कॉर्नर डिटेक्शन: Difference between revisions
(Created page with "File:corner.png|thumb|right|300px|एक विशिष्ट कोने का पता लगाने वाले एल्गोरिदम का आउटपु...") |
No edit summary |
||
Line 1: | Line 1: | ||
[[File:corner.png|thumb|right|300px| | [[File:corner.png|thumb|right|300px|विशिष्ट कोने का पता लगाने वाले एल्गोरिदम का आउटपुट]] | ||
{{FeatureDetectionCompVisNavbox}} | {{FeatureDetectionCompVisNavbox}} | ||
कॉर्नर डिटेक्शन | कॉर्नर डिटेक्शन दृष्टिकोण है जिसका उपयोग [[कंप्यूटर दृष्टि]] सिस्टम के भीतर कुछ प्रकार के [[फ़ीचर डिटेक्शन (कंप्यूटर विज़न)]] को निकालने और छवि की सामग्री का अनुमान लगाने के लिए किया जाता है। कॉर्नर डिटेक्शन का उपयोग अक्सर गति पहचान, [[छवि पंजीकरण]], [[वीडियो ट्रैकिंग]], [[फोटोग्राफिक मोज़ेक]], [[पैनोरमा सिलाई]], 3 डी पुनर्निर्माण और ऑब्जेक्ट पहचान में किया जाता है। कॉर्नर डिटेक्शन रुचि बिंदु डिटेक्शन के विषय के साथ ओवरलैप होता है। | ||
== औपचारिकीकरण == | == औपचारिकीकरण == | ||
कोने को दो किनारों के प्रतिच्छेदन के रूप में परिभाषित किया जा सकता है। कोने को बिंदु के रूप में भी परिभाषित किया जा सकता है जिसके लिए बिंदु के स्थानीय पड़ोस में दो प्रमुख और अलग-अलग किनारे की दिशाएं हैं। | |||
रुचि बिंदु | रुचि बिंदु छवि में बिंदु है जिसकी अच्छी तरह से परिभाषित स्थिति होती है और इसे मजबूती से पहचाना जा सकता है। इसका मतलब यह है कि रुचि का बिंदु कोना हो सकता है, लेकिन यह उदाहरण के लिए, स्थानीय तीव्रता का अलग बिंदु अधिकतम या न्यूनतम, रेखा का अंत या वक्र पर बिंदु भी हो सकता है जहां वक्रता स्थानीय रूप से अधिकतम होती है। | ||
व्यवहार में, अधिकांश तथाकथित कोने का पता लगाने के तरीके सामान्य रूप से रुचि बिंदुओं का पता लगाते हैं, और वास्तव में, कोने और रुचि बिंदु शब्द का उपयोग साहित्य के माध्यम से कमोबेश | व्यवहार में, अधिकांश तथाकथित कोने का पता लगाने के तरीके सामान्य रूप से रुचि बिंदुओं का पता लगाते हैं, और वास्तव में, कोने और रुचि बिंदु शब्द का उपयोग साहित्य के माध्यम से कमोबेश दूसरे के स्थान पर किया जाता है।<ref name="willis"/>परिणामस्वरूप, यदि केवल कोनों का पता लगाना है तो यह निर्धारित करने के लिए पता लगाए गए रुचि बिंदुओं का स्थानीय विश्लेषण करना आवश्यक है कि इनमें से कौन सा वास्तविक कोने हैं। किनारों का पता लगाने के उदाहरण जिनका उपयोग पोस्ट-प्रोसेसिंग के साथ कोनों का पता लगाने के लिए किया जा सकता है, [[किर्श संचालक]] और फ़्री-चेन मास्किंग सेट हैं।<ref>[[Linda Shapiro|Shapiro, Linda]] and George C. Stockman (2001). ''Computer Vision'', p. 257. Prentice Books, Upper Saddle River. {{ISBN|0-13-030796-3}}.</ref> | ||
कोने, रुचि बिंदु और फीचर का साहित्य में परस्पर उपयोग किया जाता है, जिससे समस्या भ्रमित हो जाती है। विशेष रूप से, ऐसे कई [[ बूँद का पता लगाना ]] हैं जिन्हें रुचि बिंदु ऑपरेटर के रूप में संदर्भित किया जा सकता है, लेकिन जिन्हें कभी-कभी गलती से कॉर्नर डिटेक्टर के रूप में संदर्भित किया जाता है। इसके अलावा, लम्बी वस्तुओं की उपस्थिति को पकड़ने के लिए रिज का पता लगाने की | कोने, रुचि बिंदु और फीचर का साहित्य में परस्पर उपयोग किया जाता है, जिससे समस्या भ्रमित हो जाती है। विशेष रूप से, ऐसे कई [[ बूँद का पता लगाना |बूँद का पता लगाना]] हैं जिन्हें रुचि बिंदु ऑपरेटर के रूप में संदर्भित किया जा सकता है, लेकिन जिन्हें कभी-कभी गलती से कॉर्नर डिटेक्टर के रूप में संदर्भित किया जाता है। इसके अलावा, लम्बी वस्तुओं की उपस्थिति को पकड़ने के लिए रिज का पता लगाने की धारणा मौजूद है। | ||
कॉर्नर डिटेक्टर आमतौर पर बहुत मजबूत नहीं होते हैं और पहचान कार्य पर व्यक्तिगत त्रुटियों के प्रभाव को हावी होने से रोकने के लिए अक्सर बड़े अतिरेक की आवश्यकता होती है। | कॉर्नर डिटेक्टर आमतौर पर बहुत मजबूत नहीं होते हैं और पहचान कार्य पर व्यक्तिगत त्रुटियों के प्रभाव को हावी होने से रोकने के लिए अक्सर बड़े अतिरेक की आवश्यकता होती है। | ||
कोने डिटेक्टर की गुणवत्ता का निर्धारण विभिन्न प्रकाश व्यवस्था, अनुवाद, रोटेशन और अन्य परिवर्तनों की स्थितियों के तहत कई समान छवियों में ही कोने का पता लगाने की क्षमता है। | |||
छवियों में कोने का पता लगाने का | छवियों में कोने का पता लगाने का सरल तरीका सहसंबंध का उपयोग करना है, लेकिन यह कम्प्यूटेशनल रूप से बहुत महंगा और उप-इष्टतम हो जाता है। अक्सर उपयोग किया जाने वाला वैकल्पिक दृष्टिकोण हैरिस और स्टीफंस (नीचे) द्वारा प्रस्तावित विधि पर आधारित है, जो बदले में मोरावेक द्वारा विधि का सुधार है। | ||
== मोरवेक कॉर्नर डिटेक्शन एल्गोरिदम == | == मोरवेक कॉर्नर डिटेक्शन एल्गोरिदम == | ||
यह सबसे शुरुआती कोने का पता लगाने वाले एल्गोरिदम में से | यह सबसे शुरुआती कोने का पता लगाने वाले एल्गोरिदम में से है और कोने को कम आत्म-समानता वाले बिंदु के रूप में परिभाषित करता है।<ref name="moravec"/>एल्गोरिदम यह देखने के लिए छवि में प्रत्येक पिक्सेल का परीक्षण करता है कि कोई कोना मौजूद है या नहीं, यह विचार करके कि पिक्सेल पर केंद्रित पैच पास के, बड़े पैमाने पर ओवरलैपिंग पैच के समान है। समानता को दो पैच के संबंधित पिक्सेल के बीच वर्ग अंतर (एसएसडी) का योग लेकर मापा जाता है। कम संख्या अधिक समानता दर्शाती है. | ||
