निश्चित वर्णन: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
भाषा के औपचारिक शब्दार्थ और दर्शन में, एक निश्चित विवरण "X " के रूप में एक सूचक वाक्यांश है जहां X एक संज्ञा-वाक्यांश या एकवचन सामान्य संज्ञा है। यदि X किसी अद्वितीय व्यक्ति या वस्तु पर प्रयुक्त होता है तो निश्चित विवरण उचित है। उदाहरण के लिए: "अंतरिक्ष में जाने वाला पहला व्यक्ति" और "संयुक्त राज्य अमेरिका के 42वें राष्ट्रपति", उचित हैं। निश्चित विवरण "अंतरिक्ष में व्यक्ति" और "ओहियो से सीनेटर" अनुचित हैं क्योंकि संज्ञा वाक्यांश X एक से अधिक चीजों पर प्रयुक्त होता है, और निश्चित विवरण "मंगल ग्रह पर पहला आदमी" और "किसी देश से सीनेटर" हैं अनुचित क्योंकि X किसी भी चीज़ पर प्रयुक्त नहीं होता है। अनुचित विवरण बहिष्कृत मध्य, संकेतन, कार्य प्रणाली और मानसिक सामग्री के नियम के बारे में कुछ कठिन प्रश्न उठाते हैं। | |||
==रसेल का विश्लेषण== | ==रसेल का विश्लेषण== | ||
{{main| | {{main|विवरण का सिद्धांत}} | ||
चूंकि [[फ्रांस]] फ्रांसीसी पांचवां गणराज्य है, इसका कोई राजा नहीं है। [[बर्ट्रेंड रसेल]] ने बताया कि इससे इस वाक्य के सत्य मूल्य के बारे में एक पहेली खड़ी हो जाती है कि फ्रांस का वर्तमान राजा | चूंकि [[फ्रांस]] फ्रांसीसी पांचवां गणराज्य है, इसका कोई राजा नहीं है। [[बर्ट्रेंड रसेल]] ने बताया कि इससे इस वाक्य के सत्य मूल्य के बारे में एक पहेली खड़ी हो जाती है कि फ्रांस का वर्तमान राजा निरर्थक है।<ref name=ondenoting>{{Cite journal|last=Russell|first=Bertrand|date=1905|title=निरूपित करने पर|journal=Mind|language=en|volume=14|issue=4|pages=479–493|doi=10.1093/mind/XIV.4.479}}</ref> | ||
यह वाक्य सत्य प्रतीत नहीं होता है: यदि हम सभी | |||
यह वाक्य सत्य प्रतीत नहीं होता है: यदि हम सभी निरर्थक चीजों पर विचार करें, तो फ्रांस के वर्तमान राजा उनमें से नहीं हैं, क्योंकि फ्रांसीसी राजाओं की सूची है। किंतु यदि यह गलत है, तो कोई यह उम्मीद कर सकता है कि इस कथन का खंडन, अथार्त , ऐसा नहीं है कि फ्रांस के वर्तमान राजा गंजे हैं, या इसकी तार्किक समकक्षता, फ्रांस के वर्तमान राजा गंजे नहीं हैं, यह सच है . किंतु यह वाक्य भी सच नहीं लगता: फ्रांस का वर्तमान राजा उन चीजों में से नहीं है जो निरर्थक होने में विफल रहती हैं, बल्कि उन चीजों में से हैं जो गंजे हैं। इसलिए हमें बहिष्कृत मध्य के कानून का उल्लंघन प्रतीत होता है। | |||
तो क्या यह अर्थहीन है? कोई ऐसा मान सकता है (और कुछ दार्शनिकों ने ऐसा माना है){{who|date=October 2021}}चूंकि फ्रांस के वर्तमान राजा निश्चित रूप से उल्लेख करने में विफल रहते हैं। | तो क्या यह अर्थहीन है? कोई ऐसा मान सकता है (और कुछ दार्शनिकों ने ऐसा माना है){{who|date=October 2021}}चूंकि फ्रांस के वर्तमान राजा निश्चित रूप से उल्लेख करने में विफल रहते हैं। किंतु दूसरी ओर, यह वाक्य कि फ्रांस का वर्तमान राजा निरर्थक है (साथ ही इसका खंडन भी) पूरी तरह से समझने योग्य लगता है, जिससे पता चलता है कि फ्रांस का वर्तमान राजा निरर्थक नहीं हो सकता। | ||
