बीजगणितीय वक्रों का मापांक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[बीजगणितीय ज्यामिति]] में, '''बीजगणितीय वक्रों का मापांक''' मॉड्यूली समिष्ट ज्यामितीय समिष्ट (सामान्यतः [[योजना (गणित)]] या बीजगणितीय स्टैक) होता है, जिसके बिंदु [[बीजगणितीय वक्र]] के समरूपता वर्गों का प्रतिनिधित्व करते हैं। इस प्रकार यह [[मॉड्यूलि स्पेस|मॉड्यूलि]] समिष्ट का विशेष स्थिति है। विचारित बीजगणितीय वक्रों के वर्गों पर लागू प्रतिबंधों के आधार पर, संबंधित मॉड्यूलि समस्या और मॉड्यूलि समिष्ट भिन्न होता है। मॉड्यूलि समस्या के लिए मॉड्यूलि समिष्ट फाइन मॉड्यूलि समिष्ट और मॉड्यूलि समिष्ट मोटे मॉड्यूलि समिष्ट के बीच भी अंतर किया जाता है।
[[बीजगणितीय ज्यामिति]] में, '''बीजगणितीय वक्रों का मापांक''' मॉड्यूली समिष्ट ज्यामितीय समिष्ट (सामान्यतः [[योजना (गणित)]] या बीजगणितीय अनुपात) होता है, जिसके बिंदु [[बीजगणितीय वक्र]] के समरूपता वर्गों का प्रतिनिधित्व करते हैं। इस प्रकार यह [[मॉड्यूलि स्पेस|मॉड्यूलि]] समिष्ट का विशेष स्थिति है। विचारित बीजगणितीय वक्रों के वर्गों पर लागू प्रतिबंधों के आधार पर, संबंधित मॉड्यूलि समस्या और मॉड्यूलि समिष्ट भिन्न होता है। मॉड्यूलि समस्या के लिए मॉड्यूलि समिष्ट फाइन मॉड्यूलि समिष्ट और मॉड्यूलि समिष्ट मोटे मॉड्यूलि समिष्ट के बीच भी अंतर किया जाता है।


सबसे बुनियादी समस्या निश्चित जीनस (गणित) के [[चिकनी रूपवाद|स्मूथ रूपवाद]] पूर्ण विविधता वक्रों के मॉड्यूल की है। जटिल संख्याओं के क्षेत्र (गणित) में ये दिए गए जीनस की [[कॉम्पैक्ट रीमैन सतह]] से सटीक रूप से मेल खाते हैं, जिसके लिए [[बर्नहार्ड रीमैन]] ने मॉड्यूलि रिक्त समिष्ट के बारे में पहले परिणाम सिद्ध किए, विशेष रूप से उनके आयाम (पैरामीटर की संख्या जिस पर जटिल संरचना) पर निर्भर करती है।
सबसे बुनियादी समस्या निश्चित जीनस (गणित) के [[चिकनी रूपवाद|स्मूथ रूपवाद]] पूर्ण विविधता वक्रों के मॉड्यूल की है। जटिल संख्याओं के क्षेत्र (गणित) में ये दिए गए जीनस की [[कॉम्पैक्ट रीमैन सतह]] से सटीक रूप से मेल खाते हैं, जिसके लिए [[बर्नहार्ड रीमैन]] ने मॉड्यूलि रिक्त समिष्ट के बारे में पहले परिणाम सिद्ध किए, विशेष रूप से उनके आयाम (पैरामीटर की संख्या जिस पर जटिल संरचना) पर निर्भर करती है।


==स्थिर वक्रों के मॉड्यूली ढेर==
==स्थिर वक्रों के मॉड्यूली ढेर==
मॉड्यूलि स्टैक <math>\mathcal{M}_{g}</math> स्मूथ प्रक्षेप्य वक्रों के परिवारों को उनकी समरूपता सहित वर्गीकृत करता है। जब <math>g > 1</math>, इस स्टैक को नए सीमा बिंदुओं को जोड़कर संकुचित किया जा सकता है जो स्थिर नोडल वक्रों (उनके समरूपता के साथ) के अनुरूप हैं। वक्र [[स्थिर वक्र]] होता है यदि यह पूर्ण है, जुड़ा हुआ है, इसमें दोहरे बिंदुओं के अतिरिक्त कोई विलक्षणता नहीं है, और इसमें ऑटोमोर्फिज्म का केवल सीमित समूह है। परिणामी स्टैक को दर्शाया गया है <math>\overline{\mathcal{M}}_{g}</math>. दोनों मॉड्यूली स्टैक वक्रों के सार्वभौमिक परिवारों को ले जाते हैं।
मॉड्यूलि अनुपात <math>\mathcal{M}_{g}</math> स्मूथ प्रक्षेप्य वक्रों के परिवारों को उनकी समरूपता सहित वर्गीकृत करता है। जब <math>g > 1</math>, इस अनुपात को नए सीमा बिंदुओं को जोड़कर संकुचित किया जा सकता है जो स्थिर नोडल वक्रों (उनके समरूपता के साथ) के अनुरूप हैं। वक्र [[स्थिर वक्र]] होता है यदि यह पूर्ण है, जुड़ा हुआ है, इसमें दोहरे बिंदुओं के अतिरिक्त कोई विलक्षणता नहीं है, और इसमें ऑटोमोर्फिज्म का केवल सीमित समूह है। परिणामी अनुपात को दर्शाया गया है <math>\overline{\mathcal{M}}_{g}</math>. दोनों मॉड्यूली अनुपात वक्रों के सार्वभौमिक परिवारों को ले जाते हैं।


उपरोक्त दोनों ढेरों का आयाम है <math>3g-3</math>; इसलिए स्थिर नोडल वक्र को मानों को चुनकर पूरी प्रकार से निर्दिष्ट किया जा सकता है <math>3g-3</math> पैरामीटर, जब <math>g > 1</math>. निचले जीनस में, किसी को उनकी संख्या घटाकर, ऑटोमोर्फिज्म के सहज परिवारों की उपस्थिति का हिसाब देना चाहिए। जीनस शून्य का बिल्कुल जटिल वक्र है, रीमैन क्षेत्र, और इसकी समरूपता का समूह पीजीएल(2) है। इसलिए का आयाम <math>\mathcal{M}_0</math> के बराबर है
उपरोक्त दोनों ढेरों का आयाम है <math>3g-3</math>; इसलिए स्थिर नोडल वक्र को मानों को चुनकर पूरी प्रकार से निर्दिष्ट किया जा सकता है <math>3g-3</math> पैरामीटर, जब <math>g > 1</math>. निचले जीनस में, किसी को उनकी संख्या घटाकर, ऑटोमोर्फिज्म के सहज परिवारों की उपस्थिति का हिसाब देना चाहिए। जीनस शून्य का बिल्कुल जटिल वक्र है, रीमैन क्षेत्र, और इसकी समरूपता का समूह पीजीएल(2) है। इसलिए का आयाम <math>\mathcal{M}_0</math> के बराबर है
Line 13: Line 13:


=== निर्माण और अपरिवर्तनीयता ===
=== निर्माण और अपरिवर्तनीयता ===
यह गैर-तुच्छ प्रमेय है, जिसे पियरे डेलिग्ने और [[ डेविड मम्फोर्ड |डेविड मम्फोर्ड]] ने सिद्ध किया है,<ref name=":0">{{Cite journal|last1=Deligne|first1=Pierre|author1-link=Pierre Deligne|last2=Mumford|first2=David|author2-link=David Mumford|date=1969|title=दिए गए जीनस के वक्रों के स्थान की अपरिवर्तनीयता|url=http://www.numdam.org/item/?id=PMIHES_1969__36__75_0|journal=[[Publications Mathématiques de l'IHÉS]]|language=en|volume=36|pages=75–109|doi=10.1007/BF02684599|s2cid=16482150}}</ref> वह मॉड्यूलि स्टैक <math>\mathcal{M}_g</math> अपरिवर्तनीय है, जिसका अर्थ है कि इसे दो उचित उपसमूहों के मिलन के रूप में व्यक्त नहीं किया जा सकता है। वे लोकस का विश्लेषण करके इसे सिद्ध करते हैं <math>H_g</math> [[हिल्बर्ट योजना]] में स्थिर वक्रों की संख्या <math>\mathrm{Hilb}_{\mathbb{P}^{5g - 5 -1}}^{P_g(n)}</math> त्रि-विहित रूप से एम्बेडेड वक्रों की (बहुत पर्याप्त के एम्बेडिंग से)होती है। <math>\omega_C^{\otimes 3}</math> प्रत्येक वक्र के लिए) जिसमें [[हिल्बर्ट बहुपद]] है <math>P_g(n) = (6n-1)(g-1)</math>. फिर, ढेर <math>[H_g / \mathrm{PGL}(5g-6)]</math> मॉड्यूलि समिष्ट का निर्माण है <math>\mathcal{M}_g</math>. [[विरूपण (गणित)]] का उपयोग करते हुए, डेलिग्ने और ममफोर्ड दिखाते हैं कि यह स्टैक स्मूथ है और स्थिर वक्रों के बीच समरूपता के स्टैक का उपयोग करते हैं <math>\mathrm{Isom}_S(C,C')</math>, उसे दिखाने के लिए <math>\mathcal{M}_g</math> इसमें परिमित स्टेबलाइजर्स हैं, इसलिए यह डेलिग्ने-ममफोर्ड स्टैक है। इसके अतिरिक्त , वे स्तरीकरण पाते हैं <math>H_g</math> जैसा कि ये दर्शाया गया है,
यह गैर-तुच्छ प्रमेय है, जिसे पियरे डेलिग्ने और [[ डेविड मम्फोर्ड |डेविड मम्फोर्ड]] ने सिद्ध किया है,<ref name=":0">{{Cite journal|last1=Deligne|first1=Pierre|author1-link=Pierre Deligne|last2=Mumford|first2=David|author2-link=David Mumford|date=1969|title=दिए गए जीनस के वक्रों के स्थान की अपरिवर्तनीयता|url=http://www.numdam.org/item/?id=PMIHES_1969__36__75_0|journal=[[Publications Mathématiques de l'IHÉS]]|language=en|volume=36|pages=75–109|doi=10.1007/BF02684599|s2cid=16482150}}</ref> वह मॉड्यूलि अनुपात <math>\mathcal{M}_g</math> अपरिवर्तनीय है, जिसका अर्थ है कि इसे दो उचित उपसमूहों के मिलन के रूप में व्यक्त नहीं किया जा सकता है। वे लोकस का विश्लेषण करके इसे सिद्ध करते हैं <math>H_g</math> [[हिल्बर्ट योजना]] में स्थिर वक्रों की संख्या <math>\mathrm{Hilb}_{\mathbb{P}^{5g - 5 -1}}^{P_g(n)}</math> त्रि-विहित रूप से एम्बेडेड वक्रों की (बहुत पर्याप्त के एम्बेडिंग से)होती है। <math>\omega_C^{\otimes 3}</math> प्रत्येक वक्र के लिए) जिसमें [[हिल्बर्ट बहुपद]] है <math>P_g(n) = (6n-1)(g-1)</math>. फिर, ढेर <math>[H_g / \mathrm{PGL}(5g-6)]</math> मॉड्यूलि समिष्ट का निर्माण है <math>\mathcal{M}_g</math>. [[विरूपण (गणित)]] का उपयोग करते हुए, डेलिग्ने और ममफोर्ड दिखाते हैं कि यह अनुपात स्मूथ है और स्थिर वक्रों के बीच समरूपता के अनुपात का उपयोग करते हैं <math>\mathrm{Isom}_S(C,C')</math>, उसे दिखाने के लिए <math>\mathcal{M}_g</math> इसमें परिमित स्टेबलाइजर्स हैं, इसलिए यह डेलिग्ने-ममफोर्ड अनुपात है। इसके अतिरिक्त , वे स्तरीकरण पाते हैं <math>H_g</math> जैसा कि ये दर्शाया गया है,


:<math>H_g^o \coprod H_{g,1} \coprod \cdots \coprod H_{g,n}</math>,
:<math>H_g^o \coprod H_{g,1} \coprod \cdots \coprod H_{g,n}</math>,
Line 23: Line 23:


===मोटे मॉड्यूलि रिक्त स्थान===
===मोटे मॉड्यूलि रिक्त स्थान===
कोई स्मूथ या स्थिर वक्रों के समरूपता वर्गों का प्रतिनिधित्व करने वाले मोटे मॉड्यूली स्थानों पर भी विचार कर सकता है। इन मोटे मॉड्यूलि स्थानों का वास्तव में अध्ययन मॉड्यूलि स्टैक की धारणा प्रारंभ होने से पहले किया गया था। वास्तव में, मोडुली स्टैक का विचार डेलिग्ने और ममफोर्ड द्वारा मोटे मॉड्यूली स्थानों की प्रोजेक्टिविटी को सिद्ध करने के प्रयास में प्रस्तुत किया गया था। हाल के वर्षों में, यह स्पष्ट हो गया है कि वक्रों का ढेर वास्तव में अधिक मौलिक वस्तु है।
कोई स्मूथ या स्थिर वक्रों के समरूपता वर्गों का प्रतिनिधित्व करने वाले मोटे मॉड्यूली स्थानों पर भी विचार कर सकता है। इन मोटे मॉड्यूलि स्थानों का वास्तव में अध्ययन मॉड्यूलि अनुपात की धारणा प्रारंभ होने से पहले किया गया था। वास्तव में, मोडुली अनुपात का विचार डेलिग्ने और ममफोर्ड द्वारा मोटे मॉड्यूली स्थानों की प्रोजेक्टिविटी को सिद्ध करने के प्रयास में प्रस्तुत किया गया था। हाल के वर्षों में, यह स्पष्ट हो गया है कि वक्रों का ढेर वास्तव में अधिक मौलिक वस्तु है।