यदि पिक्सेल एकसमान तीव्रता के क्षेत्र में है, तो आस-पास के पैच समान दिखेंगे। यदि पिक्सेल | यदि पिक्सेल एकसमान तीव्रता के क्षेत्र में है, तो आस-पास के पैच समान दिखेंगे। यदि पिक्सेल किनारे पर है, तो किनारे के लंबवत दिशा में पास के पैच काफी अलग दिखेंगे, लेकिन किनारे के समानांतर दिशा में पास के पैच के परिणामस्वरूप केवल छोटा सा बदलाव होगा। यदि पिक्सेल सभी दिशाओं में भिन्नता वाले फीचर पर है, तो आस-पास का कोई भी पैच समान नहीं दिखेगा। | ||
कोने की ताकत को पैच और उसके पड़ोसियों (क्षैतिज, ऊर्ध्वाधर और दो विकर्णों पर) के बीच सबसे छोटे एसएसडी के रूप में परिभाषित किया गया है। कारण यह है कि यदि यह संख्या अधिक है, तो सभी बदलावों में भिन्नता या तो इसके बराबर होती है या इससे बड़ी होती है, इसलिए कैप्चरिंग से आस-पास के सभी पैच अलग दिखते हैं। | कोने की ताकत को पैच और उसके पड़ोसियों (क्षैतिज, ऊर्ध्वाधर और दो विकर्णों पर) के बीच सबसे छोटे एसएसडी के रूप में परिभाषित किया गया है। कारण यह है कि यदि यह संख्या अधिक है, तो सभी बदलावों में भिन्नता या तो इसके बराबर होती है या इससे बड़ी होती है, इसलिए कैप्चरिंग से आस-पास के सभी पैच अलग दिखते हैं। | ||
यदि सभी स्थानों के लिए कोने की ताकत संख्या की गणना की जाती है, तो यह | यदि सभी स्थानों के लिए कोने की ताकत संख्या की गणना की जाती है, तो यह स्थान के लिए स्थानीय रूप से अधिकतम है, यह दर्शाता है कि इसमें रुचि की विशेषता मौजूद है। | ||
जैसा कि मोरावेक ने बताया है, इस ऑपरेटर के साथ मुख्य समस्याओं में से | जैसा कि मोरावेक ने बताया है, इस ऑपरेटर के साथ मुख्य समस्याओं में से यह है कि यह [[ समदैशिक |समदैशिक]] नहीं है: यदि कोई किनारा मौजूद है जो पड़ोसियों (क्षैतिज, ऊर्ध्वाधर या विकर्ण) की दिशा में नहीं है, तो सबसे छोटा एसएसडी होगा बड़ा और किनारे को गलत तरीके से रुचि बिंदु के रूप में चुना जाएगा।<ref>Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover, Hans Moravec, March 1980, Computer Science Department, Stanford University (Ph.D. thesis)</ref> | ||
== हैरिस और स्टीफेंस / शि-तोमासी कोने का पता लगाने वाले एल्गोरिदम == | |||
== | |||
{{see|Harris Corner Detector}} | {{see|Harris Corner Detector}} | ||
हैरिस और स्टीफंस<ref name="harris"/>स्थानांतरित पैच का उपयोग करने के बजाय, सीधे दिशा के संबंध में कोने के स्कोर के अंतर पर विचार करके मोरावेक के कोने डिटेक्टर में सुधार किया गया। (इस कोने के स्कोर को अक्सर ऑटोसहसंबंध के रूप में जाना जाता है, क्योंकि इस शब्द का उपयोग उस पेपर में किया जाता है जिसमें इस डिटेक्टर का वर्णन किया गया है। हालांकि, पेपर में गणित स्पष्ट रूप से इंगित करता है कि वर्ग अंतर के योग का उपयोग किया जाता है।) | हैरिस और स्टीफंस<ref name="harris"/>स्थानांतरित पैच का उपयोग करने के बजाय, सीधे दिशा के संबंध में कोने के स्कोर के अंतर पर विचार करके मोरावेक के कोने डिटेक्टर में सुधार किया गया। (इस कोने के स्कोर को अक्सर ऑटोसहसंबंध के रूप में जाना जाता है, क्योंकि इस शब्द का उपयोग उस पेपर में किया जाता है जिसमें इस डिटेक्टर का वर्णन किया गया है। हालांकि, पेपर में गणित स्पष्ट रूप से इंगित करता है कि वर्ग अंतर के योग का उपयोग किया जाता है।) | ||
व्यापकता की हानि के बिना, हम मान लेंगे कि ग्रेस्केल 2-आयामी छवि का उपयोग किया जाता है। बता दें कि यह छवि दी गई है <math>I</math>. क्षेत्र पर | व्यापकता की हानि के बिना, हम मान लेंगे कि ग्रेस्केल 2-आयामी छवि का उपयोग किया जाता है। बता दें कि यह छवि दी गई है <math>I</math>. क्षेत्र पर छवि पैच लेने पर विचार करें <math>(u, v)</math> और इसे स्थानांतरित करना <math>(x, y)</math>. इन दो पैच के बीच वर्ग अंतर (एसएसडी) का भारित योग दर्शाया गया है <math>S</math>, द्वारा दिया गया है: | ||
:<math> S(x,y) = \sum_u \sum_v w(u,v) \, \left( I(u+x,v+y) - I(u,v)\right)^2 </math> | :<math> S(x,y) = \sum_u \sum_v w(u,v) \, \left( I(u+x,v+y) - I(u,v)\right)^2 </math> | ||
Line 63: | Line 61: | ||
कोण कोष्ठक औसत को दर्शाते हैं (अर्थात् संक्षेपण)। <math>(u,v)</math>). <math> w(u,v)</math> छवि पर स्लाइड करने वाली विंडो के प्रकार को दर्शाता है। यदि [[बॉक्स ब्लर]] का उपयोग किया जाता है तो प्रतिक्रिया [[एनिसोट्रॉपिक]] होगी, लेकिन यदि [[गॉसियन फ़ंक्शन]] का उपयोग किया जाता है, तो प्रतिक्रिया आइसोट्रोपिक होगी। | कोण कोष्ठक औसत को दर्शाते हैं (अर्थात् संक्षेपण)। <math>(u,v)</math>). <math> w(u,v)</math> छवि पर स्लाइड करने वाली विंडो के प्रकार को दर्शाता है। यदि [[बॉक्स ब्लर]] का उपयोग किया जाता है तो प्रतिक्रिया [[एनिसोट्रॉपिक]] होगी, लेकिन यदि [[गॉसियन फ़ंक्शन]] का उपयोग किया जाता है, तो प्रतिक्रिया आइसोट्रोपिक होगी। | ||
कोने (या सामान्य तौर पर रुचि बिंदु) की विशेषता बड़ी विविधता है <math> S </math> वेक्टर की सभी दिशाओं में <math> \begin{bmatrix} x & y \end{bmatrix} </math>. के eigenvalues का विश्लेषण करके <math> A </math>, इस लक्षण वर्णन को निम्नलिखित तरीके से व्यक्त किया जा सकता है: <math> A </math> रुचि बिंदु के लिए दो बड़े eigenvalues होने चाहिए। | |||
स्वदेशी मूल्यों के परिमाण के आधार पर, इस तर्क के आधार पर निम्नलिखित अनुमान लगाए जा सकते हैं: | स्वदेशी मूल्यों के परिमाण के आधार पर, इस तर्क के आधार पर निम्नलिखित अनुमान लगाए जा सकते हैं: | ||
#अगर <math>\lambda_1 \approx 0</math> और <math>\lambda_2 \approx 0</math> फिर यह पिक्सेल <math>(x,y)</math> रुचि की कोई विशेषता नहीं है. | #अगर <math>\lambda_1 \approx 0</math> और <math>\lambda_2 \approx 0</math> फिर यह पिक्सेल <math>(x,y)</math> रुचि की कोई विशेषता नहीं है. | ||