रसेल ने अपने विवरण के सिद्धांत के माध्यम से इस पहेली को हल करने का प्रस्ताव रखा। उन्होंने सुझाव दिया कि फ्रांस के वर्तमान राजा जैसा एक निश्चित विवरण, एक [[संदर्भ]] अभिव्यक्ति नहीं है, जैसा कि हम भोलेपन से मान सकते हैं, बल्कि एक अधूरा प्रतीक है जो [[परिमाणक (तर्क)]]तर्क) संरचना को उन वाक्यों में पेश करता है जिनमें यह होता है। उदाहरण के लिए, फ्रांस का वर्तमान राजा | रसेल ने अपने विवरण के सिद्धांत के माध्यम से इस पहेली को हल करने का प्रस्ताव रखा। उन्होंने सुझाव दिया कि फ्रांस के वर्तमान राजा जैसा एक निश्चित विवरण, एक [[संदर्भ]] अभिव्यक्ति नहीं है, जैसा कि हम भोलेपन से मान सकते हैं, बल्कि एक अधूरा प्रतीक है जो [[परिमाणक (तर्क)]]तर्क) संरचना को उन वाक्यों में पेश करता है जिनमें यह होता है। उदाहरण के लिए, फ्रांस का वर्तमान राजा निरर्थक है, इस वाक्य का विश्लेषण निम्नलिखित तीन क्वांटिफायर (तर्क) कथनों के संयोजन के रूप में किया गया है: | ||
# एक x ऐसा है कि x वर्तमान में फ़्रांस का राजा है: <math>\exists xKx</math> ('x वर्तमान में फ्रांस का राजा है' के लिए 'Kx' का प्रयोग) | # एक x ऐसा है कि x वर्तमान में फ़्रांस का राजा है: <math>\exists xKx</math> ('x वर्तमान में फ्रांस का राजा है' के लिए 'Kx' का प्रयोग) | ||
# किसी भी x और y के लिए, यदि x वर्तमान में फ़्रांस का राजा है और y वर्तमान में फ़्रांस का राजा है, तो x=y ( | # किसी भी x और y के लिए, यदि x वर्तमान में फ़्रांस का राजा है और y वर्तमान में फ़्रांस का राजा है, तो x=y (अथार्त अधिकतम एक चीज़ है जो वर्तमान में फ़्रांस का राजा है): <math>\forall x \forall y ((Kx \land Ky) \rightarrow x=y)</math> | ||
# प्रत्येक x के लिए जो वर्तमान में फ्रांस का राजा है, x | # प्रत्येक x के लिए जो वर्तमान में फ्रांस का राजा है, x निरर्थक है: <math>\forall x (Kx \rightarrow Bx)</math> ('गंजे' के लिए 'बी' का प्रयोग) | ||
अधिक संक्षेप में कहें तो, दावा यह है कि फ़्रांस का वर्तमान राजा | अधिक संक्षेप में कहें तो, दावा यह है कि फ़्रांस का वर्तमान राजा निरर्थक है, कहता है कि कुछ x ऐसे हैं कि x वर्तमान में फ़्रांस का राजा है, और कोई भी y वर्तमान में फ़्रांस का राजा केवल तभी है जब y = x, और वह x निरर्थक है: | ||
{{block indent|<math>\exists x((Kx \land \forall y(Ky \rightarrow y =x)) \land Bx)</math>}} | |||
यह ग़लत है, क्योंकि ऐसा नहीं है कि कुछ {{var|x}} वर्तमान में फ्रांस के राजा हैं। | यह ग़लत है, क्योंकि ऐसा नहीं है कि कुछ {{var|x}} वर्तमान में फ्रांस के राजा हैं। | ||
इस वाक्य का खंडन, अर्थात् फ़्रांस का वर्तमान राजा | इस वाक्य का खंडन, अर्थात् फ़्रांस का वर्तमान राजा निरर्थक नहीं है, अस्पष्ट है। इसका मतलब दो चीजों में से एक हो सकता है, यह इस पर निर्भर करता है कि हम 'नहीं' का निषेध कहां करते हैं। एक बार पढ़ने पर, इसका मतलब यह हो सकता है कि वर्तमान में फ्रांस का राजा और निरर्थक कोई नहीं है: | ||
{{block indent|<math>\lnot \exists x ((Kx \land \forall y (Ky \rightarrow y = x)) \land Bx)</math>}} | {{block indent|<math>\lnot \exists x ((Kx \land \forall y (Ky \rightarrow y = x)) \land Bx)</math>}} | ||
Line 26: | Line 29: | ||
