बीजगणितीय टोरस: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
गणित में, बीजीय टोरस, जहां आयामी टोरस को आम तौर पर निरूपित किया जाता है <math>\mathbf G_{\mathbf m}</math>, <math>\mathbb{G}_m</math>, या <math>\mathbb{T}</math>, प्रकार का क्रमविनिमेय एफ़िन [[बीजगणितीय समूह]] है जो आमतौर पर [[प्रक्षेप्य योजना]] और [[टोरिक ज्यामिति]] में पाया जाता है। उच्च आयामी बीजीय तोरी को बीजगणितीय समूहों के उत्पाद के रूप में तैयार किया जा सकता है <math>\mathbf G_{\mathbf m}</math>. इन [[समूह (गणित)]] को लाई समूह सिद्धांत में तोरी के सिद्धांत के अनुरूप नाम दिया गया था ([[कार्टन उपसमूह]] देखें)। उदाहरण के लिए, सम्मिश्र संख्याओं पर <math>\mathbb{C}</math> बीजगणितीय टोरस <math>\mathbf G_{\mathbf m}</math> [[समूह योजना]] के लिए समरूपी है <math>\mathbb{C}^* = \text{Spec}(\mathbb{C}[t,t^{-1}])</math>, जो लाई समूह का योजना सैद्धांतिक एनालॉग है <math>U(1) \subset \mathbb{C}</math>. वास्तव में, कोई भी <math>\mathbf G_{\mathbf m}</math>-एक जटिल वेक्टर स्पेस पर कार्रवाई को वापस खींचा जा सकता है <math>U(1)</math>-समावेशन से कार्रवाई <math>U(1) \subset \mathbb{C}^*</math> वास्तविक अनेक गुना के रूप में।
गणित में, एक बीजगणितीय टोरस, जहां एक आयामी टोरस को सामान्यतः <math>\mathbf G_{\mathbf m}</math>, <math>\mathbb{G}_m</math>, या <math>\mathbb{T}</math>, द्वारा दर्शाया जाता है, एक प्रकार का क्रमविनिमेय [[बीजगणितीय समूह]] है जो सामान्यतः प्रक्षेप्य [[प्रक्षेप्य योजना|बीजगणितीय ज्यामिति]] और [[टोरिक ज्यामिति]] में पाया जाता है। उच्च आयामी बीजीय टोरी को बीजगणितीय समूहों <math>\mathbf G_{\mathbf m}</math> के उत्पाद के रूप में तैयार किया जा सकता है। इन समूहों को लाई समूह सिद्धांत में टोरी के सिद्धांत के अनुरूप नाम दिया गया था ([[कार्टन उपसमूह]] देखें)। उदाहरण के लिए, समिष्ट संख्याओं <math>\mathbb{C}</math> पर बीजगणितीय टोरस <math>\mathbf G_{\mathbf m}</math> [[समूह योजना|समूह स्कीम]] <math>\mathbb{C}^* = \text{Spec}(\mathbb{C}[t,t^{-1}])</math> के लिए समरूपी है, जो कि लाई समूह <math>U(1) \subset \mathbb{C}</math> का स्कीम सैद्धांतिक एनालॉग है। वास्तव में, किसी समिष्ट सदिश समष्टि पर किसी भी <math>\mathbf G_{\mathbf m}</math>-कार्य को वास्तविक मैनिफोल्ड्स के रूप में सम्मिलित किए जाने से <math>U(1)</math>-क्रिया <math>U(1) \subset \mathbb{C}^*</math> में मैनिफोल्ड किया जा सकता है।


बीजगणितीय समूहों और लाई समूहों के सिद्धांत और उनसे जुड़ी ज्यामितीय वस्तुओं जैसे [[सममित स्थान]] और भवन (गणित) के अध्ययन में टोरी का मौलिक महत्व है।
बीजगणितीय समूहों और लाई समूहों के सिद्धांत और उनसे जुड़ी ज्यामितीय वस्तुओं जैसे [[सममित स्थान|सममित समिष्ट]] और बिल्डिंग (गणित) के अध्ययन में टोरी का मौलिक महत्व है।


== खेतों पर बीजगणितीय तोरी ==
== क्षेत्रो पर बीजगणितीय टोरी ==


अधिकांश स्थानों पर हम मानते हैं कि आधार क्षेत्र पूर्ण क्षेत्र है (उदाहरण के लिए परिमित या विशेषता शून्य)। सुचारु समूह योजना के लिए इस परिकल्पना की आवश्यकता है<ref name=":0">{{Cite web|last=Milne|date=|title=Algebraic Groups: The Theory of Group Schemes of Finite Type|url=https://www.jmilne.org/math/CourseNotes/iAG200.pdf|url-status=live|archive-url=https://web.archive.org/web/20160307074150/http://www.jmilne.org/math/CourseNotes/iAG200.pdf |archive-date=2016-03-07 |access-date=|website=}}</ref><sup>पृष्ठ 64</sup>, चूंकि बीजगणितीय समूह के लिए <math>G</math> विशेषता पर सहज होना <math>p</math>, मानचित्र<math display="block">(\cdot)^{p^r}:\mathcal{O}(G) \to \mathcal{O}(G)</math> पर्याप्त बड़े के लिए ज्यामितीय रूप से कम किया जाना चाहिए <math>r</math>, जिसका अर्थ है संबंधित मानचित्र की छवि <math>G</math> काफी बड़े आकार के लिए चिकना है <math>r</math>.
अधिकांश स्थानों पर हम मानते हैं कि आधार क्षेत्र एकदम सही है (उदाहरण के लिए परिमित या विशेषता शून्य)। इस परिकल्पना के लिए एक समतल समूह स्कीम की आवश्यकता है <ref name=":0">{{Cite web|last=Milne|date=|title=Algebraic Groups: The Theory of Group Schemes of Finite Type|url=https://www.jmilne.org/math/CourseNotes/iAG200.pdf|url-status=live|archive-url=https://web.archive.org/web/20160307074150/http://www.jmilne.org/math/CourseNotes/iAG200.pdf |archive-date=2016-03-07 |access-date=|website=}}</ref> पृष्ठ 64, क्योंकि बीजगणितीय समूह <math>G</math> के लिए मानचित्रों की विशेषता <math>p</math> पर समतल होना आवश्यक है<math display="block">(\cdot)^{p^r}:\mathcal{O}(G) \to \mathcal{O}(G)</math> पर्याप्त बड़े <math>r</math> के लिए ज्यामितीय रूप से कम किया जाना चाहिए, जिसका अर्थ है कि <math>G</math> पर संबंधित मानचित्र की छवि पर्याप्त बड़े <math>r</math> के लिए समतल है


सामान्यतः बीजगणितीय क्लोजर के स्थान पर पृथक्करणीय क्लोजर का उपयोग करना पड़ता है।
सामान्यतः बीजगणितीय क्लोजर के समिष्ट पर पृथक्करणीय क्लोजर का उपयोग करना पड़ता है।


=== किसी क्षेत्र का गुणक समूह ===
=== किसी क्षेत्र का गुणक समूह ===
{{Main article | Multiplicative group}}
{{Main article |गुणनात्मक समूह}}


अगर <math>F</math> क्षेत्र है तो गुणक समूह खत्म हो गया <math>F</math> बीजगणितीय समूह है <math>\mathbf G_{\mathbf m}</math> जैसे कि किसी भी क्षेत्र विस्तार के लिए <math>E/F</math> <math>E</math>-बिंदु समूह के लिए समरूपी हैं <math>E^\times</math>. इसे बीजगणितीय समूह के रूप में ठीक से परिभाषित करने के लिए समीकरण द्वारा परिभाषित एफ़िन विविधता को लिया जा सकता है <math>xy = 1</math> एफ़िन विमान में <math>F</math> निर्देशांक के साथ <math>x, y</math>. फिर नियमित तर्कसंगत मानचित्र को सीमित करके गुणन दिया जाता है <math>F^2 \times F^2 \to F^2</math> द्वारा परिभाषित <math>((x, y), (x',y')) \mapsto (xx', yy') </math> और इसका उलटा नियमित तर्कसंगत मानचित्र का प्रतिबंध है <math>(x, y) \mapsto (y, x)</math>.
यदि <math>F</math> एक क्षेत्र है तो <math>F</math> पर गुणक समूह बीजगणितीय समूह <math>\mathbf G_{\mathbf m}</math> है, जैसे कि किसी भी क्षेत्र एक्सटेंशन <math>E/F</math> के लिए <math>E</math>-बिंदु समूह <math>E^\times</math> के समरूपी होते हैं। इसे एक बीजगणितीय समूह के रूप में ठीक से परिभाषित करने के लिए कोई व्यक्ति निर्देशांक <math>x, y</math> के साथ <math>F</math> के ऊपर एफ़िन विमान में समीकरण <math>xy = 1</math> द्वारा परिभाषित एफ़िन विविधता ले सकता है। गुणन तब <math>F^2 \times F^2 \to F^2</math> द्वारा परिभाषित नियमित तर्कसंगत मानचित्र <math>((x, y), (x',y')) \mapsto (xx', yy') </math> को प्रतिबंधित करके दिया जाता है और व्युत्क्रम नियमित तर्कसंगत मानचित्र <math>(x, y) \mapsto (y, x)</math> का प्रतिबंध होता है


=== परिभाषा ===
=== परिभाषा ===


होने देना <math>F</math> बीजगणितीय समापन वाला क्षेत्र बनें <math>\overline F</math>. फिर एक<math>F</math>-टोरस बीजगणितीय समूह है जिसे ऊपर परिभाषित किया गया है <math>F</math> जो समरूपी है <math>\overline F</math> गुणक समूह की प्रतियों के सीमित उत्पाद के लिए।
मान लीजिए कि <math>F</math> बीजगणितीय समापन के साथ एक क्षेत्र है <math>\overline F</math> फिर <math>F</math>-टोरस पर परिभाषित एक बीजगणितीय समूह है जो गुणक समूह की प्रतियों के <math>F</math> एक सीमित उत्पाद के लिए <math>\overline F</math> पर समरूपी है।


दूसरे शब्दों में, यदि <math>\mathbf T</math> <math>F</math>-ग्रुप यह टोरस है यदि और केवल यदि <math>\mathbf T(\overline F) \cong (\overline F^\times)^r</math> कुछ के लिए <math>r \ge 1</math>. टोरी से जुड़ी मूल शब्दावली इस प्रकार है।
दूसरे शब्दों में, यदि <math>\mathbf T</math> <math>F</math>-ग्रुप यह टोरस है यदि और केवल यदि <math>\mathbf T(\overline F) \cong (\overline F^\times)^r</math> कुछ के लिए <math>r \ge 1</math>. टोरी से जुड़ी मूल शब्दावली इस प्रकार है।


*पूर्णांक <math>r</math> टोरस की रैंक या पूर्ण रैंक कहा जाता है <math>\mathrm T</math>.
*पूर्णांक <math>r</math> टोरस की रैंक या पूर्ण रैंक <math>\mathrm T</math> कहा जाता है .
*कहा जाता है कि टोरस क्षेत्र विस्तार में विभाजित है <math>E/F</math> अगर <math>\mathbf T(E) \cong (E^\times)^r</math>. का अद्वितीय न्यूनतम परिमित विस्तार है <matH>F</math> जिस पर <math>\mathbf T</math> विभाजित है, जिसे विभाजन क्षेत्र कहा जाता है <math>\mathbf T</math>.
*कहा जाता है कि टोरस क्षेत्र विस्तार में विभाजित है <math>E/F</math> यदि <math>\mathbf T(E) \cong (E^\times)^r</math>. का अद्वितीय न्यूनतम परिमित विस्तार है <matH>F</math> जिस पर <math>\mathbf T</math> विभाजित है, जिसे <math>\mathbf T</math> विभाजन क्षेत्र कहा जाता है .
*द<math>F</math>-रैंक का <math>\mathbf T</math> के विभाजित उप-टोरस की अधिकतम रैंक है <math>\mathbf T</math>. टोरस विभाजित होता है यदि और केवल यदि ऐसा हो <math>F</math>-रैंक उसकी पूर्ण रैंक के बराबर है।
*द <math>F</math>-रैंक का <math>\mathbf T</math> के विभाजित उप-टोरस की अधिकतम रैंक है <math>\mathbf T</math>. टोरस विभाजित होता है यदि और केवल यदि ऐसा हो <math>F</math>-रैंक उसकी पूर्ण रैंक के समान है।
*एक टोरस को अनिसोट्रोपिक कहा जाता है यदि यह <matH>F</math>-रैंक शून्य है.
*एक टोरस को अनिसोट्रोपिक कहा जाता है यदि यह <matH>F</math>-रैंक शून्य है.