#अगर <math>\lambda_1 \approx 0</math> और <math>\lambda_2</math> कुछ बड़ा सकारात्मक मूल्य है, तो | #अगर <math>\lambda_1 \approx 0</math> और <math>\lambda_2</math> कुछ बड़ा सकारात्मक मूल्य है, तो बढ़त पाई जाती है। | ||
#अगर <math> \lambda_1</math> और <math> \lambda_2</math> बड़े सकारात्मक मान हैं, तो | #अगर <math> \lambda_1</math> और <math> \lambda_2</math> बड़े सकारात्मक मान हैं, तो कोना मिल जाता है। | ||
हैरिस और स्टीफंस ने ध्यान दिया कि आइगेनवैल्यू की सटीक गणना कम्प्यूटेशनल रूप से महंगी है, क्योंकि इसके लिए [[वर्गमूल]] की गणना की आवश्यकता होती है, और इसके बजाय सुझाव देते हैं | हैरिस और स्टीफंस ने ध्यान दिया कि आइगेनवैल्यू की सटीक गणना कम्प्यूटेशनल रूप से महंगी है, क्योंकि इसके लिए [[वर्गमूल]] की गणना की आवश्यकता होती है, और इसके बजाय सुझाव देते हैं | ||
निम्नलिखित फ़ंक्शन <math>M_c</math>, कहाँ <math>\kappa</math> | निम्नलिखित फ़ंक्शन <math>M_c</math>, कहाँ <math>\kappa</math> ट्यून करने योग्य संवेदनशीलता पैरामीटर है: | ||
:<math> M_c = \lambda_1 \lambda_2 - \kappa \left(\lambda_1 + \lambda_2\right)^2 | :<math> M_c = \lambda_1 \lambda_2 - \kappa \left(\lambda_1 + \lambda_2\right)^2 | ||
Line 84: | Line 82: | ||
कोई भी पैरामीटर सेट करने से बच सकता है <math>\kappa</math> नोबल का उपयोग करके<ref name="noble"/>कोने का माप <math>M_c'</math> जो eigenvalues के [[अनुकूल माध्य]] के बराबर है: | कोई भी पैरामीटर सेट करने से बच सकता है <math>\kappa</math> नोबल का उपयोग करके<ref name="noble"/>कोने का माप <math>M_c'</math> जो eigenvalues के [[अनुकूल माध्य]] के बराबर है: | ||
:<math> M_c' = 2 \frac{\det(A)}{\operatorname{trace}(A) + \epsilon}, </math> | :<math> M_c' = 2 \frac{\det(A)}{\operatorname{trace}(A) + \epsilon}, </math> | ||
<math>\epsilon</math> | <math>\epsilon</math> छोटा सा सकारात्मक स्थिरांक होना। | ||
अगर <math>A</math> कोने की स्थिति के लिए सटीक मैट्रिक्स के रूप में व्याख्या की जा सकती है, कोने की स्थिति के लिए [[परिशुद्धता मैट्रिक्स]] है <math> A^{-1}</math>, अर्थात। | अगर <math>A</math> कोने की स्थिति के लिए सटीक मैट्रिक्स के रूप में व्याख्या की जा सकती है, कोने की स्थिति के लिए [[परिशुद्धता मैट्रिक्स]] है <math> A^{-1}</math>, अर्थात। | ||
Line 98: | Line 96: | ||
:<math>\lambda_1(A^{-1}) + \lambda_2(A^{-1}) = \frac{\operatorname{trace}(A)}{\det(A)} \approx \frac{2}{M_c'}.</math> | :<math>\lambda_1(A^{-1}) + \lambda_2(A^{-1}) = \frac{\operatorname{trace}(A)}{\det(A)} \approx \frac{2}{M_c'}.</math> | ||
== फोरस्टनर कॉर्नर डिटेक्टर == | == फोरस्टनर कॉर्नर डिटेक्टर == | ||
[[File:Corner detection using Foerstner Algorithm.png|thumb|फ़ॉर्स्टनर एल्गोरिथम का उपयोग करके कोने का पता लगाना]]कुछ मामलों में, कोई उपपिक्सेल सटीकता के साथ कोने के स्थान की गणना करना चाह सकता है। | [[File:Corner detection using Foerstner Algorithm.png|thumb|फ़ॉर्स्टनर एल्गोरिथम का उपयोग करके कोने का पता लगाना]]कुछ मामलों में, कोई उपपिक्सेल सटीकता के साथ कोने के स्थान की गणना करना चाह सकता है। अनुमानित समाधान प्राप्त करने के लिए, फ़ोरस्टनर<ref>{{cite journal |last=Förstner |first=W |author2=Gülch |title=विशिष्ट बिंदुओं, कोनों और गोलाकार विशेषताओं के केंद्रों का पता लगाने और सटीक स्थान के लिए एक तेज़ ऑपरेटर|journal=ISPRS |year=1987 |url=https://cseweb.ucsd.edu//classes/sp02/cse252/foerstner/foerstner.pdf }}</ref> एल्गोरिदम किसी दिए गए विंडो में कोने की सभी स्पर्शरेखा रेखाओं के निकटतम बिंदु को हल करता है और यह न्यूनतम-वर्ग समाधान है। एल्गोरिदम इस तथ्य पर निर्भर करता है कि आदर्श कोने के लिए, स्पर्शरेखा रेखाएं ही बिंदु पर प्रतिच्छेद करती हैं। | ||
स्पर्श रेखा का समीकरण <math>T_{\mathbf{x}'}(\mathbf{x})</math> पिक्सेल पर <math>\mathbf{x}'</math> द्वारा दिया गया है: | स्पर्श रेखा का समीकरण <math>T_{\mathbf{x}'}(\mathbf{x})</math> पिक्सेल पर <math>\mathbf{x}'</math> द्वारा दिया गया है: | ||
Line 138: | Line 135: | ||
:<math>x_{0}=A^{-1}\mathbf{b}</math> | :<math>x_{0}=A^{-1}\mathbf{b}</math> | ||
केवल वहीं मौजूद है जहां विंडो में | केवल वहीं मौजूद है जहां विंडो में वास्तविक कोना मौजूद है <math>N</math>. | ||
इस कोने के स्थानीयकरण विधि के लिए स्वचालित पैमाने का चयन करने की | इस कोने के स्थानीयकरण विधि के लिए स्वचालित पैमाने का चयन करने की पद्धति लिंडेबर्ग द्वारा प्रस्तुत की गई है<ref name="lindeberg94icip"/><ref name="lindeberg98"/>सामान्यीकृत अवशिष्ट को कम करके | ||
:<math>\tilde{d}_{\min} = \frac{c - b^T A^{-1} b}{\operatorname{trace} A}</math> | :<math>\tilde{d}_{\min} = \frac{c - b^T A^{-1} b}{\operatorname{trace} A}</math> | ||
Line 152: | Line 149: | ||
== मल्टी-स्केल हैरिस ऑपरेटर == | == मल्टी-स्केल हैरिस ऑपरेटर == | ||
दूसरे क्षण मैट्रिक्स की गणना (कभी-कभी इसे संरचना टेंसर भी कहा जाता है) <math>A</math> हैरिस ऑपरेटर में, छवि डेरिवेटिव की गणना की आवश्यकता होती है <math>I_x, I_y</math> छवि डोमेन के साथ-साथ स्थानीय पड़ोस पर इन डेरिवेटिव के गैर-रेखीय संयोजनों का योग। चूंकि डेरिवेटिव की गणना में आमतौर पर स्केल-स्पेस स्मूथिंग का | दूसरे क्षण मैट्रिक्स की गणना (कभी-कभी इसे संरचना टेंसर भी कहा जाता है) <math>A</math> हैरिस ऑपरेटर में, छवि डेरिवेटिव की गणना की आवश्यकता होती है <math>I_x, I_y</math> छवि डोमेन के साथ-साथ स्थानीय पड़ोस पर इन डेरिवेटिव के गैर-रेखीय संयोजनों का योग। चूंकि डेरिवेटिव की गणना में आमतौर पर स्केल-स्पेस स्मूथिंग का चरण शामिल होता है, हैरिस ऑपरेटर की परिचालन परिभाषा के लिए दो स्केल पैरामीटर की आवश्यकता होती है: (i) इमेज डेरिवेटिव की गणना से पहले स्मूथिंग के लिए स्थानीय स्केल, और (ii) एकीकरण स्केल एकीकृत छवि डिस्क्रिप्टर में व्युत्पन्न ऑपरेटरों पर गैर-रेखीय संचालन को संचित करने के लिए। | ||