मोटे मॉड्यूलि रिक्त समिष्ट का आयाम स्टैक के समान होता है <math>g > 1</math>; चूँकि, जीनस शून्य में मोटे मॉड्यूलि समिष्ट का आयाम शून्य है, और जीनस में, इसका आयाम है।
मोटे मॉड्यूलि रिक्त समिष्ट का आयाम अनुपात के समान होता है <math>g > 1</math>; चूँकि, जीनस शून्य में मोटे मॉड्यूलि समिष्ट का आयाम शून्य है, और जीनस में, इसका आयाम है।


== निम्न जीनस मॉड्यूलि रिक्त समिष्ट के उदाहरण ==
== निम्न जीनस मॉड्यूलि रिक्त समिष्ट के उदाहरण ==
Line 42: Line 42:
<math>j: \mathcal{M}_{1,1}|_{\mathbb{C}} \to \mathbb{A}^1_\mathbb{C}</math>  
<math>j: \mathcal{M}_{1,1}|_{\mathbb{C}} \to \mathbb{A}^1_\mathbb{C}</math>  


यहाँ <math>\mathcal{M}_{1,1}|_{\mathbb{C}}=\mathcal{M}_{1,1}\times_{\text{Spec}(\mathbb{Z})} \text{Spec}(\mathbb{C})</math>. टोपोलॉजी संबंधी तरीके से, <math>\mathcal{M}_{1,1}|_{\mathbb{C}}</math> यह केवल एफ़िन लाइन है, किन्तु इसे अंतर्निहित टोपोलॉजिकल समिष्ट के साथ स्टैक में संकुचित किया जा सकता है <math>\mathbb{P}^1_\mathbb{C}</math> अनंत पर स्थिर वक्र जोड़कर। यह एकल पुच्छल वाला अण्डाकार वक्र है। सामान्य स्थितियों का निर्माण ख़त्म <math>\text{Spec}(\mathbb{Z})</math> मूल रूप से पियरे डेलिग्ने और [[माइकल रैपोपोर्ट]] द्वारा पूरा किया गया था।<ref>{{Citation|last1=Deligne|first1=P.|title=Les schémas de modules de courbes elliptiques|pages=143–316|publisher=Springer Berlin Heidelberg|isbn=978-3-540-06558-6|last2=Rapoport|first2=M.|series=Lecture Notes in Mathematics|year=1973|volume=349|doi=10.1007/bfb0066716}}, URL: http://publications.ias.edu/node/367</ref>
यहाँ <math>\mathcal{M}_{1,1}|_{\mathbb{C}}=\mathcal{M}_{1,1}\times_{\text{Spec}(\mathbb{Z})} \text{Spec}(\mathbb{C})</math>. टोपोलॉजी संबंधी तरीके से, <math>\mathcal{M}_{1,1}|_{\mathbb{C}}</math> यह केवल एफ़िन लाइन है, किन्तु इसे अंतर्निहित टोपोलॉजिकल समिष्ट के साथ अनुपात में संकुचित किया जा सकता है <math>\mathbb{P}^1_\mathbb{C}</math> अनंत पर स्थिर वक्र जोड़कर। यह एकल पुच्छल वाला अण्डाकार वक्र है। सामान्य स्थितियों का निर्माण ख़त्म <math>\text{Spec}(\mathbb{Z})</math> मूल रूप से पियरे डेलिग्ने और [[माइकल रैपोपोर्ट]] द्वारा पूरा किया गया था।<ref>{{Citation|last1=Deligne|first1=P.|title=Les schémas de modules de courbes elliptiques|pages=143–316|publisher=Springer Berlin Heidelberg|isbn=978-3-540-06558-6|last2=Rapoport|first2=M.|series=Lecture Notes in Mathematics|year=1973|volume=349|doi=10.1007/bfb0066716}}, URL: http://publications.ias.edu/node/367</ref>


ध्यान दें कि अधिकांश लेखक चिह्नित बिंदु के साथ जीनस वन कर्व्स के स्थितियों को समूह की उत्पत्ति मानते हैं, अन्यथा काल्पनिक मॉड्यूल समिष्ट में स्थिरीकरण समूह <math>\mathcal{M}_1</math> बिंदु पर स्थिरीकरण समूह होगा <math>[C] \in \mathcal{M}_1</math> वक्र द्वारा दिया गया है, क्योंकि अण्डाकार वक्रों में एबेलियन समूह संरचना होती है। यह इस काल्पनिक मॉड्यूलि समिष्ट में अनावश्यक तकनीकी जटिलता जोड़ता है। वहीं दूसरी ओर, <math>\mathcal{M}_{1,1}</math> स्मूथ डेलिग्ने-ममफोर्ड स्टैक है।
ध्यान दें कि अधिकांश लेखक चिह्नित बिंदु के साथ जीनस वन कर्व्स के स्थितियों को समूह की उत्पत्ति मानते हैं, अन्यथा काल्पनिक मॉड्यूल समिष्ट में स्थिरीकरण समूह <math>\mathcal{M}_1</math> बिंदु पर स्थिरीकरण समूह होगा <math>[C] \in \mathcal{M}_1</math> वक्र द्वारा दिया गया है, क्योंकि अण्डाकार वक्रों में एबेलियन समूह संरचना होती है। यह इस काल्पनिक मॉड्यूलि समिष्ट में अनावश्यक तकनीकी जटिलता जोड़ता है। वहीं दूसरी ओर, <math>\mathcal{M}_{1,1}</math> स्मूथ डेलिग्ने-ममफोर्ड अनुपात है।


=== जीनस 2 ===
=== जीनस 2 ===
Line 67: Line 67:
:<math>\operatorname{Hilb}_{\mathbb{P}^2}^{8t-4} \cong \mathbb{P}^{\binom{6}{4} - 1}</math>.
:<math>\operatorname{Hilb}_{\mathbb{P}^2}^{8t-4} \cong \mathbb{P}^{\binom{6}{4} - 1}</math>.