===आइसोजेनिज़ ===
===आइसोजेनिज़ ===


बीजगणितीय समूहों के बीच [[आइसोजेनी]] परिमित कर्नेल के साथ विशेषण रूपवाद है; दो टोरी को आइसोजेनस कहा जाता है यदि पहले से दूसरे तक आइसोोजेनी मौजूद हो। टोरी के बीच आइसोजेनिज़ विशेष रूप से अच्छी तरह से व्यवहार की जाती हैं: किसी भी आइसोजेनि के लिए <math>\phi:\mathbf T \to \mathbf T'</math> वहाँ दोहरी आइसोजेनी मौजूद है <math>\psi: \mathbf T' \to \mathbf T</math> ऐसा है कि <math>\psi \circ \phi</math> पावर मैप है. विशेष रूप से आइसोजेनस होना टोरी के बीच तुल्यता संबंध है।
बीजगणितीय समूहों के बीच [[आइसोजेनी]] परिमित कर्नेल के साथ विशेषण रूपवाद है; दो टोरी को आइसोजेनस कहा जाता है यदि पहले से दूसरे तक आइसोोजेनी उपस्थित हो। टोरी के बीच आइसोजेनिज़ विशेष रूप से अच्छी तरह से व्यवहार की जाती हैं: किसी भी आइसोजेनि के लिए <math>\phi:\mathbf T \to \mathbf T'</math> वहाँ दोहरी आइसोजेनी उपस्थित है <math>\psi: \mathbf T' \to \mathbf T</math> ऐसा है कि <math>\psi \circ \phi</math> पावर मैप है. विशेष रूप से आइसोजेनस होना टोरी के बीच तुल्यता संबंध है।


=== उदाहरण ===
=== उदाहरण ===


==== बीजगणितीय रूप से बंद फ़ील्ड पर ====
==== बीजगणितीय रूप से संवृत क्षेत्र पर ====
किसी भी बीजगणितीय रूप से बंद क्षेत्र पर <math>k = \overline{k}</math> समरूपता तक किसी भी रैंक का अद्वितीय टोरस होता है। रैंक के लिए <math>n</math> बीजगणितीय टोरस खत्म <math>k</math> यह समूह योजना द्वारा दिया गया है <math>\mathbf{G}_m = \text{Spec}_k(k[t_1,t_1^{-1},\ldots,t_n,t_n^{-1}])</math><ref name=":0" /><sup>पृष्ठ 230</sup>.
किसी भी बीजगणितीय रूप से संवृत क्षेत्र पर <math>k = \overline{k}</math> समरूपता तक किसी भी रैंक का अद्वितीय टोरस होता है। रैंक के लिए <math>n</math> बीजगणितीय टोरस खत्म <math>k</math> यह समूह स्कीम <math>\mathbf{G}_m = \text{Spec}_k(k[t_1,t_1^{-1},\ldots,t_n,t_n^{-1}])</math> द्वारा दिया गया है <ref name=":0" /><sup>पृष्ठ 230</sup>.


==== वास्तविक संख्याओं से अधिक ====
==== वास्तविक संख्याओं से अधिक ====
वास्तविक संख्याओं के क्षेत्र पर <math>\mathbb R</math> वास्तव में (समरूपता तक) रैंक 1 के दो टोरी हैं:
वास्तविक संख्याओं के क्षेत्र पर <math>\mathbb R</math> वास्तव में (समरूपता तक) रैंक 1 के दो टोरी हैं:
*विभाजित टोरस <math>\mathbb R^\times</math>
*विभाजित टोरस <math>\mathbb R^\times</math>
*संक्षिप्त रूप, जिसे [[एकात्मक समूह]] के रूप में महसूस किया जा सकता है <math>\mathbf U(1)</math> या विशेष [[ऑर्थोगोनल समूह]] के रूप में <math>\mathrm{SO}(2)</math>. यह अनिसोट्रोपिक टोरस है। लाई समूह के रूप में, यह 1-[[टोरस (गणित)]] के समरूपी भी है <math>\mathbf T^1</math>, जो तोरी के रूप में विकर्ण बीजगणितीय समूहों की तस्वीर की व्याख्या करता है।
*
कोई भी वास्तविक टोरस उन दोनों के सीमित योग से समरूप होता है; उदाहरण के लिए असली टोरस <math>\mathbb C^\times</math> दोगुना कवर किया गया है (लेकिन समरूपी नहीं) <math>\mathbb R^\times \times \mathbb T^1</math>. यह आइसोजेनस, गैर-आइसोमोर्फिक टोरी का उदाहरण देता है।
*सघन रूप, जिसे [[एकात्मक समूह]] <math>\mathbf U(1)</math> या विशेष [[ऑर्थोगोनल समूह]] <math>\mathrm{SO}(2)</math> के रूप में अनुभव किया जा सकता है। यह एक अनिसोट्रोपिक टोरस है। एक लाई समूह के रूप में, यह 1-[[टोरस (गणित)]] <math>\mathbf T^1</math> के समरूपी भी है, जो टोरी के रूप में विकर्ण बीजगणितीय समूहों की छवि की व्याख्या करता है।
कोई भी वास्तविक टोरस उन दोनों के सीमित योग से समरूप होता है; उदाहरण के लिए वास्तविक टोरस <math>\mathbb C^\times</math> दोगुना आवरण किया गया है (किन्तु समरूपी नहीं) <math>\mathbb R^\times \times \mathbb T^1</math>. यह आइसोजेनस, गैर-आइसोमोर्फिक टोरी का उदाहरण देता है।


==== एक [[परिमित क्षेत्र]] पर ====
==== एक [[परिमित क्षेत्र]] पर ====
परिमित क्षेत्र के ऊपर <math>\mathbb F_q</math> दो रैंक-1 टोरी हैं: विभाजित एक, कार्डिनैलिटी का <math>q-1</math>, और अनिसोट्रोपिक कार्डिनैलिटी में से <math>q+1</math>. उत्तरार्द्ध को मैट्रिक्स समूह के रूप में महसूस किया जा सकता है
परिमित क्षेत्र के ऊपर <math>\mathbb F_q</math> दो रैंक-1 टोरी हैं: विभाजित एक, कार्डिनैलिटी का <math>q-1</math>, और अनिसोट्रोपिक कार्डिनैलिटी में से <math>q+1</math>. उत्तरार्द्ध को आव्यूह समूह के रूप में अनुभव किया जा सकता है
<math display="block"> \left\{ \begin{pmatrix} t & du \\ u & t \end{pmatrix} : t,u \in \mathbb F_q, t^2 - du^2=1 \right\} \subset \mathrm{SL}_2(\mathbb F_q) . </math>
<math display="block"> \left\{ \begin{pmatrix} t & du \\ u & t \end{pmatrix} : t,u \in \mathbb F_q, t^2 - du^2=1 \right\} \subset \mathrm{SL}_2(\mathbb F_q) . </math>
अधिक सामान्यतः, यदि <math>E/F</math> डिग्री का सीमित क्षेत्र विस्तार है <math>d</math> फिर वेइल प्रतिबंध से <math>E</math> को <math>F</math> के गुणक समूह का <math>E</math> <math>F</math>-रैंक का टोरस <math>d</math> और <math>F</math>-रैंक 1 (ध्यान दें कि अविभाज्य क्षेत्र विस्तार पर स्केलर के प्रतिबंध से क्रमविनिमेय बीजगणितीय समूह प्राप्त होगा जो टोरस नहीं है)। गिरी <math>N_{E/F}</math> इसके क्षेत्र मानदंड का टोरस भी है, जो अनिसोट्रोपिक और रैंक का है <math>d-1</math>. कोई <math>F</math>- रैंक का टोरस द्विघात विस्तार के मानदंड के कर्नेल के लिए या तो विभाजित या आइसोमोर्फिक है।<ref>{{cite book | title=बीजगणितीय समूह और उनके द्विवार्षिक अपरिवर्तनीय| last=Voskresenskii | first=V. S. | series=Translations of mathematical monographs | publisher=American Math. Soc. | date=1998}}</ref> उपरोक्त दो उदाहरण इसके विशेष मामले हैं: कॉम्पैक्ट रियल टोरस फ़ील्ड मानदंड का कर्नेल है <math>\mathbb C/\mathbb R</math> और अनिसोट्रोपिक टोरस खत्म <math>\mathbb F_q</math> के फ़ील्ड मानदंड का कर्नेल है <math>\mathbb F_{q^2} / \mathbb F_q</math>.
अधिक सामान्यतः, यदि <math>E/F</math> डिग्री का सीमित क्षेत्र विस्तार <math>d</math> है फिर वेइल प्रतिबंध से <math>E</math> को <math>F</math> के गुणक समूह का <math>E</math> <math>F</math>-रैंक का टोरस <math>d</math> और <math>F</math>-रैंक 1 (ध्यान दें कि अविभाज्य क्षेत्र विस्तार पर स्केलर के प्रतिबंध से क्रमविनिमेय बीजगणितीय समूह प्राप्त होगा जो टोरस नहीं है)। इस प्रकार <math>N_{E/F}</math> इसके क्षेत्र मानदंड का टोरस भी है, जो अनिसोट्रोपिक और रैंक <math>d-1</math> का है . कोई <math>F</math>- रैंक का टोरस द्विघात विस्तार के मानदंड के कर्नेल के लिए या तो विभाजित या आइसोमोर्फिक है।<ref>{{cite book | title=बीजगणितीय समूह और उनके द्विवार्षिक अपरिवर्तनीय| last=Voskresenskii | first=V. S. | series=Translations of mathematical monographs | publisher=American Math. Soc. | date=1998}}</ref> उपरोक्त दो उदाहरण इसके विशेष स्थिति हैं: कॉम्पैक्ट रियल टोरस क्षेत्र मानदंड का कर्नेल है <math>\mathbb C/\mathbb R</math> और अनिसोट्रोपिक टोरस खत्म <math>\mathbb F_q</math> के क्षेत्र मानदंड का कर्नेल <math>\mathbb F_{q^2} / \mathbb F_q</math> है


== वजन और भार ==
== वजन और भार ==


एक अलग से बंद क्षेत्र में, टोरस टी दो प्राथमिक अपरिवर्तनीयों को स्वीकार करता है। [[वजन (प्रतिनिधित्व सिद्धांत)]] [[जाली (समूह)]] <math>X^\bullet(T)</math> बीजगणितीय समरूपताओं का समूह है T → 'G'<sub>m</sub>, और काउवेट जाली <math>X_\bullet(T)</math> बीजगणितीय समरूपता जी का समूह है<sub>m</sub>→ टी. ये दोनों स्वतंत्र एबेलियन समूह हैं जिनकी रैंक टोरस की है, और उनके पास कैनोनिकल नॉनडीजेनरेट जोड़ी है <math>X^\bullet(T) \times X_\bullet(T) \to \mathbb{Z}</math> द्वारा दिए गए <math>(f,g) \mapsto \deg(f \circ g)</math>, जहां डिग्री संख्या n है जैसे कि संरचना गुणक समूह पर n वें पावर मैप के बराबर है। वजन लेकर दिया गया फ़नकार टोरी और मुक्त एबेलियन समूहों के बीच श्रेणियों की प्रतितुल्यता है, और काउवेट फ़नकार समतुल्य है। विशेष रूप से, टोरी के मानचित्रों को वज़न या सहभार पर रैखिक परिवर्तनों की विशेषता होती है, और टोरस का ऑटोमोर्फिज्म समूह 'Z' पर सामान्य रैखिक समूह होता है। वज़न फ़ैक्टर का अर्ध-व्युत्क्रम मुक्त एबेलियन समूहों से टोरी तक दोहरीकरण फ़ैक्टर द्वारा दिया जाता है, जिसे इसके बिंदुओं के फ़ैक्टर द्वारा परिभाषित किया गया है:
एक अलग से संवृत क्षेत्र में, टोरस T दो प्राथमिक अपरिवर्तनीयों को स्वीकार करता है। [[वजन (प्रतिनिधित्व सिद्धांत)]] [[जाली (समूह)|लैटिस (समूह)]] <math>X^\bullet(T)</math> बीजगणितीय समरूपताओं का समूह है T → 'G'<sub>m</sub>, और काउवेट लैटिस <math>X_\bullet(T)</math> बीजगणितीय समरूपता g<sub>m</sub>→ t का समूह है. ये दोनों स्वतंत्र एबेलियन समूह हैं जिनकी रैंक टोरस की है, और उनके पास कैनोनिकल नॉनडीजेनरेट जोड़ी है <math>X^\bullet(T) \times X_\bullet(T) \to \mathbb{Z}</math> द्वारा दिए गए <math>(f,g) \mapsto \deg(f \circ g)</math>, जहां डिग्री संख्या n है जैसे कि संरचना गुणक समूह पर n वें पावर मैप के समान है। इस प्रकार वजन लेकर दिया गया फ़नकार टोरी और फ्री एबेलियन समूहों के बीच श्रेणियों की प्रतितुल्यता है, और काउवेट फ़नकार समतुल्य है। विशेष रूप से, टोरी के मानचित्रों को वज़न या सहभार पर रैखिक परिवर्तनों की विशेषता होती है, और टोरस का ऑटोमोर्फिज्म समूह 'Z' पर सामान्य रैखिक समूह होता है। वज़न फ़ैक्टर का अर्ध-व्युत्क्रम फ्री एबेलियन समूहों से टोरी तक दोहरीकरण फ़ैक्टर द्वारा दिया जाता है, जिसे इसके बिंदुओं के फ़ैक्टर द्वारा परिभाषित किया गया है:


:<math>D(M)_S(X) := \mathrm{Hom}(M, \mathbb{G}_{m,S}(X)).</math>
:<math>D(M)_S(X) := \mathrm{Hom}(M, \mathbb{G}_{m,S}(X)).</math>
इस तुल्यता को गुणात्मक प्रकार के समूहों ([[औपचारिक समूह]]ों का विशिष्ट वर्ग) और मनमाने ढंग से एबेलियन समूहों के बीच पारित करने के लिए सामान्यीकृत किया जा सकता है, और यदि कोई अच्छी तरह से व्यवहार वाली श्रेणी में काम करना चाहता है तो ऐसा सामान्यीकरण सुविधाजनक हो सकता है, क्योंकि टोरी की श्रेणी नहीं होती है इसमें गुठली या फ़िल्टर्ड कोलिमिट्स नहीं हैं।
इस तुल्यता को गुणात्मक प्रकार के समूहों ([[औपचारिक समूह]] का विशिष्ट वर्ग) और इच्छानुसार से एबेलियन समूहों के बीच पारित करने के लिए सामान्यीकृत किया जा सकता है, और यदि कोई अच्छी तरह से व्यवहार वाली श्रेणी में कार्य करना चाहता है तो ऐसा सामान्यीकरण सुविधाजनक हो सकता है, क्योंकि टोरी की श्रेणी नहीं होती है इसमें कर्नेल या फ़िल्टर्ड कोलिमिट्स नहीं हैं।


जब फ़ील्ड K को अलग से बंद नहीं किया जाता है, तो K के ऊपर टोरस के वजन और कोवेट लैटिस को अलग करने योग्य क्लोजर पर संबंधित लैटिस के रूप में परिभाषित किया जाता है। यह जालकों पर K के निरपेक्ष गैलोज़ समूह की विहित निरंतर क्रियाओं को प्रेरित करता है। इस क्रिया द्वारा तय किए गए वज़न और सह-भार बिल्कुल वही मानचित्र हैं जो K के ऊपर परिभाषित हैं। वज़न लेने का फ़ैक्टर बीजगणितीय समरूपताओं के साथ K के ऊपर टोरी की श्रेणी और के साथ अंतिम रूप से उत्पन्न मरोड़ मुक्त एबेलियन समूहों की श्रेणी के बीच प्रतितुल्यता है। K के पूर्ण गैलोज़ समूह की कार्रवाई।
जब क्षेत्र K को अलग से संवृत नहीं किया जाता है, तो K के ऊपर टोरस के वजन और कोवेट लैटिस को अलग करने योग्य क्लोजर पर संबंधित लैटिस के रूप में परिभाषित किया जाता है। यह जालकों पर K के निरपेक्ष गैलोज़ समूह की विहित निरंतर क्रियाओं को प्रेरित करता है। इस क्रिया द्वारा तय किए गए वज़न और सह-भार बिल्कुल वही मानचित्र हैं जो K के ऊपर परिभाषित हैं। वज़न लेने का फ़ैक्टर बीजगणितीय समरूपताओं के साथ K के ऊपर टोरी की श्रेणी और के साथ अंतिम रूप से उत्पन्न मरोड़ फ्री एबेलियन समूहों की श्रेणी के बीच प्रतितुल्यता है। इस प्रकार K के पूर्ण गैलोज़ समूह की कार्य होता है।


एक परिमित वियोज्य क्षेत्र विस्तार एल/के और एल के ऊपर टोरस टी को देखते हुए, हमारे पास [[गैलोज़ मापांक]] समरूपता है
एक परिमित वियोज्य क्षेत्र विस्तार L/K और L के ऊपर टोरस T को देखते हुए, हमारे पास [[गैलोज़ मापांक]] समरूपता है


:<math>X^\bullet(\mathrm{Res}_{L/K}T) \cong \mathrm{Ind}_{G_L}^{G_K} X^\bullet(T).</math>
:<math>X^\bullet(\mathrm{Res}_{L/K}T) \cong \mathrm{Ind}_{G_L}^{G_K} X^\bullet(T).</math>
यदि टी गुणक समूह है, तो यह अदिशों के प्रतिबंध को क्रमपरिवर्तन मॉड्यूल संरचना देता है। टोरी जिनके भार जालक गैलोज़ समूह के लिए क्रमपरिवर्तन मॉड्यूल हैं, अर्ध-विभाजित कहलाते हैं, और सभी अर्ध-विभाजित टोरी स्केलर के प्रतिबंधों के परिमित उत्पाद हैं।
यदि T गुणक समूह है, तो यह अदिशों के प्रतिबंध को क्रमपरिवर्तन मॉड्यूल संरचना देता है। इस प्रकार टोरी जिनके भार जालक गैलोज़ समूह के लिए क्रमपरिवर्तन मॉड्यूल हैं, अर्ध-विभाजित कहलाते हैं, और सभी अर्ध-विभाजित टोरी स्केलर के प्रतिबंधों के परिमित उत्पाद हैं।


== अर्धसरल समूहों में तोरी ==
== अर्धसरल समूहों में टोरी ==


=== टोरी का रैखिक निरूपण ===
=== टोरी का रैखिक निरूपण ===


जैसा कि ऊपर के उदाहरणों में देखा गया है, तोरी को रैखिक समूहों के रूप में दर्शाया जा सकता है। तोरी की वैकल्पिक परिभाषा है:
जैसा कि ऊपर के उदाहरणों में देखा गया है, टोरी को रैखिक समूहों के रूप में दर्शाया जा सकता है। टोरी की वैकल्पिक परिभाषा है:


:एक रैखिक बीजगणितीय समूह टोरस है यदि और केवल यदि यह बीजगणितीय समापन पर विकर्णीय है।
:एक रैखिक बीजगणितीय समूह टोरस है यदि और केवल यदि यह बीजगणितीय समापन पर विकर्णीय है।
Line 71: Line 72:
=== एक अर्धसरल समूह की विभाजित रैंक ===
=== एक अर्धसरल समूह की विभाजित रैंक ===


अगर <math>\mathbf G</math> क्षेत्र पर अर्धसरल बीजगणितीय समूह है <math>F</math> तब:
यदि <math>\mathbf G</math> क्षेत्र पर अर्धसरल बीजगणितीय समूह <math>F</math> है तब:
*इसकी रैंक (या पूर्ण रैंक) अधिकतम टोरस उपसमूह की रैंक है <math>\mathbf G</math> (ध्यान दें कि सभी अधिकतम टोरी संयुग्मित हैं <math>F</math> इसलिए रैंक अच्छी तरह से परिभाषित है);
*इसकी रैंक (या पूर्ण रैंक) अधिकतम टोरस उपसमूह की रैंक <math>\mathbf G</math> है (ध्यान दें कि सभी अधिकतम टोरी संयुग्मित <math>F</math> हैं इसलिए रैंक अच्छी तरह से परिभाषित है);
*इसका<math>F</math>-रैंक (कभी-कभी कहा जाता है<math>F</math>-स्प्लिट रैंक) टोरस उपसमूह की अधिकतम रैंक है <math>G</math> जो बंटा हुआ है <math>F</math>.
*इसका <math>F</math>-रैंक (कभी-कभी कहा जाता है <math>F</math>-स्प्लिट रैंक) टोरस उपसमूह की अधिकतम रैंक है <math>G</math> जो बंटा हुआ <math>F</math> है .
जाहिर तौर पर रैंक इससे बड़ा या उसके बराबर है <math>F</math>-पद; समूह को विभाजित कहा जाता है यदि और केवल यदि समानता कायम रहती है (अर्थात, इसमें अधिकतम टोरस होता है <math>\mathbf G</math> जो बंटा हुआ है <math>F</math>). समूह को अनिसोट्रोपिक कहा जाता है यदि इसमें कोई विभाजित टोरी नहीं है (अर्थात इसकी <math>F</math>-रैंक शून्य है)।
सामान्यतः रैंक इससे बड़ा या उसके <math>F</math>-पद समान है; समूह को विभाजित कहा जाता है यदि और केवल यदि समानता बनाये रहती है (अर्थात, इसमें अधिकतम टोरस होता है <math>\mathbf G</math> जो बंटा हुआ <math>F</math> है). समूह को अनिसोट्रोपिक कहा जाता है यदि इसमें कोई विभाजित टोरी नहीं है (अर्थात इसकी <math>F</math>-रैंक शून्य है)।


=== अर्धसरल समूहों का वर्गीकरण ===
=== अर्धसरल समूहों का वर्गीकरण ===
{{Main article|Tits index}}
{{Main article|टिट्स सूचकांक}}


जटिल क्षेत्र पर अर्धसरल बीजगणित के शास्त्रीय सिद्धांत में [[यह उपबीजगणित परीक्षण]] [[ मूल प्रक्रिया |मूल प्रक्रिया]] और डायनकिन आरेखों के माध्यम से वर्गीकरण में मौलिक भूमिका निभाते हैं। यह वर्गीकरण जटिल क्षेत्र पर जुड़े बीजगणितीय समूहों के बराबर है, और कार्टन सबलेजेब्रा इनमें अधिकतम टोरी के अनुरूप है। वास्तव में वर्गीकरण इस धारणा के तहत मनमाना आधार क्षेत्र के मामले को आगे बढ़ाता है कि विभाजित अधिकतम टोरस मौजूद है (जो बीजगणितीय रूप से बंद क्षेत्र पर स्वचालित रूप से संतुष्ट है)। विभाजन की धारणा के बिना चीजें बहुत अधिक जटिल हो जाती हैं और अधिक विस्तृत सिद्धांत विकसित करना पड़ता है, जो अभी भी टोरी की सहायक क्रियाओं के अध्ययन पर आधारित है।
समष्टि क्षेत्र पर अर्धसरल बीजगणित के मौलिक सिद्धांत में [[यह उपबीजगणित परीक्षण]] [[ मूल प्रक्रिया |मूल प्रक्रिया]] और डायनकिन आरेखों के माध्यम से वर्गीकरण में मौलिक भूमिका निभाते हैं। यह वर्गीकरण समिष्ट क्षेत्र पर जुड़े बीजगणितीय समूहों के समान है, और कार्टन सबलेजेब्रा इनमें अधिकतम टोरी के अनुरूप है। वास्तव में वर्गीकरण इस धारणा के अनुसार इच्छानुसार आधार क्षेत्र के स्थिति को आगे बढ़ाता है कि विभाजित अधिकतम टोरस उपस्थित है (जो बीजगणितीय रूप से संवृत क्षेत्र पर स्वचालित रूप से संतुष्ट है)। विभाजन की धारणा के बिना चीजें बहुत अधिक समिष्ट हो जाती हैं और अधिक विस्तृत सिद्धांत विकसित करना पड़ता है, जो अभी भी टोरी की सहायक क्रियाओं के अध्ययन पर आधारित है।