इस असंबद्धता पर, वाक्य सत्य है (क्योंकि वास्तव में कोई एक्स नहीं है जो वर्तमान में फ्रांस का राजा है)। | इस असंबद्धता पर, वाक्य सत्य है (क्योंकि वास्तव में कोई एक्स नहीं है जो वर्तमान में फ्रांस का राजा है)। | ||
दूसरी बार पढ़ने पर, निषेध को सीधे 'गंजे' से जोड़कर समझा जा सकता है, ताकि वाक्य का अर्थ हो कि वर्तमान में फ्रांस का एक राजा है, | दूसरी बार पढ़ने पर, निषेध को सीधे 'गंजे' से जोड़कर समझा जा सकता है, ताकि वाक्य का अर्थ हो कि वर्तमान में फ्रांस का एक राजा है, किंतु यह राजा निरर्थक होने में विफल रहता है: | ||
{{block indent|<math>\exists x ((Kx \land \forall y (Ky \rightarrow y = x)) \land \lnot Bx)</math>}} | {{block indent|<math>\exists x ((Kx \land \forall y (Ky \rightarrow y = x)) \land \lnot Bx)</math>}} | ||
Line 34: | Line 37: | ||
इस प्रकार, फ्रांस के वर्तमान राजा गंजे नहीं हैं, यह सत्य है या असत्य, यह इस बात पर निर्भर करता है कि [[तार्किक रूप]] के स्तर पर इसकी व्याख्या कैसे की जाती है: यदि निषेध को व्यापक दायरे में लिया जाता है (जैसा कि उपरोक्त में से पहले में है), तो यह सत्य है , जबकि यदि निषेध को संकीर्ण दायरे के रूप में माना जाता है (जैसा कि उपरोक्त दूसरे में है), तो यह गलत है। किसी भी मामले में इसमें सत्य मूल्य का अभाव नहीं है। | इस प्रकार, फ्रांस के वर्तमान राजा गंजे नहीं हैं, यह सत्य है या असत्य, यह इस बात पर निर्भर करता है कि [[तार्किक रूप]] के स्तर पर इसकी व्याख्या कैसे की जाती है: यदि निषेध को व्यापक दायरे में लिया जाता है (जैसा कि उपरोक्त में से पहले में है), तो यह सत्य है , जबकि यदि निषेध को संकीर्ण दायरे के रूप में माना जाता है (जैसा कि उपरोक्त दूसरे में है), तो यह गलत है। किसी भी मामले में इसमें सत्य मूल्य का अभाव नहीं है। | ||
इसलिए हमारे पास बहिष्कृत मध्य के कानून की विफलता नहीं है: फ्रांस का वर्तमान राजा | इसलिए हमारे पास बहिष्कृत मध्य के कानून की विफलता नहीं है: फ्रांस का वर्तमान राजा निरर्थक है (अथार्त ) <math>\exists x((Kx \land \forall y(Ky \rightarrow y =x)) \land Bx)</math>) गलत है, क्योंकि फ्रांस का कोई वर्तमान राजा नहीं है। | ||
इस कथन का निषेध वह है जिसमें 'नहीं' का व्यापक दायरा है: <math>\lnot \exists x ((Kx \land \forall y (Ky \rightarrow y = x)) \land Bx)</math>. यह कथन सत्य है क्योंकि ऐसी कोई भी चीज़ अस्तित्व में नहीं है जो वर्तमान में फ्रांस का राजा हो। | इस कथन का निषेध वह है जिसमें 'नहीं' का व्यापक दायरा है: <math>\lnot \exists x ((Kx \land \forall y (Ky \rightarrow y = x)) \land Bx)</math>. यह कथन सत्य है क्योंकि ऐसी कोई भी चीज़ अस्तित्व में नहीं है जो वर्तमान में फ्रांस का राजा हो। | ||
Line 49: | Line 52: | ||
{{block indent|<math>\lambda x.Bx</math>}} | {{block indent|<math>\lambda x.Bx</math>}} | ||