फिर, मॉड्यूलि समिष्ट को सबस्टैक्स द्वारा स्तरीकृत किया जाता है
फिर, मॉड्यूलि समिष्ट को सबअनुपात्स द्वारा स्तरीकृत किया जाता है


:<math>\mathcal{M}_3 = [H_2/\mathrm{PGL}(3))] \coprod \mathcal{M}_3^{\mathrm{hyp}}</math>.
:<math>\mathcal{M}_3 = [H_2/\mathrm{PGL}(3))] \coprod \mathcal{M}_3^{\mathrm{hyp}}</math>.
Line 113: Line 113:


==चिह्नित वक्रों का मापांक==
==चिह्नित वक्रों का मापांक==
चिह्नित बिंदुओं के साथ जीनस जी नोडल वक्रों के मॉड्यूली स्टैक पर विचार करके भी समस्या को समृद्ध किया जा सकता है, जो जोड़ों से अलग है। ऐसे चिह्नित वक्रों को स्थिर कहा जाता है यदि वक्र ऑटोमोर्फिज्म का उपसमूह जो चिह्नित बिंदुओं को ठीक करता है, परिमित है। n चिह्नित बिंदुओं के साथ स्मूथ (या स्थिर) जीनस जी वक्रों के परिणामी मॉड्यूली स्टैक को दर्शाया गया है <math>\mathcal{M}_{g,n}</math> (या <math>\overline{\mathcal{M}}_{g,n}</math>), और आयाम है <math>3g-3 + n</math>.
चिह्नित बिंदुओं के साथ जीनस जी नोडल वक्रों के मॉड्यूली अनुपात पर विचार करके भी समस्या को समृद्ध किया जा सकता है, जो जोड़ों से अलग है। ऐसे चिह्नित वक्रों को स्थिर कहा जाता है यदि वक्र ऑटोमोर्फिज्म का उपसमूह जो चिह्नित बिंदुओं को ठीक करता है, परिमित है। n चिह्नित बिंदुओं के साथ स्मूथ (या स्थिर) जीनस जी वक्रों के परिणामी मॉड्यूली अनुपात को दर्शाया गया है <math>\mathcal{M}_{g,n}</math> (या <math>\overline{\mathcal{M}}_{g,n}</math>), और आयाम है <math>3g-3 + n</math>.


विशेष रुचि का स्थिति मॉड्यूली स्टैक है <math>\overline{\mathcal{M}}_{1,1}</math> चिह्नित बिंदु के साथ जीनस 1 वक्र का। यह अण्डाकार वक्रों का मोडुली स्टैक है। लेवल 1 [[ मॉड्यूलर रूप |मॉड्यूलर रूप]] इस स्टैक पर लाइन बंडलों के अनुभाग हैं, और लेवल एन मॉड्यूलर फॉर्म लेवल संरचना (बीजगणितीय ज्यामिति) (लगभग क्रम एन के बिंदुओं का अंकन) के साथ अण्डाकार वक्रों के स्टैक पर लाइन बंडलों के अनुभाग हैं।
विशेष रुचि का स्थिति मॉड्यूली अनुपात है <math>\overline{\mathcal{M}}_{1,1}</math> चिह्नित बिंदु के साथ जीनस 1 वक्र का। यह अण्डाकार वक्रों का मोडुली अनुपात है। लेवल 1 [[ मॉड्यूलर रूप |मॉड्यूलर रूप]] इस अनुपात पर लाइन बंडलों के अनुभाग हैं, और लेवल एन मॉड्यूलर फॉर्म लेवल संरचना (बीजगणितीय ज्यामिति) (लगभग क्रम एन के बिंदुओं का अंकन) के साथ अण्डाकार वक्रों के अनुपात पर लाइन बंडलों के अनुभाग हैं।


==सीमा ज्यामिति==
==सीमा ज्यामिति==
संकुचित मॉड्यूलि समिष्ट की महत्वपूर्ण संपत्ति <math>\overline{\mathcal{M}}_{g,n}</math> यह है कि उनकी सीमा को मॉड्यूलि समिष्ट के संदर्भ में वर्णित किया जा सकता है <math>\overline{\mathcal{M}}_{g',n'}</math> पीढ़ी के लिए <math>g' < g</math>. चिह्नित, स्थिर, नोडल वक्र को देखते हुए कोई इसके दोहरे ग्राफ, ग्राफ (अलग गणित) को गैर-ऋणात्मक पूर्णांक द्वारा लेबल किए गए शीर्षों के साथ जोड़ सकता है और लूप, कई किनारों और आधे किनारों को भी क्रमांकित करने की अनुमति देता है। यहां ग्राफ के शीर्ष नोडल वक्र के अपरिवर्तनीय घटकों के अनुरूप हैं, शीर्ष की लेबलिंग संबंधित घटक का अंकगणितीय जीनस है, किनारे वक्र के नोड्स के अनुरूप हैं और आधे किनारे चिह्नों के अनुरूप हैं। दिए गए दोहरे ग्राफ़ के साथ वक्रों के समिष्ट का बंद होना <math>\overline{\mathcal{M}}_{g,n}</math> किसी उत्पाद के स्टैक भागफल के लिए समरूपी है <math>\prod_v \overline{\mathcal{M}}_{g_v,n_v}</math> परिमित समूह द्वारा वक्रों के संकुचित मॉड्यूली स्थानों का। उत्पाद में शीर्ष v के अनुरूप कारक में जीनस g<sub>v</sub> होता है लेबलिंग और चिह्नों की संख्या से लिया गया <math>n_v</math> v पर आउटगोइंग किनारों और आधे किनारों की संख्या के बराबर। कुल जीनस g, g<sub>v</sub> का योग है साथ ही ग्राफ़ में बंद चक्रों की संख्या।
संकुचित मॉड्यूलि समिष्ट की महत्वपूर्ण संपत्ति <math>\overline{\mathcal{M}}_{g,n}</math> यह है कि उनकी सीमा को मॉड्यूलि समिष्ट के संदर्भ में वर्णित किया जा सकता है <math>\overline{\mathcal{M}}_{g',n'}</math> पीढ़ी के लिए <math>g' < g</math>. चिह्नित, स्थिर, नोडल वक्र को देखते हुए कोई इसके दोहरे ग्राफ, ग्राफ (अलग गणित) को गैर-ऋणात्मक पूर्णांक द्वारा लेबल किए गए शीर्षों के साथ जोड़ सकता है और लूप, कई किनारों और आधे किनारों को भी क्रमांकित करने की अनुमति देता है। यहां ग्राफ के शीर्ष नोडल वक्र के अपरिवर्तनीय घटकों के अनुरूप हैं, शीर्ष की लेबलिंग संबंधित घटक का अंकगणितीय जीनस है, किनारे वक्र के नोड्स के अनुरूप हैं और आधे किनारे चिह्नों के अनुरूप हैं। दिए गए दोहरे ग्राफ़ के साथ वक्रों के समिष्ट का बंद होना <math>\overline{\mathcal{M}}_{g,n}</math> किसी उत्पाद के अनुपात भागफल के लिए समरूपी है <math>\prod_v \overline{\mathcal{M}}_{g_v,n_v}</math> परिमित समूह द्वारा वक्रों के संकुचित मॉड्यूली स्थानों का। उत्पाद में शीर्ष v के अनुरूप कारक में जीनस g<sub>v</sub> होता है लेबलिंग और चिह्नों की संख्या से लिया गया <math>n_v</math> v पर आउटगोइंग किनारों और आधे किनारों की संख्या के बराबर। कुल जीनस g, g<sub>v</sub> का योग है साथ ही ग्राफ़ में बंद चक्रों की संख्या।