साथ <math>I</math> मूल छवि तीव्रता को दर्शाते हुए, आइए <math>L</math> के [[स्केल स्पेस प्रतिनिधित्व]] को निरूपित करें <math>I</math> गॉसियन कर्नेल के साथ कनवल्शन द्वारा प्राप्त किया गया | साथ <math>I</math> मूल छवि तीव्रता को दर्शाते हुए, आइए <math>L</math> के [[स्केल स्पेस प्रतिनिधित्व]] को निरूपित करें <math>I</math> गॉसियन कर्नेल के साथ कनवल्शन द्वारा प्राप्त किया गया | ||
Line 159: | Line 156: | ||
:<math>L(x, y, t)\ = g(x, y, t) * I(x, y)</math> | :<math>L(x, y, t)\ = g(x, y, t) * I(x, y)</math> | ||
और जाने <math>L_x = \partial_x L</math> और <math>L_y = \partial_y L</math> के आंशिक व्युत्पन्न को निरूपित करें <math>L</math>. | और जाने <math>L_x = \partial_x L</math> और <math>L_y = \partial_y L</math> के आंशिक व्युत्पन्न को निरूपित करें <math>L</math>. | ||
इसके अलावा, | इसके अलावा, गाऊसी विंडो फ़ंक्शन का परिचय दें <math>g(x, y, s)</math> एकीकरण स्केल पैरामीटर के साथ <math>s</math>. फिर, स्ट्रक्चर टेंसर#मल्टी-स्केल स्ट्रक्चर टेंसर|मल्टी-स्केल सेकेंड-मोमेंट मैट्रिक्स<ref name="lindeberg94book"/><ref name=LinGar97-IVC/><ref name="lindeberg08enc"/>के रूप में परिभाषित किया जा सकता है | ||
:<math> | :<math> | ||
\mu(x, y; t, s) = | \mu(x, y; t, s) = | ||
Line 171: | Line 168: | ||
फिर, हम eigenvalues की गणना कर सकते हैं <math>\mu</math> के eigenvalues के समान तरीके से <math>A</math> और मल्टी-स्केल हैरिस कॉर्नर माप को इस प्रकार परिभाषित करें | फिर, हम eigenvalues की गणना कर सकते हैं <math>\mu</math> के eigenvalues के समान तरीके से <math>A</math> और मल्टी-स्केल हैरिस कॉर्नर माप को इस प्रकार परिभाषित करें | ||
:<math>M_c(x, y; t, s) = \det (\mu(x, y; t, s)) - \kappa \, \operatorname{trace}^2(\mu(x, y; t, s)) .</math> | :<math>M_c(x, y; t, s) = \det (\mu(x, y; t, s)) - \kappa \, \operatorname{trace}^2(\mu(x, y; t, s)) .</math> | ||
स्थानीय पैमाने के पैरामीटर के चयन के संबंध में <math>t</math> और एकीकरण स्केल पैरामीटर <math>s</math>, ये स्केल पैरामीटर आमतौर पर | स्थानीय पैमाने के पैरामीटर के चयन के संबंध में <math>t</math> और एकीकरण स्केल पैरामीटर <math>s</math>, ये स्केल पैरामीटर आमतौर पर सापेक्ष एकीकरण स्केल पैरामीटर द्वारा युग्मित होते हैं <math>\gamma</math> ऐसा है कि <math>s = \gamma^2 t</math>, कहाँ <math>\gamma</math> आमतौर पर अंतराल में चुना जाता है <math>[1, 2]</math>.<ref name="lindeberg94book"/><ref name=LinGar97-IVC/>इस प्रकार, हम बहु-स्तरीय हैरिस कॉर्नर माप की गणना कर सकते हैं <math>M_c(x, y; t, \gamma^2 t)</math> किसी भी पैमाने पर <math>t</math> मल्टी-स्केल कॉर्नर डिटेक्टर प्राप्त करने के लिए स्केल-स्पेस में, जो इमेज डोमेन में विभिन्न आकारों की कॉर्नर संरचनाओं पर प्रतिक्रिया करता है। | ||
व्यवहार में, इस मल्टी-स्केल कॉर्नर डिटेक्टर को अक्सर स्केल चयन चरण द्वारा पूरक किया जाता है, जहां स्केल-सामान्यीकृत लाप्लासियन ऑपरेटर<ref name="lindeberg98"/><ref name="lindeberg94book"/>:<math>\nabla^2_\mathrm{norm} L(x, y; t)\ = t \nabla^2 L(x, y, t) = t (L_{xx}(x, y, t) + L_{yy}(x, y, t))</math> | व्यवहार में, इस मल्टी-स्केल कॉर्नर डिटेक्टर को अक्सर स्केल चयन चरण द्वारा पूरक किया जाता है, जहां स्केल-सामान्यीकृत लाप्लासियन ऑपरेटर<ref name="lindeberg98"/><ref name="lindeberg94book"/>:<math>\nabla^2_\mathrm{norm} L(x, y; t)\ = t \nabla^2 L(x, y, t) = t (L_{xx}(x, y, t) + L_{yy}(x, y, t))</math> | ||
स्केल-स्पेस में हर पैमाने पर गणना की जाती है और स्वचालित स्केल चयन (हैरिस-लाप्लास ऑपरेटर) के साथ स्केल अनुकूलित कोने बिंदुओं की गणना उन बिंदुओं से की जाती है जो | स्केल-स्पेस में हर पैमाने पर गणना की जाती है और स्वचालित स्केल चयन (हैरिस-लाप्लास ऑपरेटर) के साथ स्केल अनुकूलित कोने बिंदुओं की गणना उन बिंदुओं से की जाती है जो साथ हैं:<ref name="schmid"/> | ||
* मल्टी-स्केल कोने माप की स्थानिक मैक्सिमा <math>M_c(x, y; t, \gamma^2 t)</math> | * मल्टी-स्केल कोने माप की स्थानिक मैक्सिमा <math>M_c(x, y; t, \gamma^2 t)</math> | ||
Line 180: | Line 177: | ||
* स्केल-सामान्यीकृत लाप्लासियन ऑपरेटर के पैमाने पर स्थानीय मैक्सिमा या मिनिमा<ref name="lindeberg98"/> <math>\nabla^2_\mathrm{norm}(x, y, t)</math>: | * स्केल-सामान्यीकृत लाप्लासियन ऑपरेटर के पैमाने पर स्थानीय मैक्सिमा या मिनिमा<ref name="lindeberg98"/> <math>\nabla^2_\mathrm{norm}(x, y, t)</math>: | ||
*:<math>\hat{t} = \operatorname{argmaxminlocal}_{t} \nabla^2_\mathrm{norm}L(\hat{x}, \hat{y}; t)</math> | *:<math>\hat{t} = \operatorname{argmaxminlocal}_{t} \nabla^2_\mathrm{norm}L(\hat{x}, \hat{y}; t)</math> | ||
== स्तर वक्र [[वक्रता]] दृष्टिकोण == | == स्तर वक्र [[वक्रता]] दृष्टिकोण == | ||
