बी-सीबेनमैन वर्ग है। स्पष्ट होने के लिए, किर्बी-सीबेनमैन वर्ग एम एक्स आर पर पीएल-संरचना रखने के लिए बाधा सिद्धांत है और आयाम n> 4 में, केएस वर्ग विलुप्त हो जाता है यदि और केवल यदि m में कम से कम पीएल-संरचना है।
वास्तविक बीजगणितीय समुच्चय
पीएल मैनिफोल्ड पर ए-संरचना संरचना है जो पीएल मैनिफोल्ड को स्मूथ मैनिफोल्ड में हल करने का प्रेरक विधि देती है। कॉम्पैक्ट पीएल मैनिफोल्ड a-संरचनाओं को स्वीकार करता है।[3][4] कॉम्पैक्ट पीएल मैनिफोल्ड वास्तविक बीजगणितीय समुच्चय के होमियोमॉर्फिक हैं और वास्तविक-बीजगणितीय समुच्चय है ।[5][6] इस प्रकार से दूसरी विधि द्वारा दर्शाए जाता है , चूंकि यह ए-श्रेणी पीएल-श्रेणी के ऊपर समृद्ध श्रेणी के रूप में मानी जाती है, जिसे प्राप्त करने में कोई बाधा उत्पन्न्य नहीं होती है, अर्थात BA → BPL , BA = BPL × PL/A, और PL के साथ उत्पाद फ़िब्रेशन है, और पीएल मैनिफोल्ड वास्तविक बीजगणितीय समुच्चय हैं क्योंकि a-मैनिफोल्ड्स वास्तविक बीजगणितीय समुच्चय हैं।
कॉम्बिनेटोरियल मैनिफोल्ड्स और डिजिटल मैनिफ़ोल्ड
- कॉम्बिनेटरियल मैनिफोल्ड प्रकार का मैनिफोल्ड है जो मैनिफोल्ड का विवेकाधीन होता है। सामान्यतः इसका अर्थ साधारण परिसरों द्वारा बनाई गई है और पीसवाइज लाइनर मैनिफोल्ड से है।
- डिजिटल मैनिफोल्ड विशेष प्रकार का कॉम्बिनेटरियल मैनिफोल्ड है जिसे डिजिटल समिष्ट में परिभाषित किया गया है। डिजिटल टोपोलॉजी देखें.
यह भी देखें
टिप्पणियाँ
- ↑ A PL structure also requires that the link of a simplex be a PL-sphere. An example of a topological triangulation of a manifold that is not a PL structure is, in dimension n ≥ 5, the (n − 3)-fold suspension of the Poincaré sphere (with some fixed triangulation): it has a simplex whose link is the Poincaré sphere, a three-dimensional manifold that is not homeomorphic to a sphere, hence not a PL-sphere. See Triangulation (topology) § Piecewise linear structures for details.
संदर्भ
- ↑ Lurie, Jacob (February 13, 2009), Whitehead Triangulations (Lecture 3) (PDF)
- ↑ M.A. Shtan'ko (2001) [1994], "Topology of manifolds", Encyclopedia of Mathematics, EMS Press
- ↑ Akbulut, S.; Taylor, L. (1980). "एक टोपोलॉजिकल रिज़ॉल्यूशन प्रमेय". Bulletin of the American Mathematical Society. (N.S.). 2 (1): 174–176. doi:10.1090/S0273-0979-1980-14709-6.
- ↑ Akbulut, S.; Taylor, L. (1981). "एक टोपोलॉजिकल रिज़ॉल्यूशन प्रमेय". Publications Mathématiques de l'IHÉS. 53 (1): 163–196. doi:10.1007/BF02698689. S2CID 121566364.
- ↑ Akbulut, S.; King, H. C. (1980). "वास्तविक बीजगणितीय किस्मों का एक टोपोलॉजिकल लक्षण वर्णन". Bulletin of the American Mathematical Society. (N.S.). 2 (1): 171–173. doi:10.1090/S0273-0979-1980-14708-4.
- ↑ Akbulut, S.; King, H. C. (1981). "टोपोलॉजिकल रिक्त स्थान पर वास्तविक बीजगणितीय संरचनाएँ". Publications Mathématiques de l'IHÉS. 53 (1): 79–162. doi:10.1007/BF02698688. S2CID 13323578.
- Whitehead, J. H. C. (October 1940). "On C1-Complexes". The Annals of Mathematics. Second Series. 41 (4): 809–824. doi:10.2307/1968861. JSTOR 1968861.
- Rudyak, Yuli B. (2001). "Piecewise linear structures on topological manifolds". arXiv:math.AT/0105047.