स्थिर वक्र जिनके दोहरे ग्राफ़ में लेबल वाला शीर्ष होता है जिसका अर्थ है <math>g_v=g</math> (इसलिए अन्य सभी शीर्ष हैं <math>g_v=0</math> और ग्राफ़ ट्री है) को परिमेय टेल कहा जाता है और उनके मापांक समिष्ट को दर्शाया जाता है <math>\mathcal{M}^{\mathrm{r.t.}}_{g,n}</math>. स्थिर वक्र जिनका दोहरा ग्राफ़ पेड़ है, कॉम्पैक्ट प्रकार कहलाते हैं (क्योंकि जैकोबियन कॉम्पैक्ट है) और उनके मॉड्यूलि समिष्ट को <math>\mathcal{M}^{\mathrm{c.}}_{g,n}</math>दर्शाया गया है।<ref name=":2">{{cite arXiv |eprint=1101.5489|last1= Faber|first1= Carel|title= वक्रों के मोडुली स्थान की टॉटोलॉजिकल और गैर-टॉटोलॉजिकल कोहोलॉजी|last2=  Pandharipande|first2= Rahul |author-link2=Rahul Pandharipande |class= math.AG|year= 2011}}</ref>
स्थिर वक्र जिनके दोहरे ग्राफ़ में लेबल वाला शीर्ष होता है जिसका अर्थ है <math>g_v=g</math> (इसलिए अन्य सभी शीर्ष हैं <math>g_v=0</math> और ग्राफ़ ट्री है) को परिमेय टेल कहा जाता है और उनके मापांक समिष्ट को दर्शाया जाता है <math>\mathcal{M}^{\mathrm{r.t.}}_{g,n}</math>. स्थिर वक्र जिनका दोहरा ग्राफ़ पेड़ है, कॉम्पैक्ट प्रकार कहलाते हैं (क्योंकि जैकोबियन कॉम्पैक्ट है) और उनके मॉड्यूलि समिष्ट को <math>\mathcal{M}^{\mathrm{c.}}_{g,n}</math>दर्शाया गया है।<ref name=":2">{{cite arXiv |eprint=1101.5489|last1= Faber|first1= Carel|title= वक्रों के मोडुली स्थान की टॉटोलॉजिकल और गैर-टॉटोलॉजिकल कोहोलॉजी|last2=  Pandharipande|first2= Rahul |author-link2=Rahul Pandharipande |class= math.AG|year= 2011}}</ref>

Revision as of 12:07, 21 July 2023

बीजगणितीय ज्यामिति में, बीजगणितीय वक्रों का मापांक मॉड्यूली समिष्ट ज्यामितीय समिष्ट (सामान्यतः योजना (गणित) या बीजगणितीय अनुपात) होता है, जिसके बिंदु बीजगणितीय वक्र के समरूपता वर्गों का प्रतिनिधित्व करते हैं। इस प्रकार यह मॉड्यूलि समिष्ट का विशेष स्थिति है। विचारित बीजगणितीय वक्रों के वर्गों पर लागू प्रतिबंधों के आधार पर, संबंधित मॉड्यूलि समस्या और मॉड्यूलि समिष्ट भिन्न होता है। मॉड्यूलि समस्या के लिए मॉड्यूलि समिष्ट फाइन मॉड्यूलि समिष्ट और मॉड्यूलि समिष्ट मोटे मॉड्यूलि समिष्ट के बीच भी अंतर किया जाता है।

सबसे बुनियादी समस्या निश्चित जीनस (गणित) के स्मूथ रूपवाद पूर्ण विविधता वक्रों के मॉड्यूल की है। जटिल संख्याओं के क्षेत्र (गणित) में ये दिए गए जीनस की कॉम्पैक्ट रीमैन सतह से सटीक रूप से मेल खाते हैं, जिसके लिए बर्नहार्ड रीमैन ने मॉड्यूलि रिक्त समिष्ट के बारे में पहले परिणाम सिद्ध किए, विशेष रूप से उनके आयाम (पैरामीटर की संख्या जिस पर जटिल संरचना) पर निर्भर करती है।

स्थिर वक्रों के मॉड्यूली ढेर

मॉड्यूलि अनुपात स्मूथ प्रक्षेप्य वक्रों के परिवारों को उनकी समरूपता सहित वर्गीकृत करता है। जब , इस अनुपात को नए सीमा बिंदुओं को जोड़कर संकुचित किया जा सकता है जो स्थिर नोडल वक्रों (उनके समरूपता के साथ) के अनुरूप हैं। वक्र स्थिर वक्र होता है यदि यह पूर्ण है, जुड़ा हुआ है, इसमें दोहरे बिंदुओं के अतिरिक्त कोई विलक्षणता नहीं है, और इसमें ऑटोमोर्फिज्म का केवल सीमित समूह है। परिणामी अनुपात को दर्शाया गया है . दोनों मॉड्यूली अनुपात वक्रों के सार्वभौमिक परिवारों को ले जाते हैं।

उपरोक्त दोनों ढेरों का आयाम है ; इसलिए स्थिर नोडल वक्र को मानों को चुनकर पूरी प्रकार से निर्दिष्ट किया जा सकता है पैरामीटर, जब . निचले जीनस में, किसी को उनकी संख्या घटाकर, ऑटोमोर्फिज्म के सहज परिवारों की उपस्थिति का हिसाब देना चाहिए। जीनस शून्य का बिल्कुल जटिल वक्र है, रीमैन क्षेत्र, और इसकी समरूपता का समूह पीजीएल(2) है। इसलिए का आयाम के बराबर है

इसी प्रकार, जीनस 1 में, वक्रों का एक-आयामी समिष्ट होता है, किन्तु ऐसे प्रत्येक वक्र में ऑटोमोर्फिज्म का एक-आयामी समूह होता है। इसलिए, ढेर आयाम 0 है.