कोने का पता लगाने का | कोने का पता लगाने का पुराना तरीका उन बिंदुओं का पता लगाना है जहां [[आइसोलिन्स]] की वक्रता और ढाल परिमाण साथ उच्च हैं।<ref name="kitchen82"/><ref name="richards88"/> | ||
ऐसे बिंदुओं का पता लगाने का | ऐसे बिंदुओं का पता लगाने का अलग तरीका पुनर्स्केल स्तर वक्र वक्रता (स्तर वक्र वक्रता का उत्पाद और तीन की शक्ति तक बढ़ाए गए ढाल परिमाण) की गणना करना है। | ||
:<math>\tilde{\kappa}(x, y;t) = L_x^2 L_{yy} + L_y^2 L_{xx} - 2 L_x L_y L_{xy}</math> | :<math>\tilde{\kappa}(x, y;t) = L_x^2 L_{yy} + L_y^2 L_{xx} - 2 L_x L_y L_{xy}</math> | ||
और कुछ पैमाने पर इस अंतर अभिव्यक्ति के सकारात्मक मैक्सिमा और नकारात्मक मिनिमा का पता लगाने के लिए <math>t</math> स्केल स्पेस प्रतिनिधित्व में <math>L</math> मूल छवि का.<ref name="lindeberg94icip"/><ref name="lindeberg98"/> | और कुछ पैमाने पर इस अंतर अभिव्यक्ति के सकारात्मक मैक्सिमा और नकारात्मक मिनिमा का पता लगाने के लिए <math>t</math> स्केल स्पेस प्रतिनिधित्व में <math>L</math> मूल छवि का.<ref name="lindeberg94icip"/><ref name="lindeberg98"/> | ||
हालाँकि, एकल पैमाने पर पुनर्स्केल स्तर वक्र वक्रता इकाई की गणना करते समय | हालाँकि, एकल पैमाने पर पुनर्स्केल स्तर वक्र वक्रता इकाई की गणना करते समय मुख्य समस्या यह है कि यह शोर और स्केल स्तर की पसंद के प्रति संवेदनशील हो सकता है। की गणना करना बेहतर तरीका है<math>\gamma</math>-सामान्यीकृत पुनर्स्केल्ड स्तर वक्र वक्रता | ||
:<math>\tilde{\kappa}_\mathrm{norm}(x, y;t) = t^{2 \gamma} (L_x^2 L_{yy} + L_y^2 L_{xx} - 2 L_x L_y L_{xy})</math> | :<math>\tilde{\kappa}_\mathrm{norm}(x, y;t) = t^{2 \gamma} (L_x^2 L_{yy} + L_y^2 L_{xx} - 2 L_x L_y L_{xy})</math> | ||
साथ <math>\gamma = 7/8</math> और इस अभिव्यक्ति के हस्ताक्षरित स्केल-स्पेस एक्स्ट्रेमा का पता लगाने के लिए, ये ऐसे बिंदु और स्केल हैं जो स्पेस और स्केल दोनों के संबंध में सकारात्मक मैक्सिमा और नकारात्मक मिनिमा हैं। | साथ <math>\gamma = 7/8</math> और इस अभिव्यक्ति के हस्ताक्षरित स्केल-स्पेस एक्स्ट्रेमा का पता लगाने के लिए, ये ऐसे बिंदु और स्केल हैं जो स्पेस और स्केल दोनों के संबंध में सकारात्मक मैक्सिमा और नकारात्मक मिनिमा हैं। | ||
:<math>(\hat{x}, \hat{y}; \hat{t}) = \operatorname{argminmaxlocal}_{(x, y; t)} \tilde{\kappa}_\mathrm{norm}(x, y; t)</math> | :<math>(\hat{x}, \hat{y}; \hat{t}) = \operatorname{argminmaxlocal}_{(x, y; t)} \tilde{\kappa}_\mathrm{norm}(x, y; t)</math> | ||
मोटे पैमाने पर स्थानीयकरण त्रुटि में वृद्धि को संभालने के लिए | मोटे पैमाने पर स्थानीयकरण त्रुटि में वृद्धि को संभालने के लिए पूरक स्थानीयकरण कदम के साथ संयोजन में।<ref name="lindeberg94icip"/><ref name="lindeberg98"/><ref name="lindeberg94book"/>इस तरह, बड़े पैमाने के मूल्य बड़े स्थानिक विस्तार वाले गोल कोनों से जुड़े होंगे जबकि छोटे पैमाने के मूल्य छोटे स्थानिक विस्तार वाले तेज कोनों से जुड़े होंगे। यह दृष्टिकोण स्वचालित स्केल चयन वाला पहला कॉर्नर डिटेक्टर है (ऊपर हैरिस-लाप्लास ऑपरेटर से पहले) और इसका उपयोग छवि डोमेन में बड़े पैमाने पर बदलाव के तहत कोनों को ट्रैक करने के लिए किया गया है।<ref name="brelin98feattrack"/>और [[जियोन (मनोविज्ञान)]]-आधारित वस्तु पहचान के लिए संरचनात्मक छवि सुविधाओं की गणना करने के लिए किनारों से कोने की प्रतिक्रियाओं का मिलान करने के लिए।<ref name="lindebergli97"/> | ||
== गॉसियन का लाप्लासियन, गॉसियन के अंतर और हेसियन स्केल-स्पेस ब्याज बिंदुओं के निर्धारक == | == गॉसियन का लाप्लासियन, गॉसियन के अंतर और हेसियन स्केल-स्पेस ब्याज बिंदुओं के निर्धारक == | ||
लकड़ी का लट्ठा<ref name="lindeberg98"/><ref name="lindeberg94book"/><ref name="schmid"/>गॉसियन, DoG के लाप्लासियन का संक्षिप्त रूप है<ref name="sift"/>गॉसियन के अंतर के लिए | लकड़ी का लट्ठा<ref name="lindeberg98"/><ref name="lindeberg94book"/><ref name="schmid"/>गॉसियन, DoG के लाप्लासियन का संक्षिप्त रूप है<ref name="sift"/>गॉसियन के अंतर के लिए संक्षिप्त शब्द है (DoG LoG का अनुमान है), और DoH हेसियन के निर्धारक के लिए संक्षिप्त शब्द है।<ref name="lindeberg98"/>ये सभी स्केल-अपरिवर्तनीय ब्याज बिंदु स्केल-सामान्यीकृत अंतर अभिव्यक्तियों के स्केल-स्पेस एक्स्ट्रेमा का पता लगाकर निकाले जाते हैं, यानी, स्केल-स्पेस में बिंदु जहां संबंधित स्केल-सामान्यीकृत अंतर अभिव्यक्तियां अंतरिक्ष और स्केल दोनों के संबंध में स्थानीय एक्स्स्ट्रेमा मानती हैं।<ref name="lindeberg98"/>:<math>(\hat{x}, \hat{y}; \hat{t}) = \operatorname{argminmaxlocal}_{(x, y; t)} (D_\mathrm{norm} L)(x, y; t)</math> | ||
कहाँ <math>D_{norm} L</math> उपयुक्त पैमाने-सामान्यीकृत अंतर इकाई को दर्शाता है (नीचे परिभाषित)। | कहाँ <math>D_{norm} L</math> उपयुक्त पैमाने-सामान्यीकृत अंतर इकाई को दर्शाता है (नीचे परिभाषित)। | ||
Line 206: | Line 200: | ||
&\approx \frac{t \left( L(x, y; t+\Delta t) - L(x, y; t) \right)}{\Delta t} | &\approx \frac{t \left( L(x, y; t+\Delta t) - L(x, y; t) \right)}{\Delta t} | ||
\end{align}</math> | \end{align}</math> | ||