अगर <math>\mathbf T</math> अर्धसरल बीजगणितीय समूह में अधिकतम टोरस है <math>\mathbf G</math> फिर बीजगणितीय समापन पर यह जड़ प्रणाली को जन्म देता है <math>\Phi</math> सदिश स्थान में <math>V = X^*(\mathbf T) \otimes_{\mathbb Z} \mathbb R</math>. दूसरी ओर, यदि <math>{}_F \mathbf T \subset \mathbf T</math> अधिकतम है <math>F</math>-स्प्लिट टोरस पर इसकी कार्रवाई <math>F</math>-झूठ का बीजगणित <math>\mathbf G</math> अन्य जड़ प्रणाली को जन्म देता है <math>{}_F \Phi</math>. प्रतिबंध मानचित्र <math>X^*(\mathbf T) \to X^*(_F\mathbf T)</math> नक्शा प्रेरित करता है <math>\Phi \to {}_F\Phi \cup\{0\}</math> और [[ स्तन सूचकांक |स्तन सूचकांक]] इस मानचित्र के गुणों और गैलोज़ समूह की कार्रवाई को एनकोड करने का तरीका है <math>\overline F / F</math> पर <math>\Phi</math>. टिट्स इंडेक्स संबंधित निरपेक्ष डायनकिन आरेख का सापेक्ष संस्करण है <math>\Phi</math>; जाहिर है, केवल सीमित संख्या में स्तन सूचकांक ही किसी दिए गए डायनकिन आरेख के अनुरूप हो सकते हैं।
यदि <math>\mathbf T</math> अर्धसरल बीजगणितीय समूह में अधिकतम टोरस <math>\mathbf G</math> है फिर बीजगणितीय समापन पर यह रूट प्रणाली <math>\Phi</math> को उत्पन्न करता है सदिश समिष्ट में <math>V = X^*(\mathbf T) \otimes_{\mathbb Z} \mathbb R</math>. दूसरी ओर, यदि <math>{}_F \mathbf T \subset \mathbf T</math> अधिकतम है <math>F</math>-स्प्लिट टोरस पर इसकी कार्य <math>F</math>-लाई का बीजगणित <math>\mathbf G</math> अन्य रूट प्रणाली को उत्पन्न करता है <math>{}_F \Phi</math>. प्रतिबंध मानचित्र <math>X^*(\mathbf T) \to X^*(_F\mathbf T)</math> प्रारूप प्रेरित करता है <math>\Phi \to {}_F\Phi \cup\{0\}</math> और [[ स्तन सूचकांक |टिट्स सूचकांक]] इस मानचित्र के गुणों और गैलोज़ समूह की कार्य को एनकोड करने का विधि है <math>\overline F / F</math> पर <math>\Phi</math>. टिट्स इंडेक्स संबंधित निरपेक्ष डायनकिन आरेख का सापेक्ष संस्करण <math>\Phi</math> है ; प्रदर्शित है, केवल सीमित संख्या में टिट्स सूचकांक ही किसी दिए गए डायनकिन आरेख के अनुरूप हो सकते हैं।


स्प्लिट टोरस से जुड़ा और अपरिवर्तनीय <math>{}_F \mathbf T</math> अनिसोट्रोपिक कर्नेल है: यह अर्धसरल बीजगणितीय समूह है जिसे केंद्रीकरण के व्युत्पन्न उपसमूह के रूप में प्राप्त किया गया है <math>{}_F \mathbf T</math> में <math>\mathbf G</math> (उत्तरार्द्ध केवल रिडक्टिव समूह है)। जैसा कि इसके नाम से संकेत मिलता है कि यह अनिसोट्रोपिक समूह है, और इसका पूर्ण प्रकार विशिष्ट रूप से निर्धारित होता है <math>{}_F \Phi</math>.
स्प्लिट टोरस से जुड़ा और अपरिवर्तनीय <math>{}_F \mathbf T</math> अनिसोट्रोपिक कर्नेल है: यह अर्धसरल बीजगणितीय समूह है जिसे केंद्रीकरण के व्युत्पन्न उपसमूह के रूप में प्राप्त किया गया है <math>{}_F \mathbf T</math> में <math>\mathbf G</math> (उत्तरार्द्ध केवल रिडक्टिव समूह है)। जैसा कि इसके नाम से संकेत मिलता है कि यह अनिसोट्रोपिक समूह है, और इसका पूर्ण प्रकार विशिष्ट रूप <math>{}_F \Phi</math> से निर्धारित होता है .


वर्गीकरण की दिशा में पहला कदम निम्नलिखित प्रमेय है{{sfn|Tits|1966|loc=Theorem 2.7.1}} }
वर्गीकरण की दिशा में पहला कदम निम्नलिखित प्रमेय है {{sfn|Tits|1966|loc=Theorem 2.7.1}} }


:दो अर्धसरल <math>F</math>-बीजगणितीय समूह समरूपी होते हैं यदि और केवल यदि उनके स्तन सूचकांक और समरूपी अनिसोट्रोपिक गुठली समान हों।
:दो अर्धसरल <math>F</math>-बीजगणितीय समूह समरूपी होते हैं यदि और केवल यदि उनके टिट्स सूचकांक और समरूपी अनिसोट्रोपिक कर्नेल समान हों।


यह अनिसोट्रोपिक समूहों में वर्गीकरण की समस्या को कम करता है, और यह निर्धारित करता है कि किसी दिए गए डायनकिन आरेख के लिए कौन से स्तन सूचकांक हो सकते हैं। बाद वाली समस्या का समाधान हो गया है {{harvtxt|Tits|1966}}. पूर्व [[गैलोइस कोहोमोलॉजी]] समूहों से संबंधित है <math>F</math>. अधिक सटीक रूप से प्रत्येक स्तन सूचकांक के ऊपर अद्वितीय [[अर्ध-विभाजित समूह]] जुड़ा होता है <math>F</math>; फिर हर <math>F</math>-समान सूचकांक वाला समूह इस अर्ध-विभाजित समूह का [[आंतरिक रूप]] है, और इन्हें गैलोज़ कोहोमोलॉजी द्वारा वर्गीकृत किया गया है <math>F</math> निकटवर्ती समूह में गुणांकों के साथ।
यह अनिसोट्रोपिक समूहों में वर्गीकरण की समस्या को कम करता है, और यह निर्धारित करता है कि किसी दिए गए डायनकिन आरेख के लिए कौन से टिट्स सूचकांक हो सकते हैं। बाद वाली समस्या का समाधान हो गया है {{harvtxt|टिट्स|1966}}. पूर्व [[गैलोइस कोहोमोलॉजी]] समूहों <math>F</math> से संबंधित है . अधिक स्पष्ट रूप से प्रत्येक टिट्स सूचकांक के ऊपर अद्वितीय [[अर्ध-विभाजित समूह|अर्ध-विभाजित समूह <math>F</math>]] जुड़ा होता है; फिर हर <math>F</math>-समान सूचकांक वाला समूह इस अर्ध-विभाजित समूह का [[आंतरिक रूप]] है, और इन्हें गैलोज़ कोहोमोलॉजी द्वारा वर्गीकृत किया गया है <math>F</math> निकटवर्ती समूह में गुणांकों के साथ होता है।


== तोरी और ज्यामिति ==
== टोरी और ज्यामिति ==


=== समतल उप-स्थान और सममित स्थानों की रैंक ===
=== समतल उप-समिष्ट और सममित स्थानों की रैंक ===


अगर <math>G</math> अर्धसरल झूठ समूह है तो इसकी वास्तविक रैंक है <math>\mathbb R</math>-रैंक जैसा कि ऊपर परिभाषित किया गया है (किसी के लिए)<math>\mathbb R</math>-बीजगणितीय समूह जिसका वास्तविक बिंदुओं का समूह समरूपी है <math>G</math>), दूसरे शब्दों में अधिकतम <math>r</math> जैसे कि एम्बेडिंग मौजूद है <math>(\mathbb R^\times)^r \to G</math>. उदाहरण के लिए, की वास्तविक रैंक <math>\mathrm{SL}_n(\mathbb R)</math> के बराबर है <math>n-1</math>, और की वास्तविक रैंक <math>\mathrm{SO}(p,q)</math> के बराबर है <math>\min(p,q)</math>.
यदि <math>G</math> अर्धसरल लाई समूह है तो इसकी वास्तविक रैंक है <math>\mathbb R</math>-रैंक जैसा कि ऊपर परिभाषित किया गया है (किसी के लिए) <math>\mathbb R</math>-बीजगणितीय समूह जिसका वास्तविक बिंदुओं का समूह समरूपी है <math>G</math>), दूसरे शब्दों में अधिकतम <math>r</math> जैसे कि एम्बेडिंग उपस्थित है <math>(\mathbb R^\times)^r \to G</math>. उदाहरण के लिए, की वास्तविक रैंक <math>\mathrm{SL}_n(\mathbb R)</math> के समान है <math>n-1</math>, और की वास्तविक रैंक <math>\mathrm{SO}(p,q)</math> के समान <math>\min(p,q)</math> है .


अगर <math>X</math> से संबद्ध सममित स्थान है <math>G</math> और <math>T \subset G</math> अधिकतम विभाजित टोरस है तो अद्वितीय कक्षा मौजूद है <math>T</math> में <math>X</math> जो पूरी तरह से जियोडेसिक फ्लैट उपस्थान है <math>X</math>. यह वास्तव में अधिकतम समतल उपस्थान है और सभी अधिकतम इस तरह से विभाजित टोरी की कक्षाओं के रूप में प्राप्त होते हैं। इस प्रकार वास्तविक रैंक की ज्यामितीय परिभाषा है, समतल उपस्थान के अधिकतम आयाम के रूप में <math>X</math>.{{sfn|Witte-Morris|2015|p=22}}
यदि <math>X</math> से संबद्ध सममित समिष्ट है <math>G</math> और <math>T \subset G</math> अधिकतम विभाजित टोरस है तो अद्वितीय कक्षा उपस्थित है <math>T</math> में <math>X</math> जो पूरी तरह से जियोडेसिक फ्लैट <math>X</math> उपस्थान है . यह वास्तव में अधिकतम समतल उपस्थान है और सभी अधिकतम इस तरह से विभाजित टोरी की कक्षाओं के रूप में प्राप्त होते हैं। इस प्रकार वास्तविक रैंक की ज्यामितीय परिभाषा है, समतल उपस्थान के अधिकतम आयाम के रूप में <math>X</math> उपयोग किया जाता है.{{sfn|Witte-Morris|2015|p=22}}


=== जाली की क्यू-रैंक ===
=== लैटिस की क्यू-रैंक ===


यदि झूठ समूह <math>G</math> बीजगणितीय समूह के वास्तविक बिंदुओं के रूप में प्राप्त किया जाता है <math>\mathbf G</math> तर्कसंगत क्षेत्र पर <math>\mathbb Q</math> फिर <math>\mathbb Q</math>-रैंक का <math>\mathbf G</math> इसका ज्यामितीय महत्व भी है। इसे पाने के लिए किसी को अंकगणितीय समूह का परिचय देना होगा <math>\Gamma</math> के लिए जुड़े <matH>\mathbf G</math>, जो मोटे तौर पर पूर्णांक बिंदुओं का समूह है <math>\mathbf G</math>, और भागफल स्थान <math>M = \Gamma \backslash X</math>, जो रीमैनियन ऑर्बिफोल्ड है और इसलिए मीट्रिक स्थान है। फिर किसी भी [[स्पर्शोन्मुख शंकु]] <math>M</math> के बराबर आयाम के शीर्ष-आयामी सरलीकरण के साथ परिमित सरलीकृत परिसर के लिए होमोमोर्फिक है <math>\mathbb Q</math>-रैंक का <math>\mathbf G</math>. विशेष रूप से, <math>M</math> सघन है यदि और केवल यदि <math>\mathbf G</math> अनिसोट्रोपिक है.{{sfn|Witte-Morris|2015|p=25}}
यदि लाई समूह <math>G</math> बीजगणितीय समूह के वास्तविक बिंदुओं के रूप में प्राप्त किया जाता है <math>\mathbf G</math> तर्कसंगत क्षेत्र पर <math>\mathbb Q</math> फिर <math>\mathbb Q</math>-रैंक का <math>\mathbf G</math> इसका ज्यामितीय महत्व भी है। इसे पाने के लिए किसी को अंकगणितीय समूह का परिचय देना होगा <math>\Gamma</math> के लिए जुड़े <matH>\mathbf G</math>, जो सामान्यतः पूर्णांक बिंदुओं का समूह <math>\mathbf G</math> है , और भागफल समिष्ट <math>M = \Gamma \backslash X</math>, जो रीमैनियन ऑर्बिफोल्ड है और इसलिए मीट्रिक समिष्ट है। फिर किसी भी [[स्पर्शोन्मुख शंकु]] <math>M</math> के समान आयाम के शीर्ष-आयामी सरलीकरण के साथ परिमित सरलीकृत परिसर के लिए होमोमोर्फिक है <math>\mathbb Q</math>-रैंक का <math>\mathbf G</math>. विशेष रूप से, <math>M</math> सघन है यदि और केवल यदि <math>\mathbf G</math> अनिसोट्रोपिक है.{{sfn|Witte-Morris|2015|p=25}}