निर्माण और अपरिवर्तनीयता

यह गैर-तुच्छ प्रमेय है, जिसे पियरे डेलिग्ने और डेविड मम्फोर्ड ने सिद्ध किया है,[1] वह मॉड्यूलि अनुपात अपरिवर्तनीय है, जिसका अर्थ है कि इसे दो उचित उपसमूहों के मिलन के रूप में व्यक्त नहीं किया जा सकता है। वे लोकस का विश्लेषण करके इसे सिद्ध करते हैं हिल्बर्ट योजना में स्थिर वक्रों की संख्या त्रि-विहित रूप से एम्बेडेड वक्रों की (बहुत पर्याप्त के एम्बेडिंग से)होती है। प्रत्येक वक्र के लिए) जिसमें हिल्बर्ट बहुपद है . फिर, ढेर मॉड्यूलि समिष्ट का निर्माण है . विरूपण (गणित) का उपयोग करते हुए, डेलिग्ने और ममफोर्ड दिखाते हैं कि यह अनुपात स्मूथ है और स्थिर वक्रों के बीच समरूपता के अनुपात का उपयोग करते हैं , उसे दिखाने के लिए इसमें परिमित स्टेबलाइजर्स हैं, इसलिए यह डेलिग्ने-ममफोर्ड अनुपात है। इसके अतिरिक्त , वे स्तरीकरण पाते हैं जैसा कि ये दर्शाया गया है,

,

यहाँ स्मूथ स्थिर वक्रों की उपयोजना है और का अघुलनशील घटक है . वे इसके घटकों का विश्लेषण करते हैं (जीआईटी भागफल के रूप में)। यदि इसके कई घटक उपस्थित थे , उनमें से कोई भी पूर्ण नहीं होगा। इसके अतिरिक्त , का कोई भी घटक इसमें गैर-एकवचन वक्र होने चाहिए। परिणाम स्वरुप, एकवचन ठिकाना जुड़ा हुआ है, इसलिए यह ही घटक में समाहित है . इसके अतिरिक्त , क्योंकि प्रत्येक घटक प्रतिच्छेद करता है , सभी घटकों को ही घटक में समाहित किया जाना चाहिए, इसलिए मोटा समिष्ट अपरिवर्तनीय है. बीजगणितीय ढेरों के सामान्य सिद्धांत से, इसका तात्पर्य ढेर भागफल से है अपरिवर्तनीय है.

उचितता

उचित योजना, या कक्षीय के लिए सघन समिष्ट , वक्रों पर स्थिर कमी पर प्रमेय से अनुसरण करता है।[1]इसे एबेलियन किस्म की स्थिर कमी के संबंध में अलेक्जेंडर ग्रोथेंडिक के प्रमेय का उपयोग करके पाया जा सकता है, और वक्रों की स्थिर कमी के बराबर दिखाया जा सकता है।[1]धारा 5.2

मोटे मॉड्यूलि रिक्त स्थान

कोई स्मूथ या स्थिर वक्रों के समरूपता वर्गों का प्रतिनिधित्व करने वाले मोटे मॉड्यूली स्थानों पर भी विचार कर सकता है। इन मोटे मॉड्यूलि स्थानों का वास्तव में अध्ययन मॉड्यूलि अनुपात की धारणा प्रारंभ होने से पहले किया गया था। वास्तव में, मोडुली अनुपात का विचार डेलिग्ने और ममफोर्ड द्वारा मोटे मॉड्यूली स्थानों की प्रोजेक्टिविटी को सिद्ध करने के प्रयास में प्रस्तुत किया गया था। हाल के वर्षों में, यह स्पष्ट हो गया है कि वक्रों का ढेर वास्तव में अधिक मौलिक वस्तु है।

मोटे मॉड्यूलि रिक्त समिष्ट का आयाम अनुपात के समान होता है ; चूँकि, जीनस शून्य में मोटे मॉड्यूलि समिष्ट का आयाम शून्य है, और जीनस में, इसका आयाम है।

निम्न जीनस मॉड्यूलि रिक्त समिष्ट के उदाहरण

जाति 0

जीनस के मॉड्यूलि समिष्ट की ज्यामिति का निर्धारण विरूपण सिद्धांत का उपयोग करके वक्र स्थापित किए जा सकते हैं। जीनस के लिए मोडुली की संख्या वक्र, उदा. , कोहोमोलॉजी ग्रुप द्वारा दिया गया हैसेरे द्वैत के साथ यह सह-समरूपता समूह

के लिए समरूपी है

द्वैतीकरण शीफ के लिए . किन्तु , रीमैन-रोच प्रमेय का उपयोग करते हुए, रीमैन-रोच विहित बंडल की डिग्री दिखाता है , तो की डिग्री है , इसलिए कोई वैश्विक अनुभाग नहीं हैं, जिसका अर्थ है दिखा रहा है कि जीनस में कोई विकृति नहीं है घटता है. ये सिद्ध होता है केवल बिंदु है, और एकमात्र जीनस है घटता द्वारा दिया गया है . एकमात्र तकनीकी कठिनाई ऑटोमोर्फिज्म समूह की है बीजगणितीय समूह है , जो बार तीन बिंदुओं पर कठोर हो जाता है[2]पर निश्चित हैं, इसलिए अधिकांश लेखक लेते हैं तात्पर्य निकालना .