जरूरी नहीं कि अत्यधिक चयनात्मक विशेषताएं बनाएं, क्योंकि ये ऑपरेटर किनारों के पास भी प्रतिक्रियाएं दे सकते हैं। गॉसियन डिटेक्टर के अंतर की कोने का पता लगाने की क्षमता में सुधार करने के लिए, [[स्केल-अपरिवर्तनीय सुविधा परिवर्तन]] में उपयोग किए जाने वाले फ़ीचर डिटेक्टर<ref name="sift"/>इसलिए सिस्टम | जरूरी नहीं कि अत्यधिक चयनात्मक विशेषताएं बनाएं, क्योंकि ये ऑपरेटर किनारों के पास भी प्रतिक्रियाएं दे सकते हैं। गॉसियन डिटेक्टर के अंतर की कोने का पता लगाने की क्षमता में सुधार करने के लिए, [[स्केल-अपरिवर्तनीय सुविधा परिवर्तन]] में उपयोग किए जाने वाले फ़ीचर डिटेक्टर<ref name="sift"/>इसलिए सिस्टम अतिरिक्त पोस्ट-प्रोसेसिंग चरण का उपयोग करता है, जहां डिटेक्शन स्केल पर छवि के [[ हेस्सियन मैट्रिक्स |हेस्सियन मैट्रिक्स]] के आइगेनवैल्यू की जांच हैरिस ऑपरेटर की तरह ही की जाती है। यदि [[eigenvalue]]s का अनुपात बहुत अधिक है, तो स्थानीय छवि को बहुत किनारे जैसा माना जाता है, इसलिए सुविधा को अस्वीकार कर दिया जाता है। इसके अलावा गॉसियन फ़ीचर डिटेक्टर के लिंडेबर्ग के लाप्लासियन को किनारों के पास प्रतिक्रियाओं को दबाने के लिए पूरक अंतर अपरिवर्तनीय पर पूरक थ्रेशोल्डिंग शामिल करने के लिए परिभाषित किया जा सकता है।<ref name=Lin15JMIV>[https://doi.org/10.1007/s10851-014-0541-0 T. Lindeberg ``Image matching using generalized scale-space interest points", Journal of Mathematical Imaging and Vision, volume 52, number 1, pages 3-36, 2015.]</ref> | ||
हेसियन ऑपरेटर का स्केल-सामान्यीकृत निर्धारक (लिंडेबर्ग 1994, 1998)<ref name="lindeberg98"/><ref name="lindeberg94book"/>:<math>\det H_\mathrm{norm} L = t^2 (L_{xx} L_{yy} - L_{xy}^2)</math> | हेसियन ऑपरेटर का स्केल-सामान्यीकृत निर्धारक (लिंडेबर्ग 1994, 1998)<ref name="lindeberg98"/><ref name="lindeberg94book"/>:<math>\det H_\mathrm{norm} L = t^2 (L_{xx} L_{yy} - L_{xy}^2)</math> | ||
दूसरी ओर, अच्छी तरह से स्थानीयकृत छवि सुविधाओं के लिए अत्यधिक चयनात्मक है और केवल तभी प्रतिक्रिया करता है जब दो छवि दिशाओं में महत्वपूर्ण ग्रे-स्तर भिन्नताएं होती हैं<ref name="lindeberg98"/><ref name="lindeberg08enc"/>और इस और अन्य मामलों में गॉसियन के लाप्लासियन की तुलना में बेहतर रुचि बिंदु डिटेक्टर है। हेसियन का निर्धारक | दूसरी ओर, अच्छी तरह से स्थानीयकृत छवि सुविधाओं के लिए अत्यधिक चयनात्मक है और केवल तभी प्रतिक्रिया करता है जब दो छवि दिशाओं में महत्वपूर्ण ग्रे-स्तर भिन्नताएं होती हैं<ref name="lindeberg98"/><ref name="lindeberg08enc"/>और इस और अन्य मामलों में गॉसियन के लाप्लासियन की तुलना में बेहतर रुचि बिंदु डिटेक्टर है। हेसियन का निर्धारक एफ़िन सहसंयोजक विभेदक अभिव्यक्ति है और इसमें लाप्लासियन ऑपरेटर की तुलना में एफ़िन छवि परिवर्तनों के तहत बेहतर पैमाने पर चयन गुण हैं। | ||
(लिंडेबर्ग 2013, 2015)।<ref name=Lin15JMIV/><ref name=Lin13JMIV>[https://doi.org/10.1007/s10851-012-0378-3 T. Lindeberg "Scale selection properties of generalized scale-space interest point detectors", Journal of Mathematical Imaging and Vision, Volume 46, Issue 2, pages 177-210, 2013.]</ref> प्रयोगात्मक रूप से इसका तात्पर्य यह है कि हेसियन रुचि बिंदुओं के निर्धारक में लाप्लासियन रुचि बिंदुओं की तुलना में स्थानीय छवि विरूपण के तहत बेहतर दोहराव गुण होते हैं, जिसके परिणामस्वरूप उच्च दक्षता स्कोर और कम 1-[[परिशुद्धता (सूचना पुनर्प्राप्ति)]] स्कोर के संदर्भ में छवि-आधारित मिलान का बेहतर प्रदर्शन होता है। .<ref name=Lin15JMIV/> | (लिंडेबर्ग 2013, 2015)।<ref name=Lin15JMIV/><ref name=Lin13JMIV>[https://doi.org/10.1007/s10851-012-0378-3 T. Lindeberg "Scale selection properties of generalized scale-space interest point detectors", Journal of Mathematical Imaging and Vision, Volume 46, Issue 2, pages 177-210, 2013.]</ref> प्रयोगात्मक रूप से इसका तात्पर्य यह है कि हेसियन रुचि बिंदुओं के निर्धारक में लाप्लासियन रुचि बिंदुओं की तुलना में स्थानीय छवि विरूपण के तहत बेहतर दोहराव गुण होते हैं, जिसके परिणामस्वरूप उच्च दक्षता स्कोर और कम 1-[[परिशुद्धता (सूचना पुनर्प्राप्ति)]] स्कोर के संदर्भ में छवि-आधारित मिलान का बेहतर प्रदर्शन होता है। .<ref name=Lin15JMIV/> | ||
इन और अन्य स्केल-स्पेस इंटरेस्ट पॉइंट डिटेक्टरों के स्केल चयन गुणों, एफ़िन ट्रांसफ़ॉर्मेशन गुणों और प्रयोगात्मक गुणों का विस्तार से विश्लेषण किया गया है (लिंडेबर्ग 2013, 2015)।<ref name=Lin15JMIV/><ref name=Lin13JMIV/> | इन और अन्य स्केल-स्पेस इंटरेस्ट पॉइंट डिटेक्टरों के स्केल चयन गुणों, एफ़िन ट्रांसफ़ॉर्मेशन गुणों और प्रयोगात्मक गुणों का विस्तार से विश्लेषण किया गया है (लिंडेबर्ग 2013, 2015)।<ref name=Lin15JMIV/><ref name=Lin13JMIV/> | ||
== लिंडेबर्ग हेसियन फीचर ताकत उपायों के आधार पर स्केल-स्पेस रुचि बिंदु == | == लिंडेबर्ग हेसियन फीचर ताकत उपायों के आधार पर स्केल-स्पेस रुचि बिंदु == | ||
हेसियन मैट्रिक्स के संरचनात्मक रूप से समान गुणों से प्रेरित <math>H f</math> | हेसियन मैट्रिक्स के संरचनात्मक रूप से समान गुणों से प्रेरित <math>H f</math> समारोह का <math>f</math> और दूसरे क्षण का मैट्रिक्स (संरचना टेंसर) <math>\mu</math>, जैसे कि कर सकते हैं एफ़िन छवि विकृतियों के तहत उनके समान परिवर्तन गुणों के संदर्भ में प्रकट होना<ref name=LinGar97-IVC/><ref name=Lin15JMIV/>:<math>(H f') = A^{-T} \, (H f) \, A^{-1}</math>, | ||
:<math>\mu' = A^{-T} \, \mu \, A^{-1}</math>, | :<math>\mu' = A^{-T} \, \mu \, A^{-1}</math>, | ||