ध्यान दें कि यह परिभाषित करने की अनुमति देता है <math>\mathbf Q</math>-अर्धसरल लाई समूह में किसी भी जाली की रैंक, उसके स्पर्शोन्मुख शंकु के आयाम के रूप में।
ध्यान दें कि यह परिभाषित करने की अनुमति देता है <math>\mathbf Q</math>-अर्धसरल लाई समूह में किसी भी लैटिस की रैंक, उसके स्पर्शोन्मुख शंकु के आयाम के रूप में उपयोग किया जाता है।


=== इमारतें ===
=== बिल्डिंग ===
{{Main article | Building (mathematics)}}
{{Main article |बिल्डिंग (गणित)}}


अगर <math>\mathbf G</math> अर्धसरल समूह है <math>\mathbb Q_p</math> अधिकतम विभाजन टोरी में <math>\mathbf G</math> ब्रुहट-टिट्स बिल्डिंग के अपार्टमेंट के अनुरूप <math>X</math> के लिए जुड़े <math>\mathbf G</math>. विशेष रूप से का आयाम <math>X</math> के बराबर है <math>\mathbb Q_p</matH>-rank of <math>\mathbf G</math>.
यदि <math>\mathbf G</math> अर्धसरल समूह है <math>\mathbb Q_p</math> अधिकतम विभाजन टोरी में <math>\mathbf G</math> ब्रुहट-टिट्स बिल्डिंग के अपार्टमेंट के अनुरूप <math>X</math> के लिए जुड़े <math>\mathbf G</math>. विशेष रूप से का आयाम <math>X</math> के समान <math>\mathbb Q_p</math>-rank of <math>\mathbf G</math> है.


== एक मनमाना आधार योजना पर बीजगणितीय तोरी ==
== एक इच्छानुसार आधार स्कीम पर बीजगणितीय टोरी ==


=== परिभाषा ===
=== परिभाषा ===


एक आधार [[योजना (गणित)]] एस को देखते हुए, एस पर बीजीय टोरस को एस पर समूह योजना के रूप में परिभाषित किया गया है जो कि गुणक समूह योजना 'जी' की प्रतियों के सीमित उत्पाद के लिए [[फ्लैट टोपोलॉजी]] आइसोमोर्फिक है।<sub>''m''</sub>एस के ऊपर / एस। दूसरे शब्दों में, विश्वसनीय रूप से सपाट नक्शा एक्स एस मौजूद है जैसे कि एक्स में किसी भी बिंदु पर अर्ध-कॉम्पैक्ट खुला पड़ोस यू है जिसकी छवि एस की खुली एफ़िन उपयोजना है, जैसे कि यू में आधार परिवर्तन उत्पन्न करता है जीएल की प्रतियों का परिमित उत्पाद<sub>1,''U''</sub> = जी<sub>''m''</sub>/में। विशेष रूप से महत्वपूर्ण मामला तब होता है जब S फ़ील्ड K का स्पेक्ट्रम होता है, जो S पर बीजगणितीय समूह बनाता है जिसका विस्तार कुछ परिमित वियोज्य विस्तार L तक होता है जो 'G' की प्रतियों का सीमित उत्पाद है।<sub>''m''</sub>/एल. सामान्य तौर पर, इस उत्पाद की बहुलता (यानी, योजना का आयाम) को टोरस की [[ रैंक (विभेदक टोपोलॉजी) |रैंक (विभेदक टोपोलॉजी)]] कहा जाता है, और यह एस पर स्थानीय रूप से स्थिर कार्य है।
एक आधार [[योजना (गणित)|स्कीम (गणित)]] S को देखते हुए, S पर बीजीय टोरस को S पर समूह स्कीम के रूप में परिभाषित किया गया है जो कि गुणक समूह स्कीम 'g<sub>''m''</sub>s के u / s' की प्रतियों के सीमित उत्पाद के लिए [[फ्लैट टोपोलॉजी]] आइसोमोर्फिक है।। दूसरे शब्दों में, विश्वसनीय रूप से सपाट प्रारूप x S उपस्थित है जैसे कि x में किसी भी बिंदु पर अर्ध-कॉम्पैक्ट विवृत पड़ोस u है जिसकी छवि S की विवृत एफ़िन उपयोजना है, जैसे कि u में आधार परिवर्तन उत्पन्न करता है gL<sub>1,''U''</sub> = g<sub>''m''</sub>/I की प्रतियों का परिमित उत्पाद। विशेष रूप से महत्वपूर्ण स्थिति तब होता है जब S क्षेत्र K का स्पेक्ट्रम होता है, जो S पर बीजगणितीय समूह बनाता है जिसका विस्तार कुछ परिमित वियोज्य विस्तार L तक होता है जो 'G<sub>''m''</sub>/L' की प्रतियों का सीमित उत्पाद है। सामान्यतः, इस उत्पाद की बहुलता (अर्थात, स्कीम का आयाम) को टोरस की [[ रैंक (विभेदक टोपोलॉजी) |रैंक (विभेदक टोपोलॉजी)]] कहा जाता है, और यह S पर स्थानीय रूप से स्थिर कार्य है।


टोरी ओवर फ़ील्ड्स के लिए परिभाषित अधिकांश धारणाएँ इस अधिक सामान्य सेटिंग पर आधारित हैं।
टोरी ओवर फ़ील्ड्स के लिए परिभाषित अधिकांश धारणाएँ इस अधिक सामान्य सेटिंग पर आधारित हैं।


==== उदाहरण ====
==== उदाहरण ====
बीजगणितीय टोरस का सामान्य उदाहरण एफ़िन शंकु पर विचार करना है <math>\text{Aff}(X) \subset \mathbb{A}^{n+1}</math> प्रक्षेपी योजना का <math>X \subset \mathbb{P}^n</math>. फिर, मूल को हटाकर, प्रेरित प्रक्षेपण मानचित्र <math display="block">\pi: (\text{Aff}(X) - \{0\}) \to X</math> एक बीजगणितीय टोरस की संरचना देता है <math>X</math>.
बीजगणितीय टोरस का एक सामान्य उदाहरण प्रक्षेप्य योजना <math>\text{Aff}(X) \subset \mathbb{A}^{n+1}</math> के एफ़िन शंकु <math>X \subset \mathbb{P}^n</math> पर विचार करना है। फिर मूल के साथ प्रेरित प्रक्षेपण मानचित्र को हटा दिया है<math display="block">\pi: (\text{Aff}(X) - \{0\}) \to X</math>


एक बीजगणितीय टोरस <math>X</math> की संरचना देता है .
=== वजन ===
=== वजन ===


एक सामान्य आधार योजना एस के लिए, वजन और सहभार को एस पर मुक्त एबेलियन समूहों के एफपीक्यूसी शीव्स के रूप में परिभाषित किया गया है। ये एफपीक्यूसी टोपोलॉजी के संबंध में आधार के मौलिक ग्रुपॉयड का प्रतिनिधित्व प्रदान करते हैं। यदि ईटेल टोपोलॉजी जैसे कमजोर टोपोलॉजी के संबंध में टोरस स्थानीय रूप से तुच्छ है, तो समूहों के ढेर ही टोपोलॉजी में उतरते हैं और ये प्रतिनिधित्व संबंधित भागफल समूह के माध्यम से कारक होते हैं। विशेष रूप से, ईटेल शीफ़ अर्ध-आइसोट्रिविअल टोरस को जन्म देता है, और यदि एस स्थानीय रूप से नोथेरियन और सामान्य है (अधिक सामान्यतः, [[यूनीब्रांच स्थानीय रिंग]]), तो टोरस आइसोट्रिविअल है। आंशिक उलटफेर के रूप में, [[ग्रोथेंडिक]] का प्रमेय दावा करता है कि परिमित प्रकार का कोई भी टोरस अर्ध-आइसोट्रिवियल है, यानी, ईटेल प्रक्षेपण द्वारा विभाजित है।
एक सामान्य आधार स्कीम S के लिए, वजन और सहभार को S पर फ्री एबेलियन समूहों के एफपीक्यूसी शीव्स के रूप में परिभाषित किया गया है। ये एफपीक्यूसी टोपोलॉजी के संबंध में आधार के मौलिक ग्रुपॉयड का प्रतिनिधित्व प्रदान करते हैं। यदि ईटेल टोपोलॉजी जैसे अशक्त टोपोलॉजी के संबंध में टोरस स्थानीय रूप से सामान्य है, तो समूहों टोपोलॉजी में अवरोही हैं और ये प्रतिनिधित्व संबंधित भागफल समूह के माध्यम से कारक होते हैं। विशेष रूप से, ईटेल शीफ़ अर्ध-आइसोट्रिविअल टोरस को उत्पन्न करता है, और यदि S स्थानीय रूप से नोथेरियन और सामान्य है (अधिक सामान्यतः, [[यूनीब्रांच स्थानीय रिंग|यूनीब्रांच स्थानीय वलय]]), तो टोरस आइसोट्रिविअल है। आंशिक उलटफेर के रूप में, [[ग्रोथेंडिक]] का प्रमेय प्रमाणित करता है कि परिमित प्रकार का कोई भी टोरस अर्ध-आइसोट्रिवियल है, अर्थात, ईटेल प्रक्षेपण द्वारा विभाजित है।


एस के ऊपर रैंक एन टोरस टी दिया गया है, मुड़ा हुआ रूप एस के ऊपर टोरस है जिसके लिए एस का एफपीक्यूसी कवरिंग मौजूद है जिसके लिए उनका आधार विस्तार आइसोमोर्फिक है, यानी, यह उसी रैंक का टोरस है। विभाजित टोरस के मुड़े हुए रूपों की समरूपता कक्षाएं नॉनबेलियन फ्लैट कोहोमोलॉजी द्वारा पैरामीट्रिज्ड हैं <math>H^1(S, GL_n(\mathbb{Z}))</math>, जहां गुणांक समूह स्थिर शीफ बनाता है। विशेष रूप से, क्षेत्र K के ऊपर विभाजित टोरस T के मुड़े हुए रूप गैलोज़ कोहोमोलॉजी नुकीले सेट के तत्वों द्वारा पैरामीट्रिज़ किए गए हैं <math>H^1(G_K, GL_n(\mathbb{Z}))</math> गुणांकों पर तुच्छ गैलोज़ क्रिया के साथ। एक-आयामी मामले में, गुणांक क्रम दो का समूह बनाते हैं, और जी के मुड़ रूपों के समरूपता वर्ग बनाते हैं<sub>m</sub> K के वियोज्य द्विघात विस्तार के साथ स्वाभाविक आपत्ति में हैं।
S के ऊपर रैंक N टोरस T दिया गया है, मैनिफोल्ड रूप S के ऊपर टोरस है जिसके लिए S का एफपीक्यूसी कवरिंग उपस्थित है जिसके लिए उनका आधार विस्तार आइसोमोर्फिक है, अर्थात, यह उसी रैंक का टोरस है। विभाजित टोरस के मुड़े हुए रूपों की समरूपता कक्षाएं नॉनबेलियन फ्लैट कोहोमोलॉजी द्वारा पैरामीट्रिज्ड <math>H^1(S, GL_n(\mathbb{Z}))</math> हैं , जहां गुणांक समूह स्थिर शीफ बनाता है। विशेष रूप से, क्षेत्र K के ऊपर विभाजित टोरस T के मुड़े हुए रूप गैलोज़ कोहोमोलॉजी समतल समुच्चय के अवयवो द्वारा पैरामीट्रिज़ <math>H^1(G_K, GL_n(\mathbb{Z}))</math> किए गए हैं गुणांकों पर सामान्य गैलोज़ क्रिया के साथ एक-आयामी स्थिति में, गुणांक क्रम दो का समूह बनाते हैं, और g<sub>m</sub> K के मुड़ रूपों के समरूपता वर्ग बनाते हैं के वियोज्य द्विघात विस्तार के साथ स्वाभाविक आपत्ति में हैं।