जीनस 1

जीनस 1 स्थिति मॉड्यूली रिक्त समिष्ट के पहले अच्छी प्रकार से समझे जाने वाले स्थितियों में से है, कम से कम जटिल संख्याओं पर, क्योंकि अण्डाकार वक्रों के समरूपता वर्गों को जे-अपरिवर्तनीय द्वारा वर्गीकृत किया गया है।

यहाँ . टोपोलॉजी संबंधी तरीके से, यह केवल एफ़िन लाइन है, किन्तु इसे अंतर्निहित टोपोलॉजिकल समिष्ट के साथ अनुपात में संकुचित किया जा सकता है अनंत पर स्थिर वक्र जोड़कर। यह एकल पुच्छल वाला अण्डाकार वक्र है। सामान्य स्थितियों का निर्माण ख़त्म मूल रूप से पियरे डेलिग्ने और माइकल रैपोपोर्ट द्वारा पूरा किया गया था।[3]

ध्यान दें कि अधिकांश लेखक चिह्नित बिंदु के साथ जीनस वन कर्व्स के स्थितियों को समूह की उत्पत्ति मानते हैं, अन्यथा काल्पनिक मॉड्यूल समिष्ट में स्थिरीकरण समूह बिंदु पर स्थिरीकरण समूह होगा वक्र द्वारा दिया गया है, क्योंकि अण्डाकार वक्रों में एबेलियन समूह संरचना होती है। यह इस काल्पनिक मॉड्यूलि समिष्ट में अनावश्यक तकनीकी जटिलता जोड़ता है। वहीं दूसरी ओर, स्मूथ डेलिग्ने-ममफोर्ड अनुपात है।

जीनस 2

एफ़िन पैरामीटर स्थान

जीनस 2 में यह विभाजकों की रैखिक प्रणाली है हाइपरलिप्टिक वक्र, ऐसे सभी वक्र हाइपरलिप्टिक वक्र हैं,[4]पृष्ठ 298 इसलिए रीमैन-हर्विट्ज़ सूत्र का उपयोग करके वक्र के शाखा समिष्ट से मॉड्यूलि समिष्ट पूरी प्रकार से निर्धारित किया जा सकता है। चूँकि इच्छानुसार जीनस 2 वक्र बहुपद रूप द्वारा दिया जाता है

कुछ विशिष्ट रूप से परिभाषित के लिए , ऐसे वक्रों के लिए पैरामीटर समिष्ट द्वारा दिया गया है

यहाँ समिष्ट से मेल खाता है .[5]

भारित प्रक्षेप्य स्थान

भारित प्रक्षेप्य समिष्ट और रीमैन-हर्विट्ज़ सूत्र का उपयोग करके, हाइपरलिप्टिक वक्र को बहुपद के रूप में वर्णित किया जा सकता है[6]

यहाँ के अनुभागों के लिए पैरामीटर हैं . फिर, उन अनुभागों के समिष्ट में प्रत्येक वक्र सम्मलित होता है जिनमें कोई त्रिमूल नहीं होता है बिंदु द्वारा दर्शाया गया .

जीनस 3

यह वक्रों का पहला मॉड्यूली समिष्ट है जिसमें हाइपरलिप्टिक लोकस और गैर-हाइपरलिप्टिक लोकस दोनों हैं।[7][8] गैर-हाइपरलिप्टिक वक्र सभी डिग्री 4 के समतल वक्रों ( जीनस डिग्री फार्मूला का उपयोग करके) द्वारा दिए गए हैं, जिन्हें हाइपरसर्फेस की हिल्बर्ट योजना में चिकनी लोकस द्वारा पैरामीटर किया गया है।

.

फिर, मॉड्यूलि समिष्ट को सबअनुपात्स द्वारा स्तरीकृत किया जाता है

.

बिराशनल ज्यामिति

अतार्किकता अनुमान

पिछले सभी स्थितियों में, मॉड्यूलि रिक्त समिष्ट को अतार्किक पाया जा सकता है, जिसका अर्थ है कि प्रमुख तर्कसंगत रूपवाद उपस्थित है और यह लंबे समय से अपेक्षित था कि यह सभी प्रजातियों में सच होगा। वास्तव में, सेवेरी ने पीढ़ी तक के लिए इसे सच सिद्ध कर दिया था .[9] चूँकि , यह पता चला है कि जीनस के लिए [10][11][12] ऐसे सभी मॉड्यूली समिष्ट सामान्य प्रकार के हैं, अर्थात वे अतार्किक नहीं हैं। उन्होंने मोटे मॉड्यूलि स्थानों के कोडैरा आयाम का अध्ययन करके इसे पूरा किया

और मिल गया के लिए . वास्तव में, के लिए ,

और इसलिए सामान्य प्रकार का है.

ज्यामितीय निहितार्थ

यह ज्यामितीय रूप से महत्वपूर्ण है क्योंकि इसका तात्पर्य है कि शासित विविधता पर किसी भी रैखिक प्रणाली में सार्वभौमिक वक्र में सम्मलित नहीं हो सकता है .[13]

सीमा का स्तरीकरण

मॉड्यूलि समिष्ट सीमा पर प्राकृतिक स्तरीकरण है जिनके बिंदु एकवचन जीनस का प्रतिनिधित्व करते हैं वक्र.[14] यह स्तरों में विघटित हो जाता है

,

यहाँ

  • के लिए .
  • जहां कार्रवाई दो चिह्नित बिंदुओं की अनुमति देती है।
  • जब कभी भी सम है।

इन लोकी के ऊपर स्थित वक्र अनुरूप होते हैं

  • वक्रों का जोड़ा दोहरे बिंदु पर जुड़ा हुआ है।
  • जीनस की सामान्य योजना एकल दोहरे बिंदु विलक्षणता पर वक्र।
  • क्रमपरिवर्तन तक ही जीनस के वक्रों की जोड़ी दोहरे बिंदु पर जुड़ी हुई है।

जीनस 2 के लिए स्तरीकरण

जाति के लिए स्थितियों में, द्वारा दिया गया स्तरीकरण है

.

इन स्तरों के आगे के विश्लेषण का उपयोग चाउ रिंग के जनरेटर देने के लिए किया जा सकता है [14] प्रस्ताव 9.1.

चिह्नित वक्रों का मापांक

चिह्नित बिंदुओं के साथ जीनस जी नोडल वक्रों के मॉड्यूली अनुपात पर विचार करके भी समस्या को समृद्ध किया जा सकता है, जो जोड़ों से अलग है। ऐसे चिह्नित वक्रों को स्थिर कहा जाता है यदि वक्र ऑटोमोर्फिज्म का उपसमूह जो चिह्नित बिंदुओं को ठीक करता है, परिमित है। n चिह्नित बिंदुओं के साथ स्मूथ (या स्थिर) जीनस जी वक्रों के परिणामी मॉड्यूली अनुपात को दर्शाया गया है (या ), और आयाम है .