लिंडेबर्ग (2013, 2015)<ref name=Lin15JMIV/><ref name=Lin13JMIV/>हेस्सियन मैट्रिक्स से संबंधित तरीकों से चार फीचर ताकत उपायों को परिभाषित करने का प्रस्ताव किया गया है क्योंकि हैरिस और शि-एंड-टोमासी ऑपरेटरों को संरचना टेंसर (दूसरे-पल मैट्रिक्स) से परिभाषित किया गया है। | लिंडेबर्ग (2013, 2015)<ref name=Lin15JMIV/><ref name=Lin13JMIV/>हेस्सियन मैट्रिक्स से संबंधित तरीकों से चार फीचर ताकत उपायों को परिभाषित करने का प्रस्ताव किया गया है क्योंकि हैरिस और शि-एंड-टोमासी ऑपरेटरों को संरचना टेंसर (दूसरे-पल मैट्रिक्स) से परिभाषित किया गया है। | ||
Line 264: | Line 256: | ||
इसके अलावा, यह दिखाया गया कि हेसियन मैट्रिक्स से परिभाषित ये सभी विभेदक स्केल-स्पेस ब्याज बिंदु डिटेक्टर संरचना से परिभाषित हैरिस और शि-एंड-टोमासी ऑपरेटरों की तुलना में बड़ी संख्या में ब्याज बिंदुओं का पता लगाने और बेहतर मिलान प्रदर्शन की अनुमति देते हैं। टेंसर (दूसरे क्षण का मैट्रिक्स)। | इसके अलावा, यह दिखाया गया कि हेसियन मैट्रिक्स से परिभाषित ये सभी विभेदक स्केल-स्पेस ब्याज बिंदु डिटेक्टर संरचना से परिभाषित हैरिस और शि-एंड-टोमासी ऑपरेटरों की तुलना में बड़ी संख्या में ब्याज बिंदुओं का पता लगाने और बेहतर मिलान प्रदर्शन की अनुमति देते हैं। टेंसर (दूसरे क्षण का मैट्रिक्स)। | ||
इन चार हेसियन फीचर शक्ति उपायों और स्केल-स्पेस ब्याज बिंदुओं का पता लगाने के लिए अन्य अंतर इकाइयों के स्केल चयन गुणों का | इन चार हेसियन फीचर शक्ति उपायों और स्केल-स्पेस ब्याज बिंदुओं का पता लगाने के लिए अन्य अंतर इकाइयों के स्केल चयन गुणों का सैद्धांतिक विश्लेषण, जिसमें गॉसियन के लाप्लासियन और हेसियन के निर्धारक शामिल हैं, लिंडेबर्ग (2013) में दिया गया है।<ref name=Lin13JMIV/>और लिंडेबर्ग (2015) में उनके एफ़िन परिवर्तन गुणों के साथ-साथ प्रयोगात्मक गुणों का विश्लेषण।<ref name=Lin15JMIV/> | ||
== एफ़िन-अनुकूलित ब्याज बिंदु ऑपरेटर == | == एफ़िन-अनुकूलित ब्याज बिंदु ऑपरेटर == | ||
स्वचालित स्केल चयन के साथ मल्टी-स्केल हैरिस ऑपरेटर से प्राप्त ब्याज बिंदु स्थानिक डोमेन में अनुवाद, रोटेशन और समान पुनर्स्केलिंग के लिए अपरिवर्तनीय हैं। हालाँकि, जो छवियाँ कंप्यूटर विज़न सिस्टम के लिए इनपुट का निर्माण करती हैं, वे भी परिप्रेक्ष्य विकृतियों के अधीन हैं। | स्वचालित स्केल चयन के साथ मल्टी-स्केल हैरिस ऑपरेटर से प्राप्त ब्याज बिंदु स्थानिक डोमेन में अनुवाद, रोटेशन और समान पुनर्स्केलिंग के लिए अपरिवर्तनीय हैं। हालाँकि, जो छवियाँ कंप्यूटर विज़न सिस्टम के लिए इनपुट का निर्माण करती हैं, वे भी परिप्रेक्ष्य विकृतियों के अधीन हैं। रुचि बिंदु ऑपरेटर प्राप्त करने के लिए जो परिप्रेक्ष्य परिवर्तनों के लिए अधिक मजबूत है, प्राकृतिक दृष्टिकोण फीचर डिटेक्टर तैयार करना है जो कि परिवर्तनों को प्रभावित करने के लिए अपरिवर्तनीय है। व्यवहार में, एफ़िन अपरिवर्तनीय रुचि बिंदुओं को [[एफ़िन आकार अनुकूलन]] लागू करके प्राप्त किया जा सकता है जहां स्मूथिंग कर्नेल का आकार रुचि बिंदु के आसपास स्थानीय छवि संरचना से मेल खाने के लिए पुनरावृत्त रूप से विकृत होता है या समकक्ष रूप से स्थानीय छवि पैच पुनरावृत्त रूप से विकृत होता है जबकि स्मूथिंग का आकार होता है कर्नेल घूर्णी रूप से सममित रहता है (लिंडेबर्ग 1993, 2008; लिंडेबर्ग और गार्डिंग 1997; मिकोलाजस्क और श्मिट 2004)।<ref name="lindeberg94book"/><ref name=LinGar97-IVC>[http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A472972&dswid=4333 T. Lindeberg and J. Garding "Shape-adapted smoothing in estimation of 3-D depth cues from affine distortions of local 2-D structure". Image and Vision Computing 15 (6): pp 415–434, 1997.]</ref><ref name="lindeberg08enc"/><ref name="schmid"/>इसलिए, आमतौर पर उपयोग किए जाने वाले मल्टी-स्केल हैरिस ऑपरेटर के अलावा, इस आलेख में सूचीबद्ध अन्य कोने डिटेक्टरों के साथ-साथ ब्लॉब डिटेक्शन जैसे गॉसियन ऑपरेटर के लाप्लासियन/अंतर, हेसियन के निर्धारक, पर एफ़िन आकार अनुकूलन लागू किया जा सकता है।<ref name="lindeberg08enc"/>और हेस्सियन-लाप्लास ऑपरेटर। | ||
== वैंग और ब्रैडी कॉर्नर डिटेक्शन एल्गोरिदम == | == वैंग और ब्रैडी कॉर्नर डिटेक्शन एल्गोरिदम == | ||
वैंग और ब्रैडी<ref name="wangbrady"/>डिटेक्टर छवि को | वैंग और ब्रैडी<ref name="wangbrady"/>डिटेक्टर छवि को सतह मानता है, और उन स्थानों की तलाश करता है जहां छवि किनारे पर बड़ी वक्रता होती है। दूसरे शब्दों में, एल्गोरिदम उन स्थानों की तलाश करता है जहां किनारा तेजी से दिशा बदलता है। कोने का स्कोर, <math>C</math>, द्वारा दिया गया है: | ||
:<math> | :<math> | ||
Line 280: | Line 270: | ||
कहाँ <math>\bf{t}</math> ग्रेडिएंट के लंबवत इकाई वेक्टर है, और <math>c</math> यह निर्धारित करता है कि डिटेक्टर कितना एज-फ़ोबिक है। लेखक यह भी ध्यान देते हैं कि शोर को कम करने के लिए स्मूथिंग (गॉसियन का सुझाव दिया गया है) की आवश्यकता है। | कहाँ <math>\bf{t}</math> ग्रेडिएंट के लंबवत इकाई वेक्टर है, और <math>c</math> यह निर्धारित करता है कि डिटेक्टर कितना एज-फ़ोबिक है। लेखक यह भी ध्यान देते हैं कि शोर को कम करने के लिए स्मूथिंग (गॉसियन का सुझाव दिया गया है) की आवश्यकता है। | ||
स्मूथिंग भी कोनों के विस्थापन का कारण बनती है, इसलिए लेखक 90 डिग्री के कोने के विस्थापन के लिए | स्मूथिंग भी कोनों के विस्थापन का कारण बनती है, इसलिए लेखक 90 डिग्री के कोने के विस्थापन के लिए अभिव्यक्ति प्राप्त करते हैं, और इसे पहचाने गए कोनों पर सुधार कारक के रूप में लागू करते हैं। | ||
== सुसान कॉर्नर डिटेक्टर == | == सुसान कॉर्नर डिटेक्टर == | ||