चूंकि वज़न जाली लेना श्रेणियों की तुल्यता है, तोरी के छोटे सटीक अनुक्रम संबंधित वज़न जाली के छोटे सटीक अनुक्रमों के अनुरूप होते हैं। विशेष रूप से, टोरी के एक्सटेंशन को एक्सट द्वारा वर्गीकृत किया जाता है<sup>1</sup>शेव। ये फ्लैट कोहोमोलॉजी समूहों के लिए स्वाभाविक रूप से आइसोमोर्फिक हैं <math>H^1(S, \mathrm{Hom}_\mathbb{Z} (X^\bullet(T_1), X^\bullet(T_2)))</math>. क्षेत्र में, एक्सटेंशन संबंधित गैलोइस कोहोमोलॉजी समूह के तत्वों द्वारा पैरामीट्रिज्ड होते हैं।
चूंकि वज़न लैटिस लेना श्रेणियों की तुल्यता है, टोरी के छोटे स्पष्ट अनुक्रम संबंधित वज़न लैटिस के छोटे स्पष्ट अनुक्रमों के अनुरूप होते हैं। विशेष रूप से, टोरी के एक्सटेंशन को एक्सट द्वारा वर्गीकृत किया जाता है शेव ये फ्लैट कोहोमोलॉजी समूहों के लिए स्वाभाविक रूप से आइसोमोर्फिक हैं <math>H^1(S, \mathrm{Hom}_\mathbb{Z} (X^\bullet(T_1), X^\bullet(T_2)))</math>. क्षेत्र में, एक्सटेंशन संबंधित गैलोइस कोहोमोलॉजी समूह के अवयवो द्वारा पैरामीट्रिज्ड होते हैं।


==अंकगणितीय अपरिवर्तनीय==
==अंकगणितीय अपरिवर्तनीय                                                                                                                                   ==


तमागावा संख्याओं पर वेइल अनुमान पर अपने काम में, ताकाशी ओनो (गणितज्ञ)|टी. ओनो ने चुने हुए क्षेत्र k के परिमित वियोज्य विस्तारों पर टोरी के प्रकार के फ़ंक्शनोरियल इनवेरिएंट पेश किए। ऐसा अपरिवर्तनीय सकारात्मक वास्तविक-मूल्यवान फ़ंक्शन f का संग्रह है<sub>K</sub> K के ऊपर टोरी के समरूपता वर्गों पर, क्योंकि K तीन गुणों को संतुष्ट करते हुए, k के परिमित वियोज्य विस्तारों पर चलता है:
संख्याओं पर वेइल अनुमान पर अपने कार्य में, ताकाशी ओनो (गणितज्ञ) या टी. ओनो ने चुने हुए क्षेत्र k के परिमित वियोज्य विस्तारों पर टोरी के प्रकार के फ़ंक्शनोरियल इनवेरिएंट प्रस्तुत किए। ऐसा अपरिवर्तनीय धनात्मक वास्तविक-मूल्यवान फलन f<sub>K</sub> K के ऊपर टोरी के समरूपता वर्गों का संग्रह है, क्योंकि K तीन गुणों को संतुष्ट करते हुए, k के परिमित वियोज्य विस्तारों पर चलता है:
# गुणात्मकता: दो टोरी टी दिए गए हैं<sub>1</sub> और टी<sub>2</sub> के के ऊपर, एफ<sub>K</sub>(टी<sub>1</sub> × टी<sub>2</sub>) = एफ<sub>K</sub>(टी<sub>1</sub>) एफ<sub>K</sub>(टी<sub>2</sub>)
# गुणात्मकता: दो टोरी t<sub>1</sub> और t<sub>2</sub> दिए गए हैं के के ऊपर, f<sub>K</sub>(t<sub>1</sub> × t<sub>2</sub>) = f<sub>K</sub>(t<sub>1</sub>) f<sub>K</sub>(t<sub>2</sub>)
# प्रतिबंध: परिमित वियोज्य विस्तार के लिए एल/के, एफ<sub>L</sub> एल टोरस पर मूल्यांकन एफ के बराबर है<sub>K</sub> K तक अदिशों के इसके प्रतिबंध पर मूल्यांकन किया गया।
# प्रतिबंध: परिमित वियोज्य विस्तार के लिए l/k, f<sub>L</sub> L टोरस पर मूल्यांकन f<sub>K</sub> K के समान है तक अदिशों के इसके प्रतिबंध पर मूल्यांकन किया गया था।
# प्रक्षेप्य तुच्छता: यदि T, K के ऊपर टोरस है जिसका वजन जाली प्रक्षेप्य गैलोज़ मॉड्यूल है, तो f<sub>K</sub>(टी) = 1.
# प्रक्षेप्य सामान्यतः: यदि T, K के ऊपर टोरस है जिसका वजन लैटिस प्रक्षेप्य गैलोज़ मॉड्यूल है, तो f<sub>K</sub>(t) = 1.


टी. ओनो ने दिखाया कि संख्या क्षेत्र पर टोरस की तमागावा संख्या ऐसी अपरिवर्तनीय है। इसके अलावा, उन्होंने दिखाया कि यह दो कोहोमोलॉजिकल इनवेरिएंट्स का भागफल है, अर्थात् समूह का क्रम <math>H^1(G_k, X^\bullet(T)) \cong Ext^1(T, \mathbb{G}_m)</math> (कभी-कभी गलती से इसे टी का [[पिकार्ड समूह]] कहा जाता है, हालांकि यह 'जी' को वर्गीकृत नहीं करता है<sub>m</sub> टी पर टॉर्सर्स), और टेट-शफारेविच समूह का क्रम।
टी. ओनो ने दिखाया कि संख्या क्षेत्र पर टोरस की संख्या ऐसी अपरिवर्तनीय है। इसके अतिरिक्त, उन्होंने दिखाया कि यह दो कोहोमोलॉजिकल इनवेरिएंट्स का भागफल है, अर्थात् समूह का क्रम <math>H^1(G_k, X^\bullet(T)) \cong Ext^1(T, \mathbb{G}_m)</math> (कभी-कभी गलती से इसे T का [[पिकार्ड समूह]] कहा जाता है, चूँकि यह 'g<sub>m</sub> t पर टॉर्सर्स),' को और टेट-शफारेविच समूह का क्रम वर्गीकृत नहीं करता है।


ऊपर दी गई अपरिवर्तनीय की धारणा स्वाभाविक रूप से मनमानी आधार योजनाओं पर टोरी को सामान्यीकृत करती है, जिसमें फ़ंक्शन अधिक सामान्य रिंगों में मान लेते हैं। जबकि विस्तार समूह का क्रम सामान्य अपरिवर्तनीय है, ऊपर दिए गए अन्य दो अपरिवर्तनीयों में एक-आयामी डोमेन के अंश क्षेत्रों और उनकी पूर्णता के दायरे के बाहर दिलचस्प एनालॉग नहीं लगते हैं।
ऊपर दी गई अपरिवर्तनीय की धारणा स्वाभाविक रूप से इच्छानुसार आधार योजनाओं पर टोरी को सामान्यीकृत करती है, जिसमें फलन अधिक सामान्य रिंगों में मान लेते हैं। जबकि विस्तार समूह का क्रम सामान्य अपरिवर्तनीय है, इस प्रकार ऊपर दिए गए अन्य दो अपरिवर्तनीयों में एक-आयामी डोमेन के अंश क्षेत्रों और उनकी पूर्णता के सीमा के बाहर रोचक एनालॉग नहीं लगते हैं।
 
==यह भी देखें==
{{Portal|Mathematics}}


==यह भी देखें{{Portal|Mathematics}}==
*टोरिक ज्यामिति
*टोरिक ज्यामिति
*[[ टोरस्र्स ]]
*[[ टोरस्र्स ]]
Line 148: Line 149:
*[[हॉपफ बीजगणित]]
*[[हॉपफ बीजगणित]]


== टिप्पणियाँ ==
== टिप्पणियाँ                                                                                                                                                                                                                                                                                                                                                                                                                                     ==


{{reflist}}
{{reflist}}
== संदर्भ ==
== संदर्भ ==


Line 160: Line 159:
* {{cite book | last=Tits | first=Jacques | editor1-last=Borel | editor1-first=Armand | editor2-last=Mostow | editor2-first=George D. | title=Algebraic groups and discontinuous groups | chapter=Classification of algebraic semisimple groups | pages=33&ndash;62 | series=Proceedings of symposia in pure math. | volume=9 | publisher=American math. soc. | year=1966}}
* {{cite book | last=Tits | first=Jacques | editor1-last=Borel | editor1-first=Armand | editor2-last=Mostow | editor2-first=George D. | title=Algebraic groups and discontinuous groups | chapter=Classification of algebraic semisimple groups | pages=33&ndash;62 | series=Proceedings of symposia in pure math. | volume=9 | publisher=American math. soc. | year=1966}}
* {{cite book | last=Witte-Morris | first=Dave | title=Introduction to Arithmetic Groups | publisher=Deductive Press | year=2015 | pages=492 | isbn=978-0-9865716-0-2 | url=http://deductivepress.ca/}}
* {{cite book | last=Witte-Morris | first=Dave | title=Introduction to Arithmetic Groups | publisher=Deductive Press | year=2015 | pages=492 | isbn=978-0-9865716-0-2 | url=http://deductivepress.ca/}}
[[Category: रैखिक बीजगणितीय समूह]] [[Category: झूठ समूह]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 10/07/2023]]
[[Category:Created On 10/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages that use a deprecated format of the math tags]]
[[Category:Pages with empty portal template]]
[[Category:Pages with maths render errors]]
[[Category:Pages with script errors]]
[[Category:Portal templates with redlinked portals]]
[[Category:Templates Vigyan Ready]]
[[Category:झूठ समूह]]
[[Category:रैखिक बीजगणितीय समूह]]

Latest revision as of 10:53, 26 July 2023

गणित में, एक बीजगणितीय टोरस, जहां एक आयामी टोरस को सामान्यतः , , या , द्वारा दर्शाया जाता है, एक प्रकार का क्रमविनिमेय बीजगणितीय समूह है जो सामान्यतः प्रक्षेप्य बीजगणितीय ज्यामिति और टोरिक ज्यामिति में पाया जाता है। उच्च आयामी बीजीय टोरी को बीजगणितीय समूहों के उत्पाद के रूप में तैयार किया जा सकता है। इन समूहों को लाई समूह सिद्धांत में टोरी के सिद्धांत के अनुरूप नाम दिया गया था (कार्टन उपसमूह देखें)। उदाहरण के लिए, समिष्ट संख्याओं पर बीजगणितीय टोरस समूह स्कीम के लिए समरूपी है, जो कि लाई समूह का स्कीम सैद्धांतिक एनालॉग है। वास्तव में, किसी समिष्ट सदिश समष्टि पर किसी भी -कार्य को वास्तविक मैनिफोल्ड्स के रूप में सम्मिलित किए जाने से -क्रिया में मैनिफोल्ड किया जा सकता है।

बीजगणितीय समूहों और लाई समूहों के सिद्धांत और उनसे जुड़ी ज्यामितीय वस्तुओं जैसे सममित समिष्ट और बिल्डिंग (गणित) के अध्ययन में टोरी का मौलिक महत्व है।

क्षेत्रो पर बीजगणितीय टोरी

अधिकांश स्थानों पर हम मानते हैं कि आधार क्षेत्र एकदम सही है (उदाहरण के लिए परिमित या विशेषता शून्य)। इस परिकल्पना के लिए एक समतल समूह स्कीम की आवश्यकता है [1] पृष्ठ 64, क्योंकि बीजगणितीय समूह के लिए मानचित्रों की विशेषता पर समतल होना आवश्यक है

पर्याप्त बड़े के लिए ज्यामितीय रूप से कम किया जाना चाहिए, जिसका अर्थ है कि पर संबंधित मानचित्र की छवि पर्याप्त बड़े के लिए समतल है

सामान्यतः बीजगणितीय क्लोजर के समिष्ट पर पृथक्करणीय क्लोजर का उपयोग करना पड़ता है।

किसी क्षेत्र का गुणक समूह

यदि एक क्षेत्र है तो पर गुणक समूह बीजगणितीय समूह है, जैसे कि किसी भी क्षेत्र एक्सटेंशन के लिए -बिंदु समूह के समरूपी होते हैं। इसे एक बीजगणितीय समूह के रूप में ठीक से परिभाषित करने के लिए कोई व्यक्ति निर्देशांक के साथ के ऊपर एफ़िन विमान में समीकरण द्वारा परिभाषित एफ़िन विविधता ले सकता है। गुणन तब द्वारा परिभाषित नियमित तर्कसंगत मानचित्र को प्रतिबंधित करके दिया जाता है और व्युत्क्रम नियमित तर्कसंगत मानचित्र का प्रतिबंध होता है

परिभाषा

मान लीजिए कि बीजगणितीय समापन के साथ एक क्षेत्र है फिर -टोरस पर परिभाषित एक बीजगणितीय समूह है जो गुणक समूह की प्रतियों के एक सीमित उत्पाद के लिए पर समरूपी है।

दूसरे शब्दों में, यदि -ग्रुप यह टोरस है यदि और केवल यदि कुछ के लिए . टोरी से जुड़ी मूल शब्दावली इस प्रकार है।

  • पूर्णांक टोरस की रैंक या पूर्ण रैंक कहा जाता है .
  • कहा जाता है कि टोरस क्षेत्र विस्तार में विभाजित है यदि . का अद्वितीय न्यूनतम परिमित विस्तार है जिस पर विभाजित है, जिसे विभाजन क्षेत्र कहा जाता है .
  • -रैंक का के विभाजित उप-टोरस की अधिकतम रैंक है . टोरस विभाजित होता है यदि और केवल यदि ऐसा हो -रैंक उसकी पूर्ण रैंक के समान है।
  • एक टोरस को अनिसोट्रोपिक कहा जाता है यदि यह -रैंक शून्य है.