इसके बाद हम [[फ़ंक्शन अनुप्रयोग]] के दो चरणों के माध्यम से रसेलियन सत्य की स्थिति प्राप्त करते हैं: 'फ्रांस का वर्तमान राजा | इसके बाद हम [[फ़ंक्शन अनुप्रयोग]] के दो चरणों के माध्यम से रसेलियन सत्य की स्थिति प्राप्त करते हैं: 'फ्रांस का वर्तमान राजा निरर्थक है' यह सत्य है, और केवल यदि, <math>\exists x((Kx \land \forall y(Ky \rightarrow y =x)) \land Bx)</math>. इस दृष्टिकोण पर, 'फ्रांस के वर्तमान राजा' जैसे निश्चित विवरणों में एक संकेत होता है (विशेष रूप से, निश्चित विवरण गुणों से सत्य मूल्यों तक एक फ़ंक्शन को दर्शाते हैं - वे उस अर्थ में समकालिक, या अपूर्ण प्रतीक नहीं हैं); किंतु यह दृष्टिकोण रसेलियन विश्लेषण की अनिवार्यताओं को बरकरार रखता है, जो बिल्कुल वही सत्य स्थितियां प्रदान करता है जिनके लिए रसेल ने तर्क दिया था। | ||
==[[ पूछा ]]ियन विश्लेषण== | ==[[ पूछा ]]ियन विश्लेषण== | ||
निश्चित विवरणों का फ़्रीजियन विश्लेषण, फ़्रीज के काम में निहित और बाद में पी.एफ. स्ट्रॉसन द्वारा बचाव किया गया<ref name=onreferring>{{Cite journal|last=Strawson|first=Peter|date=1950|title=रेफर करने पर|journal=Mind|language=en|volume=59|issue=235|pages=320–344|doi=10.1093/mind/LIX.235.320}}</ref> दूसरों के बीच, रसेलियन सिद्धांत के प्राथमिक विकल्प का प्रतिनिधित्व करता है। फ्रीगियन विश्लेषण पर, निश्चित विवरणों को क्वांटिफ़ायर (तर्क) के बजाय संदर्भ अभिव्यक्ति के रूप में माना जाता है। अस्तित्व और विशिष्टता को एक निश्चित विवरण वाले वाक्य की [[पूर्वधारणा]] के रूप में समझा जाता है, न कि ऐसे वाक्य द्वारा बताई गई सामग्री के हिस्से के रूप में। उदाहरण के लिए, 'फ्रांस का वर्तमान राजा | निश्चित विवरणों का फ़्रीजियन विश्लेषण, फ़्रीज के काम में निहित और बाद में पी.एफ. स्ट्रॉसन द्वारा बचाव किया गया<ref name=onreferring>{{Cite journal|last=Strawson|first=Peter|date=1950|title=रेफर करने पर|journal=Mind|language=en|volume=59|issue=235|pages=320–344|doi=10.1093/mind/LIX.235.320}}</ref> दूसरों के बीच, रसेलियन सिद्धांत के प्राथमिक विकल्प का प्रतिनिधित्व करता है। फ्रीगियन विश्लेषण पर, निश्चित विवरणों को क्वांटिफ़ायर (तर्क) के बजाय संदर्भ अभिव्यक्ति के रूप में माना जाता है। अस्तित्व और विशिष्टता को एक निश्चित विवरण वाले वाक्य की [[पूर्वधारणा]] के रूप में समझा जाता है, न कि ऐसे वाक्य द्वारा बताई गई सामग्री के हिस्से के रूप में। उदाहरण के लिए, 'फ्रांस का वर्तमान राजा निरर्थक है' वाक्य का उपयोग यह दावा करने के लिए नहीं किया जाता है कि फ्रांस का कोई अनोखा वर्तमान राजा मौजूद है जो निरर्थक है; इसके बजाय, यह कि फ्रांस का एक अनोखा वर्तमान राजा है, यह इस वाक्य की परिकल्पना का हिस्सा है, और यह जो कहता है वह यह है कि यह व्यक्ति निरर्थक है। यदि पूर्वकल्पना विफल हो जाती है, तो निश्चित विवरण संदर्भित करने में विफल रहता है, और संपूर्ण वाक्य एक [[प्रस्ताव]] को व्यक्त करने में विफल रहता है। | ||