विशेष रुचि का स्थिति मॉड्यूली अनुपात है चिह्नित बिंदु के साथ जीनस 1 वक्र का। यह अण्डाकार वक्रों का मोडुली अनुपात है। लेवल 1 मॉड्यूलर रूप इस अनुपात पर लाइन बंडलों के अनुभाग हैं, और लेवल एन मॉड्यूलर फॉर्म लेवल संरचना (बीजगणितीय ज्यामिति) (लगभग क्रम एन के बिंदुओं का अंकन) के साथ अण्डाकार वक्रों के अनुपात पर लाइन बंडलों के अनुभाग हैं।

सीमा ज्यामिति

संकुचित मॉड्यूलि समिष्ट की महत्वपूर्ण संपत्ति यह है कि उनकी सीमा को मॉड्यूलि समिष्ट के संदर्भ में वर्णित किया जा सकता है पीढ़ी के लिए . चिह्नित, स्थिर, नोडल वक्र को देखते हुए कोई इसके दोहरे ग्राफ, ग्राफ (अलग गणित) को गैर-ऋणात्मक पूर्णांक द्वारा लेबल किए गए शीर्षों के साथ जोड़ सकता है और लूप, कई किनारों और आधे किनारों को भी क्रमांकित करने की अनुमति देता है। यहां ग्राफ के शीर्ष नोडल वक्र के अपरिवर्तनीय घटकों के अनुरूप हैं, शीर्ष की लेबलिंग संबंधित घटक का अंकगणितीय जीनस है, किनारे वक्र के नोड्स के अनुरूप हैं और आधे किनारे चिह्नों के अनुरूप हैं। दिए गए दोहरे ग्राफ़ के साथ वक्रों के समिष्ट का बंद होना किसी उत्पाद के अनुपात भागफल के लिए समरूपी है परिमित समूह द्वारा वक्रों के संकुचित मॉड्यूली स्थानों का। उत्पाद में शीर्ष v के अनुरूप कारक में जीनस gv होता है लेबलिंग और चिह्नों की संख्या से लिया गया v पर आउटगोइंग किनारों और आधे किनारों की संख्या के बराबर। कुल जीनस g, gv का योग है साथ ही ग्राफ़ में बंद चक्रों की संख्या।

स्थिर वक्र जिनके दोहरे ग्राफ़ में लेबल वाला शीर्ष होता है जिसका अर्थ है (इसलिए अन्य सभी शीर्ष हैं और ग्राफ़ ट्री है) को परिमेय टेल कहा जाता है और उनके मापांक समिष्ट को दर्शाया जाता है . स्थिर वक्र जिनका दोहरा ग्राफ़ पेड़ है, कॉम्पैक्ट प्रकार कहलाते हैं (क्योंकि जैकोबियन कॉम्पैक्ट है) और उनके मॉड्यूलि समिष्ट को दर्शाया गया है।[2]


यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 Deligne, Pierre; Mumford, David (1969). "दिए गए जीनस के वक्रों के स्थान की अपरिवर्तनीयता". Publications Mathématiques de l'IHÉS (in English). 36: 75–109. doi:10.1007/BF02684599. S2CID 16482150.
  2. 2.0 2.1 Faber, Carel; Pandharipande, Rahul (2011). "वक्रों के मोडुली स्थान की टॉटोलॉजिकल और गैर-टॉटोलॉजिकल कोहोलॉजी". arXiv:1101.5489 [math.AG].
  3. Deligne, P.; Rapoport, M. (1973), Les schémas de modules de courbes elliptiques, Lecture Notes in Mathematics, vol. 349, Springer Berlin Heidelberg, pp. 143–316, doi:10.1007/bfb0066716, ISBN 978-3-540-06558-6, URL: http://publications.ias.edu/node/367
  4. Hartshorne, Robin (29 June 2013). बीजगणितीय ज्यामिति. New York. ISBN 978-1-4757-3849-0. OCLC 861706007.{{cite book}}: CS1 maint: location missing publisher (link)
  5. Igusa, Jun-Ichi (1960). "जीनस दो के लिए मोडुली की अंकगणितीय विविधता". Annals of Mathematics. 72 (3): 612–649. doi:10.2307/1970233. ISSN 0003-486X. JSTOR 1970233.
  6. Larson, Eric (2019-04-17). "The integral Chow ring of ". arXiv:1904.08081 [math.AG].
  7. Girard, Martine; Kohel, David R. (2006), Hess, Florian; Pauli, Sebastian; Pohst, Michael (eds.), "Classification of Genus 3 Curves in Special Strata of the Moduli Space", Algorithmic Number Theory, Berlin, Heidelberg: Springer Berlin Heidelberg, vol. 4076, pp. 346–360, arXiv:math/0603555, Bibcode:2006math......3555G, doi:10.1007/11792086_25, ISBN 978-3-540-36075-9, MR 2282935, S2CID 15638167
  8. Penev, Nikola; Vakil, Ravi (2015). "जीनस छह के वक्रों के मोडुली स्थान की चाउ रिंग". Algebraic Geometry. 2 (1): 123–136. arXiv:1307.6614. doi:10.14231/ag-2015-006. ISSN 2214-2584. MR 3322200. S2CID 54876684.
  9. Severi, Francesco, 1879-1961. (1915). बीजगणितीय वक्रों के वर्गीकरण और रीमैन अस्तित्व प्रमेय पर. Tipografia della R. Accademia dei Lincei. OCLC 881814709.{{cite book}}: CS1 maint: multiple names: authors list (link)
  10. Eisenbud, David; Harris, Joe (1987). "The Kodaira dimension of the moduli space of curves of genus ?23". Inventiones Mathematicae. 90 (2): 359–387. Bibcode:1987InMat..90..359E. doi:10.1007/bf01388710. ISSN 0020-9910. S2CID 120642775.
  11. Harris, Joe; Mumford, David (1982), "On the Kodaira Dimension of the Moduli Space of Curves", Selected Papers, New York, NY: Springer New York, pp. 171–234, doi:10.1007/978-1-4757-4265-7_8, ISBN 978-1-4419-1936-6
  12. Harris, Joe; Mumford, David (1982), "On the Kodaira Dimension of the Moduli Space of Curves", Selected Papers, New York, NY: Springer New York, pp. 171–234, doi:10.1007/978-1-4757-4265-7_8, ISBN 978-1-4419-1936-6
  13. Farkas, Gavril (2009). "The global geometry of the moduli space of curves". बीजगणितीय ज्यामिति. Proceedings of Symposia in Pure Mathematics. Vol. 80. pp. 125–147. doi:10.1090/pspum/080.1/2483934. ISBN 9780821847022. S2CID 8281102.
  14. 14.0 14.1 Arithmetic and geometry: papers dedicated to I.R. Shafarevich on the occasion of his sixtieth birthday (PDF). Shafarevich, Igor Rostislavovich, 1923-2017, Artin, Michael, Tate, John Torrence, 1925-2019. Boston: Birkhäuser. 1983. ISBN 978-1-4757-9286-7. OCLC 681426064.{{cite book}}: CS1 maint: others (link)



क्लासिक संदर्भ

वक्रों के मापांक पर पुस्तकें

कोहोमोलॉजी और प्रतिच्छेदन सिद्धांत

बाहरी संबंध