आइसोजेनिज़

बीजगणितीय समूहों के बीच आइसोजेनी परिमित कर्नेल के साथ विशेषण रूपवाद है; दो टोरी को आइसोजेनस कहा जाता है यदि पहले से दूसरे तक आइसोोजेनी उपस्थित हो। टोरी के बीच आइसोजेनिज़ विशेष रूप से अच्छी तरह से व्यवहार की जाती हैं: किसी भी आइसोजेनि के लिए वहाँ दोहरी आइसोजेनी उपस्थित है ऐसा है कि पावर मैप है. विशेष रूप से आइसोजेनस होना टोरी के बीच तुल्यता संबंध है।

उदाहरण

बीजगणितीय रूप से संवृत क्षेत्र पर

किसी भी बीजगणितीय रूप से संवृत क्षेत्र पर समरूपता तक किसी भी रैंक का अद्वितीय टोरस होता है। रैंक के लिए बीजगणितीय टोरस खत्म यह समूह स्कीम द्वारा दिया गया है [1]पृष्ठ 230.

वास्तविक संख्याओं से अधिक

वास्तविक संख्याओं के क्षेत्र पर वास्तव में (समरूपता तक) रैंक 1 के दो टोरी हैं:

  • विभाजित टोरस
  • सघन रूप, जिसे एकात्मक समूह या विशेष ऑर्थोगोनल समूह के रूप में अनुभव किया जा सकता है। यह एक अनिसोट्रोपिक टोरस है। एक लाई समूह के रूप में, यह 1-टोरस (गणित) के समरूपी भी है, जो टोरी के रूप में विकर्ण बीजगणितीय समूहों की छवि की व्याख्या करता है।

कोई भी वास्तविक टोरस उन दोनों के सीमित योग से समरूप होता है; उदाहरण के लिए वास्तविक टोरस दोगुना आवरण किया गया है (किन्तु समरूपी नहीं) . यह आइसोजेनस, गैर-आइसोमोर्फिक टोरी का उदाहरण देता है।

एक परिमित क्षेत्र पर

परिमित क्षेत्र के ऊपर दो रैंक-1 टोरी हैं: विभाजित एक, कार्डिनैलिटी का , और अनिसोट्रोपिक कार्डिनैलिटी में से . उत्तरार्द्ध को आव्यूह समूह के रूप में अनुभव किया जा सकता है

अधिक सामान्यतः, यदि डिग्री का सीमित क्षेत्र विस्तार है फिर वेइल प्रतिबंध से को के गुणक समूह का -रैंक का टोरस और -रैंक 1 (ध्यान दें कि अविभाज्य क्षेत्र विस्तार पर स्केलर के प्रतिबंध से क्रमविनिमेय बीजगणितीय समूह प्राप्त होगा जो टोरस नहीं है)। इस प्रकार इसके क्षेत्र मानदंड का टोरस भी है, जो अनिसोट्रोपिक और रैंक का है . कोई - रैंक का टोरस द्विघात विस्तार के मानदंड के कर्नेल के लिए या तो विभाजित या आइसोमोर्फिक है।[2] उपरोक्त दो उदाहरण इसके विशेष स्थिति हैं: कॉम्पैक्ट रियल टोरस क्षेत्र मानदंड का कर्नेल है और अनिसोट्रोपिक टोरस खत्म के क्षेत्र मानदंड का कर्नेल है

वजन और भार

एक अलग से संवृत क्षेत्र में, टोरस T दो प्राथमिक अपरिवर्तनीयों को स्वीकार करता है। वजन (प्रतिनिधित्व सिद्धांत) लैटिस (समूह) बीजगणितीय समरूपताओं का समूह है T → 'G'm, और काउवेट लैटिस बीजगणितीय समरूपता gm→ t का समूह है. ये दोनों स्वतंत्र एबेलियन समूह हैं जिनकी रैंक टोरस की है, और उनके पास कैनोनिकल नॉनडीजेनरेट जोड़ी है द्वारा दिए गए , जहां डिग्री संख्या n है जैसे कि संरचना गुणक समूह पर n वें पावर मैप के समान है। इस प्रकार वजन लेकर दिया गया फ़नकार टोरी और फ्री एबेलियन समूहों के बीच श्रेणियों की प्रतितुल्यता है, और काउवेट फ़नकार समतुल्य है। विशेष रूप से, टोरी के मानचित्रों को वज़न या सहभार पर रैखिक परिवर्तनों की विशेषता होती है, और टोरस का ऑटोमोर्फिज्म समूह 'Z' पर सामान्य रैखिक समूह होता है। वज़न फ़ैक्टर का अर्ध-व्युत्क्रम फ्री एबेलियन समूहों से टोरी तक दोहरीकरण फ़ैक्टर द्वारा दिया जाता है, जिसे इसके बिंदुओं के फ़ैक्टर द्वारा परिभाषित किया गया है:

इस तुल्यता को गुणात्मक प्रकार के समूहों (औपचारिक समूह का विशिष्ट वर्ग) और इच्छानुसार से एबेलियन समूहों के बीच पारित करने के लिए सामान्यीकृत किया जा सकता है, और यदि कोई अच्छी तरह से व्यवहार वाली श्रेणी में कार्य करना चाहता है तो ऐसा सामान्यीकरण सुविधाजनक हो सकता है, क्योंकि टोरी की श्रेणी नहीं होती है इसमें कर्नेल या फ़िल्टर्ड कोलिमिट्स नहीं हैं।

जब क्षेत्र K को अलग से संवृत नहीं किया जाता है, तो K के ऊपर टोरस के वजन और कोवेट लैटिस को अलग करने योग्य क्लोजर पर संबंधित लैटिस के रूप में परिभाषित किया जाता है। यह जालकों पर K के निरपेक्ष गैलोज़ समूह की विहित निरंतर क्रियाओं को प्रेरित करता है। इस क्रिया द्वारा तय किए गए वज़न और सह-भार बिल्कुल वही मानचित्र हैं जो K के ऊपर परिभाषित हैं। वज़न लेने का फ़ैक्टर बीजगणितीय समरूपताओं के साथ K के ऊपर टोरी की श्रेणी और के साथ अंतिम रूप से उत्पन्न मरोड़ फ्री एबेलियन समूहों की श्रेणी के बीच प्रतितुल्यता है। इस प्रकार K के पूर्ण गैलोज़ समूह की कार्य होता है।

एक परिमित वियोज्य क्षेत्र विस्तार L/K और L के ऊपर टोरस T को देखते हुए, हमारे पास गैलोज़ मापांक समरूपता है

यदि T गुणक समूह है, तो यह अदिशों के प्रतिबंध को क्रमपरिवर्तन मॉड्यूल संरचना देता है। इस प्रकार टोरी जिनके भार जालक गैलोज़ समूह के लिए क्रमपरिवर्तन मॉड्यूल हैं, अर्ध-विभाजित कहलाते हैं, और सभी अर्ध-विभाजित टोरी स्केलर के प्रतिबंधों के परिमित उत्पाद हैं।

अर्धसरल समूहों में टोरी

टोरी का रैखिक निरूपण

जैसा कि ऊपर के उदाहरणों में देखा गया है, टोरी को रैखिक समूहों के रूप में दर्शाया जा सकता है। टोरी की वैकल्पिक परिभाषा है:

एक रैखिक बीजगणितीय समूह टोरस है यदि और केवल यदि यह बीजगणितीय समापन पर विकर्णीय है।

टोरस क्षेत्र में विभाजित होता है यदि और केवल तभी जब यह इस क्षेत्र पर विकर्णीय हो।

एक अर्धसरल समूह की विभाजित रैंक

यदि क्षेत्र पर अर्धसरल बीजगणितीय समूह है तब:

  • इसकी रैंक (या पूर्ण रैंक) अधिकतम टोरस उपसमूह की रैंक है (ध्यान दें कि सभी अधिकतम टोरी संयुग्मित हैं इसलिए रैंक अच्छी तरह से परिभाषित है);
  • इसका -रैंक (कभी-कभी कहा जाता है -स्प्लिट रैंक) टोरस उपसमूह की अधिकतम रैंक है जो बंटा हुआ है .

सामान्यतः रैंक इससे बड़ा या उसके -पद समान है; समूह को विभाजित कहा जाता है यदि और केवल यदि समानता बनाये रहती है (अर्थात, इसमें अधिकतम टोरस होता है जो बंटा हुआ है). समूह को अनिसोट्रोपिक कहा जाता है यदि इसमें कोई विभाजित टोरी नहीं है (अर्थात इसकी -रैंक शून्य है)।

अर्धसरल समूहों का वर्गीकरण

समष्टि क्षेत्र पर अर्धसरल बीजगणित के मौलिक सिद्धांत में यह उपबीजगणित परीक्षण मूल प्रक्रिया और डायनकिन आरेखों के माध्यम से वर्गीकरण में मौलिक भूमिका निभाते हैं। यह वर्गीकरण समिष्ट क्षेत्र पर जुड़े बीजगणितीय समूहों के समान है, और कार्टन सबलेजेब्रा इनमें अधिकतम टोरी के अनुरूप है। वास्तव में वर्गीकरण इस धारणा के अनुसार इच्छानुसार आधार क्षेत्र के स्थिति को आगे बढ़ाता है कि विभाजित अधिकतम टोरस उपस्थित है (जो बीजगणितीय रूप से संवृत क्षेत्र पर स्वचालित रूप से संतुष्ट है)। विभाजन की धारणा के बिना चीजें बहुत अधिक समिष्ट हो जाती हैं और अधिक विस्तृत सिद्धांत विकसित करना पड़ता है, जो अभी भी टोरी की सहायक क्रियाओं के अध्ययन पर आधारित है।

यदि अर्धसरल बीजगणितीय समूह में अधिकतम टोरस है फिर बीजगणितीय समापन पर यह रूट प्रणाली को उत्पन्न करता है सदिश समिष्ट में . दूसरी ओर, यदि अधिकतम है -स्प्लिट टोरस पर इसकी कार्य -लाई का बीजगणित अन्य रूट प्रणाली को उत्पन्न करता है . प्रतिबंध मानचित्र प्रारूप प्रेरित करता है और टिट्स सूचकांक इस मानचित्र के गुणों और गैलोज़ समूह की कार्य को एनकोड करने का विधि है पर . टिट्स इंडेक्स संबंधित निरपेक्ष डायनकिन आरेख का सापेक्ष संस्करण है ; प्रदर्शित है, केवल सीमित संख्या में टिट्स सूचकांक ही किसी दिए गए डायनकिन आरेख के अनुरूप हो सकते हैं।

स्प्लिट टोरस से जुड़ा और अपरिवर्तनीय अनिसोट्रोपिक कर्नेल है: यह अर्धसरल बीजगणितीय समूह है जिसे केंद्रीकरण के व्युत्पन्न उपसमूह के रूप में प्राप्त किया गया है में (उत्तरार्द्ध केवल रिडक्टिव समूह है)। जैसा कि इसके नाम से संकेत मिलता है कि यह अनिसोट्रोपिक समूह है, और इसका पूर्ण प्रकार विशिष्ट रूप से निर्धारित होता है .