फ़्रीजियन दृष्टिकोण इस प्रकार [[सत्य मूल्य]] अंतराल (और बहिष्कृत मध्य के कानून की विफलताओं) के प्रति प्रतिबद्ध है जिससे बचने के लिए रसेलियन विश्लेषण को डिज़ाइन किया गया है। चूँकि वर्तमान में फ्रांस का कोई राजा नहीं है, इसलिए वाक्य 'फ्रांस का वर्तमान राजा | फ़्रीजियन दृष्टिकोण इस प्रकार [[सत्य मूल्य]] अंतराल (और बहिष्कृत मध्य के कानून की विफलताओं) के प्रति प्रतिबद्ध है जिससे बचने के लिए रसेलियन विश्लेषण को डिज़ाइन किया गया है। चूँकि वर्तमान में फ्रांस का कोई राजा नहीं है, इसलिए वाक्य 'फ्रांस का वर्तमान राजा निरर्थक नहीं है' एक प्रस्ताव को व्यक्त करने में विफल रहता है, और इसलिए इसका कोई सत्य मूल्य नहीं है, जैसा कि इसका खंडन है, 'फ्रांस का वर्तमान राजा निरर्थक नहीं है' . फ़्रीगियन इस तथ्य को ध्यान में रखेगा कि ये वाक्य फिर भी वक्ताओं के उन परिस्थितियों के ज्ञान पर भरोसा करके सार्थक हैं जिनके तहत इनमें से किसी भी वाक्य का उपयोग एक सच्चे प्रस्ताव को व्यक्त करने के लिए किया जा सकता है। फ़्रीगियन बहिष्कृत मध्य के कानून के एक प्रतिबंधित संस्करण को भी पकड़ सकता है: किसी भी वाक्य के लिए जिसकी पूर्वकल्पनाएँ पूरी होती हैं (और इस प्रकार एक प्रस्ताव व्यक्त करती हैं), या तो वह वाक्य या उसका निषेध सत्य है। | ||
फ्रीगियन दृष्टिकोण पर, निश्चित लेख 'द' का निम्नलिखित अर्थ है (लैम्ब्डा कैलकुलस नोटेशन का उपयोग करके): | फ्रीगियन दृष्टिकोण पर, निश्चित लेख 'द' का निम्नलिखित अर्थ है (लैम्ब्डा कैलकुलस नोटेशन का उपयोग करके): | ||
Line 64: | Line 67: | ||
== गणितीय तर्क == | == गणितीय तर्क == | ||
{{main| | {{main|विशिष्टता परिमाणीकरण}} | ||
[[गणितीय सिद्धांत]] के उदाहरण के बाद, एक निश्चित विवरण ऑपरेटर का उपयोग करने की प्रथा है, जिसे बदले हुए (घुमाए गए) ग्रीक लोअर केस आईओटा वर्ण ℩ का उपयोग करके दर्शाया गया है। अंकन ℩<math>x(\phi x)</math> अद्वितीय का मतलब है <math>x</math> ऐसा है कि <math>\phi x</math>, और | [[गणितीय सिद्धांत]] के उदाहरण के बाद, एक निश्चित विवरण ऑपरेटर का उपयोग करने की प्रथा है, जिसे बदले हुए (घुमाए गए) ग्रीक लोअर केस आईओटा वर्ण ℩ का उपयोग करके दर्शाया गया है। अंकन ℩<math>x(\phi x)</math> अद्वितीय का मतलब है <math>x</math> ऐसा है कि <math>\phi x</math>, और | ||
Revision as of 13:14, 16 July 2023
भाषा के औपचारिक शब्दार्थ और दर्शन में, एक निश्चित विवरण "X " के रूप में एक सूचक वाक्यांश है जहां X एक संज्ञा-वाक्यांश या एकवचन सामान्य संज्ञा है। यदि X किसी अद्वितीय व्यक्ति या वस्तु पर प्रयुक्त होता है तो निश्चित विवरण उचित है। उदाहरण के लिए: "अंतरिक्ष में जाने वाला पहला व्यक्ति" और "संयुक्त राज्य अमेरिका के 42वें राष्ट्रपति", उचित हैं। निश्चित विवरण "अंतरिक्ष में व्यक्ति" और "ओहियो से सीनेटर" अनुचित हैं क्योंकि संज्ञा वाक्यांश X एक से अधिक चीजों पर प्रयुक्त होता है, और निश्चित विवरण "मंगल ग्रह पर पहला आदमी" और "किसी देश से सीनेटर" हैं अनुचित क्योंकि X किसी भी चीज़ पर प्रयुक्त नहीं होता है। अनुचित विवरण बहिष्कृत मध्य, संकेतन, कार्य प्रणाली और मानसिक सामग्री के नियम के बारे में कुछ कठिन प्रश्न उठाते हैं।
रसेल का विश्लेषण
चूंकि फ्रांस फ्रांसीसी पांचवां गणराज्य है, इसका कोई राजा नहीं है। बर्ट्रेंड रसेल ने बताया कि इससे इस वाक्य के सत्य मूल्य के बारे में एक पहेली खड़ी हो जाती है कि फ्रांस का वर्तमान राजा निरर्थक है।[1]
यह वाक्य सत्य प्रतीत नहीं होता है: यदि हम सभी निरर्थक चीजों पर विचार करें, तो फ्रांस के वर्तमान राजा उनमें से नहीं हैं, क्योंकि फ्रांसीसी राजाओं की सूची है। किंतु यदि यह गलत है, तो कोई यह उम्मीद कर सकता है कि इस कथन का खंडन, अथार्त , ऐसा नहीं है कि फ्रांस के वर्तमान राजा गंजे हैं, या इसकी तार्किक समकक्षता, फ्रांस के वर्तमान राजा गंजे नहीं हैं, यह सच है . किंतु यह वाक्य भी सच नहीं लगता: फ्रांस का वर्तमान राजा उन चीजों में से नहीं है जो निरर्थक होने में विफल रहती हैं, बल्कि उन चीजों में से हैं जो गंजे हैं। इसलिए हमें बहिष्कृत मध्य के कानून का उल्लंघन प्रतीत होता है।
तो क्या यह अर्थहीन है? कोई ऐसा मान सकता है (और कुछ दार्शनिकों ने ऐसा माना है)[who?]चूंकि फ्रांस के वर्तमान राजा निश्चित रूप से उल्लेख करने में विफल रहते हैं। किंतु दूसरी ओर, यह वाक्य कि फ्रांस का वर्तमान राजा निरर्थक है (साथ ही इसका खंडन भी) पूरी तरह से समझने योग्य लगता है, जिससे पता चलता है कि फ्रांस का वर्तमान राजा निरर्थक नहीं हो सकता।
रसेल ने अपने विवरण के सिद्धांत के माध्यम से इस पहेली को हल करने का प्रस्ताव रखा। उन्होंने सुझाव दिया कि फ्रांस के वर्तमान राजा जैसा एक निश्चित विवरण, एक संदर्भ अभिव्यक्ति नहीं है, जैसा कि हम भोलेपन से मान सकते हैं, बल्कि एक अधूरा प्रतीक है जो परिमाणक (तर्क)तर्क) संरचना को उन वाक्यों में पेश करता है जिनमें यह होता है। उदाहरण के लिए, फ्रांस का वर्तमान राजा निरर्थक है, इस वाक्य का विश्लेषण निम्नलिखित तीन क्वांटिफायर (तर्क) कथनों के संयोजन के रूप में किया गया है:
- एक x ऐसा है कि x वर्तमान में फ़्रांस का राजा है: ('x वर्तमान में फ्रांस का राजा है' के लिए 'Kx' का प्रयोग)
- किसी भी x और y के लिए, यदि x वर्तमान में फ़्रांस का राजा है और y वर्तमान में फ़्रांस का राजा है, तो x=y (अथार्त अधिकतम एक चीज़ है जो वर्तमान में फ़्रांस का राजा है):
- प्रत्येक x के लिए जो वर्तमान में फ्रांस का राजा है, x निरर्थक है: ('गंजे' के लिए 'बी' का प्रयोग)
अधिक संक्षेप में कहें तो, दावा यह है कि फ़्रांस का वर्तमान राजा निरर्थक है, कहता है कि कुछ x ऐसे हैं कि x वर्तमान में फ़्रांस का राजा है, और कोई भी y वर्तमान में फ़्रांस का राजा केवल तभी है जब y = x, और वह x निरर्थक है:
यह ग़लत है, क्योंकि ऐसा नहीं है कि कुछ x वर्तमान में फ्रांस के राजा हैं।
इस वाक्य का खंडन, अर्थात् फ़्रांस का वर्तमान राजा निरर्थक नहीं है, अस्पष्ट है। इसका मतलब दो चीजों में से एक हो सकता है, यह इस पर निर्भर करता है कि हम 'नहीं' का निषेध कहां करते हैं। एक बार पढ़ने पर, इसका मतलब यह हो सकता है कि वर्तमान में फ्रांस का राजा और निरर्थक कोई नहीं है:
इस असंबद्धता पर, वाक्य सत्य है (क्योंकि वास्तव में कोई एक्स नहीं है जो वर्तमान में फ्रांस का राजा है)।
दूसरी बार पढ़ने पर, निषेध को सीधे 'गंजे' से जोड़कर समझा जा सकता है, ताकि वाक्य का अर्थ हो कि वर्तमान में फ्रांस का एक राजा है, किंतु यह राजा निरर्थक होने में विफल रहता है:
इस असंबद्धता पर, वाक्य गलत है (क्योंकि कोई x नहीं है जो वर्तमान में फ्रांस का राजा है)।