वर्गीकरण की दिशा में पहला कदम निम्नलिखित प्रमेय है [3] }

दो अर्धसरल -बीजगणितीय समूह समरूपी होते हैं यदि और केवल यदि उनके टिट्स सूचकांक और समरूपी अनिसोट्रोपिक कर्नेल समान हों।

यह अनिसोट्रोपिक समूहों में वर्गीकरण की समस्या को कम करता है, और यह निर्धारित करता है कि किसी दिए गए डायनकिन आरेख के लिए कौन से टिट्स सूचकांक हो सकते हैं। बाद वाली समस्या का समाधान हो गया है टिट्स (1966). पूर्व गैलोइस कोहोमोलॉजी समूहों से संबंधित है . अधिक स्पष्ट रूप से प्रत्येक टिट्स सूचकांक के ऊपर अद्वितीय अर्ध-विभाजित समूह जुड़ा होता है; फिर हर -समान सूचकांक वाला समूह इस अर्ध-विभाजित समूह का आंतरिक रूप है, और इन्हें गैलोज़ कोहोमोलॉजी द्वारा वर्गीकृत किया गया है निकटवर्ती समूह में गुणांकों के साथ होता है।

टोरी और ज्यामिति

समतल उप-समिष्ट और सममित स्थानों की रैंक

यदि अर्धसरल लाई समूह है तो इसकी वास्तविक रैंक है -रैंक जैसा कि ऊपर परिभाषित किया गया है (किसी के लिए) -बीजगणितीय समूह जिसका वास्तविक बिंदुओं का समूह समरूपी है ), दूसरे शब्दों में अधिकतम जैसे कि एम्बेडिंग उपस्थित है . उदाहरण के लिए, की वास्तविक रैंक के समान है , और की वास्तविक रैंक के समान है .

यदि से संबद्ध सममित समिष्ट है और अधिकतम विभाजित टोरस है तो अद्वितीय कक्षा उपस्थित है में जो पूरी तरह से जियोडेसिक फ्लैट उपस्थान है . यह वास्तव में अधिकतम समतल उपस्थान है और सभी अधिकतम इस तरह से विभाजित टोरी की कक्षाओं के रूप में प्राप्त होते हैं। इस प्रकार वास्तविक रैंक की ज्यामितीय परिभाषा है, समतल उपस्थान के अधिकतम आयाम के रूप में उपयोग किया जाता है.[4]

लैटिस की क्यू-रैंक

यदि लाई समूह बीजगणितीय समूह के वास्तविक बिंदुओं के रूप में प्राप्त किया जाता है तर्कसंगत क्षेत्र पर फिर -रैंक का इसका ज्यामितीय महत्व भी है। इसे पाने के लिए किसी को अंकगणितीय समूह का परिचय देना होगा के लिए जुड़े , जो सामान्यतः पूर्णांक बिंदुओं का समूह है , और भागफल समिष्ट , जो रीमैनियन ऑर्बिफोल्ड है और इसलिए मीट्रिक समिष्ट है। फिर किसी भी स्पर्शोन्मुख शंकु के समान आयाम के शीर्ष-आयामी सरलीकरण के साथ परिमित सरलीकृत परिसर के लिए होमोमोर्फिक है -रैंक का . विशेष रूप से, सघन है यदि और केवल यदि अनिसोट्रोपिक है.[5]

ध्यान दें कि यह परिभाषित करने की अनुमति देता है -अर्धसरल लाई समूह में किसी भी लैटिस की रैंक, उसके स्पर्शोन्मुख शंकु के आयाम के रूप में उपयोग किया जाता है।

बिल्डिंग

यदि अर्धसरल समूह है अधिकतम विभाजन टोरी में ब्रुहट-टिट्स बिल्डिंग के अपार्टमेंट के अनुरूप के लिए जुड़े . विशेष रूप से का आयाम के समान -rank of है.

एक इच्छानुसार आधार स्कीम पर बीजगणितीय टोरी

परिभाषा

एक आधार स्कीम (गणित) S को देखते हुए, S पर बीजीय टोरस को S पर समूह स्कीम के रूप में परिभाषित किया गया है जो कि गुणक समूह स्कीम 'gms के u / s' की प्रतियों के सीमित उत्पाद के लिए फ्लैट टोपोलॉजी आइसोमोर्फिक है।। दूसरे शब्दों में, विश्वसनीय रूप से सपाट प्रारूप x → S उपस्थित है जैसे कि x में किसी भी बिंदु पर अर्ध-कॉम्पैक्ट विवृत पड़ोस u है जिसकी छवि S की विवृत एफ़िन उपयोजना है, जैसे कि u में आधार परिवर्तन उत्पन्न करता है gL1,U = gm/I की प्रतियों का परिमित उत्पाद। विशेष रूप से महत्वपूर्ण स्थिति तब होता है जब S क्षेत्र K का स्पेक्ट्रम होता है, जो S पर बीजगणितीय समूह बनाता है जिसका विस्तार कुछ परिमित वियोज्य विस्तार L तक होता है जो 'Gm/L' की प्रतियों का सीमित उत्पाद है। सामान्यतः, इस उत्पाद की बहुलता (अर्थात, स्कीम का आयाम) को टोरस की रैंक (विभेदक टोपोलॉजी) कहा जाता है, और यह S पर स्थानीय रूप से स्थिर कार्य है।

टोरी ओवर फ़ील्ड्स के लिए परिभाषित अधिकांश धारणाएँ इस अधिक सामान्य सेटिंग पर आधारित हैं।

उदाहरण

बीजगणितीय टोरस का एक सामान्य उदाहरण प्रक्षेप्य योजना के एफ़िन शंकु पर विचार करना है। फिर मूल के साथ प्रेरित प्रक्षेपण मानचित्र को हटा दिया है


एक बीजगणितीय टोरस की संरचना देता है .

वजन

एक सामान्य आधार स्कीम S के लिए, वजन और सहभार को S पर फ्री एबेलियन समूहों के एफपीक्यूसी शीव्स के रूप में परिभाषित किया गया है। ये एफपीक्यूसी टोपोलॉजी के संबंध में आधार के मौलिक ग्रुपॉयड का प्रतिनिधित्व प्रदान करते हैं। यदि ईटेल टोपोलॉजी जैसे अशक्त टोपोलॉजी के संबंध में टोरस स्थानीय रूप से सामान्य है, तो समूहों टोपोलॉजी में अवरोही हैं और ये प्रतिनिधित्व संबंधित भागफल समूह के माध्यम से कारक होते हैं। विशेष रूप से, ईटेल शीफ़ अर्ध-आइसोट्रिविअल टोरस को उत्पन्न करता है, और यदि S स्थानीय रूप से नोथेरियन और सामान्य है (अधिक सामान्यतः, यूनीब्रांच स्थानीय वलय), तो टोरस आइसोट्रिविअल है। आंशिक उलटफेर के रूप में, ग्रोथेंडिक का प्रमेय प्रमाणित करता है कि परिमित प्रकार का कोई भी टोरस अर्ध-आइसोट्रिवियल है, अर्थात, ईटेल प्रक्षेपण द्वारा विभाजित है।

S के ऊपर रैंक N टोरस T दिया गया है, मैनिफोल्ड रूप S के ऊपर टोरस है जिसके लिए S का एफपीक्यूसी कवरिंग उपस्थित है जिसके लिए उनका आधार विस्तार आइसोमोर्फिक है, अर्थात, यह उसी रैंक का टोरस है। विभाजित टोरस के मुड़े हुए रूपों की समरूपता कक्षाएं नॉनबेलियन फ्लैट कोहोमोलॉजी द्वारा पैरामीट्रिज्ड हैं , जहां गुणांक समूह स्थिर शीफ बनाता है। विशेष रूप से, क्षेत्र K के ऊपर विभाजित टोरस T के मुड़े हुए रूप गैलोज़ कोहोमोलॉजी समतल समुच्चय के अवयवो द्वारा पैरामीट्रिज़ किए गए हैं गुणांकों पर सामान्य गैलोज़ क्रिया के साथ एक-आयामी स्थिति में, गुणांक क्रम दो का समूह बनाते हैं, और gm K के मुड़ रूपों के समरूपता वर्ग बनाते हैं के वियोज्य द्विघात विस्तार के साथ स्वाभाविक आपत्ति में हैं।

चूंकि वज़न लैटिस लेना श्रेणियों की तुल्यता है, टोरी के छोटे स्पष्ट अनुक्रम संबंधित वज़न लैटिस के छोटे स्पष्ट अनुक्रमों के अनुरूप होते हैं। विशेष रूप से, टोरी के एक्सटेंशन को एक्सट द्वारा वर्गीकृत किया जाता है शेव ये फ्लैट कोहोमोलॉजी समूहों के लिए स्वाभाविक रूप से आइसोमोर्फिक हैं . क्षेत्र में, एक्सटेंशन संबंधित गैलोइस कोहोमोलॉजी समूह के अवयवो द्वारा पैरामीट्रिज्ड होते हैं।

अंकगणितीय अपरिवर्तनीय

संख्याओं पर वेइल अनुमान पर अपने कार्य में, ताकाशी ओनो (गणितज्ञ) या टी. ओनो ने चुने हुए क्षेत्र k के परिमित वियोज्य विस्तारों पर टोरी के प्रकार के फ़ंक्शनोरियल इनवेरिएंट प्रस्तुत किए। ऐसा अपरिवर्तनीय धनात्मक वास्तविक-मूल्यवान फलन fK K के ऊपर टोरी के समरूपता वर्गों का संग्रह है, क्योंकि K तीन गुणों को संतुष्ट करते हुए, k के परिमित वियोज्य विस्तारों पर चलता है:

  1. गुणात्मकता: दो टोरी t1 और t2 दिए गए हैं के के ऊपर, fK(t1 × t2) = fK(t1) fK(t2)
  2. प्रतिबंध: परिमित वियोज्य विस्तार के लिए l/k, fL L टोरस पर मूल्यांकन fK K के समान है तक अदिशों के इसके प्रतिबंध पर मूल्यांकन किया गया था।
  3. प्रक्षेप्य सामान्यतः: यदि T, K के ऊपर टोरस है जिसका वजन लैटिस प्रक्षेप्य गैलोज़ मॉड्यूल है, तो fK(t) = 1.

टी. ओनो ने दिखाया कि संख्या क्षेत्र पर टोरस की संख्या ऐसी अपरिवर्तनीय है। इसके अतिरिक्त, उन्होंने दिखाया कि यह दो कोहोमोलॉजिकल इनवेरिएंट्स का भागफल है, अर्थात् समूह का क्रम (कभी-कभी गलती से इसे T का पिकार्ड समूह कहा जाता है, चूँकि यह 'gm t पर टॉर्सर्स),' को और टेट-शफारेविच समूह का क्रम वर्गीकृत नहीं करता है।

ऊपर दी गई अपरिवर्तनीय की धारणा स्वाभाविक रूप से इच्छानुसार आधार योजनाओं पर टोरी को सामान्यीकृत करती है, जिसमें फलन अधिक सामान्य रिंगों में मान लेते हैं। जबकि विस्तार समूह का क्रम सामान्य अपरिवर्तनीय है, इस प्रकार ऊपर दिए गए अन्य दो अपरिवर्तनीयों में एक-आयामी डोमेन के अंश क्षेत्रों और उनकी पूर्णता के सीमा के बाहर रोचक एनालॉग नहीं लगते हैं।

यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 Milne. "Algebraic Groups: The Theory of Group Schemes of Finite Type" (PDF). Archived (PDF) from the original on 2016-03-07.
  2. Voskresenskii, V. S. (1998). बीजगणितीय समूह और उनके द्विवार्षिक अपरिवर्तनीय. Translations of mathematical monographs. American Math. Soc.
  3. Tits 1966, Theorem 2.7.1.
  4. Witte-Morris 2015, p. 22.
  5. Witte-Morris 2015, p. 25.

संदर्भ

  • A. Grothendieck, SGA 3 Exp. VIII–X
  • T. Ono, On Tamagawa Numbers
  • T. Ono, On the Tamagawa number of algebraic tori Annals of Mathematics 78 (1) 1963.
  • Tits, Jacques (1966). "Classification of algebraic semisimple groups". In Borel, Armand; Mostow, George D. (eds.). Algebraic groups and discontinuous groups. Proceedings of symposia in pure math. Vol. 9. American math. soc. pp. 33–62.
  • Witte-Morris, Dave (2015). Introduction to Arithmetic Groups. Deductive Press. p. 492. ISBN 978-0-9865716-0-2.