इस प्रकार, फ्रांस के वर्तमान राजा गंजे नहीं हैं, यह सत्य है या असत्य, यह इस बात पर निर्भर करता है कि तार्किक रूप के स्तर पर इसकी व्याख्या कैसे की जाती है: यदि निषेध को व्यापक दायरे में लिया जाता है (जैसा कि उपरोक्त में से पहले में है), तो यह सत्य है , जबकि यदि निषेध को संकीर्ण दायरे के रूप में माना जाता है (जैसा कि उपरोक्त दूसरे में है), तो यह गलत है। किसी भी मामले में इसमें सत्य मूल्य का अभाव नहीं है।
इसलिए हमारे पास बहिष्कृत मध्य के कानून की विफलता नहीं है: फ्रांस का वर्तमान राजा निरर्थक है (अथार्त ) ) गलत है, क्योंकि फ्रांस का कोई वर्तमान राजा नहीं है।
इस कथन का निषेध वह है जिसमें 'नहीं' का व्यापक दायरा है: . यह कथन सत्य है क्योंकि ऐसी कोई भी चीज़ अस्तित्व में नहीं है जो वर्तमान में फ्रांस का राजा हो।
सामान्यीकृत परिमाणक विश्लेषण
स्टीफन नील,[2] दूसरों के बीच, रसेल के सिद्धांत का बचाव किया है, और इसे सामान्यीकृत क्वांटिफायर के सिद्धांत में शामिल किया है। इस दृष्टिकोण पर, 'द' एक मात्रात्मक निर्धारक है जैसे 'कुछ', 'प्रत्येक', 'सबसे' आदि। निर्धारक 'द' का निम्नलिखित अर्थ है (लैम्ब्डा कैलकुलस नोटेशन का उपयोग करके):
(अर्थात, निश्चित लेख 'द' एक फ़ंक्शन को दर्शाता है जो संपत्ति की एक जोड़ी लेता है f और g सत्य के लिए यदि और केवल यदि|यदि, और केवल यदि, कुछ ऐसा मौजूद है जिसमें संपत्ति है f, केवल एक ही वस्तु का गुण होता है f, और उस चीज़ का गुण भी होता है g.) 'फ्रांस के वर्तमान राजा' (फिर से) विधेय (गणितीय तर्क) के अर्थ को देखते हुए K संक्षेप में) और 'गंजा' (B छोटे के लिए)
इसके बाद हम फ़ंक्शन अनुप्रयोग के दो चरणों के माध्यम से रसेलियन सत्य की स्थिति प्राप्त करते हैं: 'फ्रांस का वर्तमान राजा निरर्थक है' यह सत्य है, और केवल यदि, . इस दृष्टिकोण पर, 'फ्रांस के वर्तमान राजा' जैसे निश्चित विवरणों में एक संकेत होता है (विशेष रूप से, निश्चित विवरण गुणों से सत्य मूल्यों तक एक फ़ंक्शन को दर्शाते हैं - वे उस अर्थ में समकालिक, या अपूर्ण प्रतीक नहीं हैं); किंतु यह दृष्टिकोण रसेलियन विश्लेषण की अनिवार्यताओं को बरकरार रखता है, जो बिल्कुल वही सत्य स्थितियां प्रदान करता है जिनके लिए रसेल ने तर्क दिया था।
पूछा ियन विश्लेषण
निश्चित विवरणों का फ़्रीजियन विश्लेषण, फ़्रीज के काम में निहित और बाद में पी.एफ. स्ट्रॉसन द्वारा बचाव किया गया[3] दूसरों के बीच, रसेलियन सिद्धांत के प्राथमिक विकल्प का प्रतिनिधित्व करता है। फ्रीगियन विश्लेषण पर, निश्चित विवरणों को क्वांटिफ़ायर (तर्क) के बजाय संदर्भ अभिव्यक्ति के रूप में माना जाता है। अस्तित्व और विशिष्टता को एक निश्चित विवरण वाले वाक्य की पूर्वधारणा के रूप में समझा जाता है, न कि ऐसे वाक्य द्वारा बताई गई सामग्री के हिस्से के रूप में। उदाहरण के लिए, 'फ्रांस का वर्तमान राजा निरर्थक है' वाक्य का उपयोग यह दावा करने के लिए नहीं किया जाता है कि फ्रांस का कोई अनोखा वर्तमान राजा मौजूद है जो निरर्थक है; इसके बजाय, यह कि फ्रांस का एक अनोखा वर्तमान राजा है, यह इस वाक्य की परिकल्पना का हिस्सा है, और यह जो कहता है वह यह है कि यह व्यक्ति निरर्थक है। यदि पूर्वकल्पना विफल हो जाती है, तो निश्चित विवरण संदर्भित करने में विफल रहता है, और संपूर्ण वाक्य एक प्रस्ताव को व्यक्त करने में विफल रहता है।
फ़्रीजियन दृष्टिकोण इस प्रकार सत्य मूल्य अंतराल (और बहिष्कृत मध्य के कानून की विफलताओं) के प्रति प्रतिबद्ध है जिससे बचने के लिए रसेलियन विश्लेषण को डिज़ाइन किया गया है। चूँकि वर्तमान में फ्रांस का कोई राजा नहीं है, इसलिए वाक्य 'फ्रांस का वर्तमान राजा निरर्थक नहीं है' एक प्रस्ताव को व्यक्त करने में विफल रहता है, और इसलिए इसका कोई सत्य मूल्य नहीं है, जैसा कि इसका खंडन है, 'फ्रांस का वर्तमान राजा निरर्थक नहीं है' . फ़्रीगियन इस तथ्य को ध्यान में रखेगा कि ये वाक्य फिर भी वक्ताओं के उन परिस्थितियों के ज्ञान पर भरोसा करके सार्थक हैं जिनके तहत इनमें से किसी भी वाक्य का उपयोग एक सच्चे प्रस्ताव को व्यक्त करने के लिए किया जा सकता है। फ़्रीगियन बहिष्कृत मध्य के कानून के एक प्रतिबंधित संस्करण को भी पकड़ सकता है: किसी भी वाक्य के लिए जिसकी पूर्वकल्पनाएँ पूरी होती हैं (और इस प्रकार एक प्रस्ताव व्यक्त करती हैं), या तो वह वाक्य या उसका निषेध सत्य है।
फ्रीगियन दृष्टिकोण पर, निश्चित लेख 'द' का निम्नलिखित अर्थ है (लैम्ब्डा कैलकुलस नोटेशन का उपयोग करके):
(अर्थात, 'द' एक फ़ंक्शन को दर्शाता है जो एक संपत्ति लेता है f और अद्वितीय वस्तु उत्पन्न करता है zजिसके पास संपत्ति है f, यदि ऐसा कोई है z, और अन्यथा अपरिभाषित है।) अस्तित्व और विशिष्टता स्थितियों का पूर्वनिर्धारित चरित्र यहां इस तथ्य में परिलक्षित होता है कि निश्चित लेख गुणों के सेट पर एक आंशिक कार्य को दर्शाता है: यह केवल उन गुणों के लिए परिभाषित किया गया है f जो बिल्कुल एक वस्तु के लिए सत्य हैं। इस प्रकार यह 'वर्तमान में फ्रांस के राजा' विधेय के अर्थ पर अपरिभाषित है, क्योंकि वर्तमान में फ्रांस के राजा होने की संपत्ति किसी भी वस्तु के लिए सत्य नहीं है; यह 'अमेरिका के सीनेटर' विधेय के अर्थ पर भी इसी तरह अपरिभाषित है, क्योंकि अमेरिकी सीनेटर होने की संपत्ति एक से अधिक वस्तुओं के लिए सच है।
गणितीय तर्क
गणितीय सिद्धांत के उदाहरण के बाद, एक निश्चित विवरण ऑपरेटर का उपयोग करने की प्रथा है, जिसे बदले हुए (घुमाए गए) ग्रीक लोअर केस आईओटा वर्ण ℩ का उपयोग करके दर्शाया गया है। अंकन ℩ अद्वितीय का मतलब है ऐसा है कि , और
के बराबर है बिल्कुल एक है और उसके पास संपत्ति है :
यह भी देखें
संदर्भ
- ↑ Russell, Bertrand (1905). "निरूपित करने पर". Mind (in English). 14 (4): 479–493. doi:10.1093/mind/XIV.4.479.
- ↑ Stephen Neale (1990). विवरण. The MIT Press. ISBN 0262640317.
- ↑ Strawson, Peter (1950). "रेफर करने पर". Mind (in English). 59 (235): 320–344. doi:10.1093/mind/LIX.235.320.
ग्रन्थसूची
- Donnellan, Keith, "Reference and Definite Descriptions," in Philosophical Review 75 (1966): 281–304.
- Neale, Stephen, Descriptions, MIT Press, 1990.
- Ostertag, Gary (ed.). (1998) Definite Descriptions: A Reader Bradford, MIT Press. (Includes Donnellan (1966), Chapter 3 of Neale (1990), Russell (1905), and Strawson (1950).)
- Reimer, Marga and Bezuidenhout, Anne (eds.) (2004), Descriptions and Beyond, Clarendon Press, Oxford
- Russell, Bertrand, "On Denoting," in Mind 14 (1905): 479–493. Online text,
- Strawson, P. F., "On Referring," in Mind 59 (1950): 320–344.