सुसान<ref name="susan"/>यह | सुसान<ref name="susan"/>यह संक्षिप्त शब्द है जो नाभिक को आत्मसात करने वाले सबसे छोटे एकमूल्य खंड के लिए खड़ा है। यह विधि 1994 के यूके पेटेंट का विषय है जो अब लागू नहीं है।<ref> | ||
{{ cite patent | {{ cite patent | ||
| country = GB | | country = GB | ||
Line 296: | Line 286: | ||
| assign1 = Secr Defence | | assign1 = Secr Defence | ||
}}</ref> | }}</ref> | ||
सुविधा का पता लगाने के लिए, सुसान परीक्षण किए जाने वाले पिक्सेल (नाभिक) के ऊपर | सुविधा का पता लगाने के लिए, सुसान परीक्षण किए जाने वाले पिक्सेल (नाभिक) के ऊपर गोलाकार मास्क लगाता है। मुखौटे का क्षेत्र है <math>M</math>, और इस मास्क में पिक्सेल का प्रतिनिधित्व किया जाता है <math>\vec{m} \in M</math>. केन्द्रक पर है <math>\vec{m}_0</math>. तुलना फ़ंक्शन का उपयोग करके प्रत्येक पिक्सेल की तुलना नाभिक से की जाती है: | ||
:<math> | :<math> | ||
c(\vec{m}) = e^{-\left(\frac{I(\vec{m}) - I(\vec{m}_0)}{t}\right)^6} | c(\vec{m}) = e^{-\left(\frac{I(\vec{m}) - I(\vec{m}_0)}{t}\right)^6} | ||
</math> | </math> | ||
कहाँ <math>t</math> चमक अंतर सीमा है,<ref>{{Cite web | url=https://users.fmrib.ox.ac.uk/~steve/susan/susan/node6.html#c_equation | title=The SUSAN Edge Detector in Detail}}</ref> <math>I</math> पिक्सेल की चमक है और घातांक की शक्ति अनुभवजन्य रूप से निर्धारित की गई है। इस फ़ंक्शन में | कहाँ <math>t</math> चमक अंतर सीमा है,<ref>{{Cite web | url=https://users.fmrib.ox.ac.uk/~steve/susan/susan/node6.html#c_equation | title=The SUSAN Edge Detector in Detail}}</ref> <math>I</math> पिक्सेल की चमक है और घातांक की शक्ति अनुभवजन्य रूप से निर्धारित की गई है। इस फ़ंक्शन में चिकने आयताकार फ़ंक्शन | टॉप-हैट या आयताकार फ़ंक्शन की उपस्थिति होती है। सुसान का क्षेत्रफल इस प्रकार दिया गया है: | ||
:<math> | :<math> | ||
Line 316: | Line 306: | ||
कहाँ <math>g</math> को 'ज्यामितीय सीमा' नाम दिया गया है। दूसरे शब्दों में, SUSAN ऑपरेटर का स्कोर केवल तभी सकारात्मक होता है जब क्षेत्र काफी छोटा हो। स्थानीय स्तर पर सबसे छोटा SUSAN गैर-अधिकतम दमन का उपयोग करके पाया जा सकता है, और यह संपूर्ण SUSAN ऑपरेटर है। | कहाँ <math>g</math> को 'ज्यामितीय सीमा' नाम दिया गया है। दूसरे शब्दों में, SUSAN ऑपरेटर का स्कोर केवल तभी सकारात्मक होता है जब क्षेत्र काफी छोटा हो। स्थानीय स्तर पर सबसे छोटा SUSAN गैर-अधिकतम दमन का उपयोग करके पाया जा सकता है, और यह संपूर्ण SUSAN ऑपरेटर है। | ||
मूल्य <math>t</math> यह निर्धारित करता है कि यूनीवैल्यू सेगमेंट का हिस्सा माने जाने से पहले नाभिक के समान बिंदु कितने समान होने चाहिए। का मान है <math>g</math> यूनीवैल्यू सेगमेंट का न्यूनतम आकार निर्धारित करता है। अगर <math>g</math> काफी बड़ा है, तो यह [[ किनारे का पता लगाना ]] बन जाता है। | मूल्य <math>t</math> यह निर्धारित करता है कि यूनीवैल्यू सेगमेंट का हिस्सा माने जाने से पहले नाभिक के समान बिंदु कितने समान होने चाहिए। का मान है <math>g</math> यूनीवैल्यू सेगमेंट का न्यूनतम आकार निर्धारित करता है। अगर <math>g</math> काफी बड़ा है, तो यह [[ किनारे का पता लगाना |किनारे का पता लगाना]] बन जाता है। | ||
कोने का पता लगाने के लिए, दो और चरणों का उपयोग किया जाता है। सबसे पहले सुसान का [[केन्द्रक]] पाया जाता है। | कोने का पता लगाने के लिए, दो और चरणों का उपयोग किया जाता है। सबसे पहले सुसान का [[केन्द्रक]] पाया जाता है। उचित कोने में केन्द्रक नाभिक से दूर होगा। दूसरा चरण इस बात पर जोर देता है कि नाभिक से केन्द्रक के माध्यम से मास्क के किनारे तक की रेखा पर सभी बिंदु सुसान में हैं। | ||
==ट्रैजकोविक और हेडली कॉर्नर डिटेक्टर== | ==ट्रैजकोविक और हेडली कॉर्नर डिटेक्टर== | ||
सुसान के समान ही यह डिटेक्टर<ref name="hedley"/>आस-पास के पिक्सेल की जांच करके सीधे परीक्षण करता है कि पिक्सेल के नीचे का पैच स्व-समान है या नहीं। <math>\vec{c}</math> विचार किया जाने वाला पिक्सेल है, और <math>\vec{p} \in P</math> | सुसान के समान ही यह डिटेक्टर<ref name="hedley"/>आस-पास के पिक्सेल की जांच करके सीधे परीक्षण करता है कि पिक्सेल के नीचे का पैच स्व-समान है या नहीं। <math>\vec{c}</math> विचार किया जाने वाला पिक्सेल है, और <math>\vec{p} \in P</math> वृत्त पर बिंदु है <math>P</math> आसपास केंद्रित <math>\vec{c}</math>. बिंदु <math>\vec{p}'</math> के विपरीत बिंदु है <math>\vec{p}</math> व्यास के साथ. | ||
प्रतिक्रिया फ़ंक्शन को इस प्रकार परिभाषित किया गया है: | प्रतिक्रिया फ़ंक्शन को इस प्रकार परिभाषित किया गया है: | ||
Line 329: | Line 319: | ||
r(\vec{c}) = \min_{\vec{p} \in P} \left(\left(I(\vec{p}) - I(\vec{c})\right)^2 + \left(I(\vec{p}') - I(\vec{c})\right) ^2\right) | r(\vec{c}) = \min_{\vec{p} \in P} \left(\left(I(\vec{p}) - I(\vec{c})\right)^2 + \left(I(\vec{p}') - I(\vec{c})\right) ^2\right) | ||
</math> | </math> | ||
यह तब बड़ा होगा जब ऐसी कोई दिशा नहीं होगी जिसमें केंद्र पिक्सेल | यह तब बड़ा होगा जब ऐसी कोई दिशा नहीं होगी जिसमें केंद्र पिक्सेल व्यास के साथ दो निकटवर्ती पिक्सेल के समान हो। <math>P</math> पृथक वृत्त ( [[मध्यबिंदु वृत्त एल्गोरिथ्म]]) है, इसलिए अधिक आइसोट्रोपिक प्रतिक्रिया देने के लिए मध्यवर्ती व्यास के लिए [[प्रक्षेप]] का उपयोग किया जाता है। चूँकि कोई भी गणना ऊपरी सीमा देती है <math>\min</math>, क्षैतिज और ऊर्ध्वाधर दिशाओं को पहले यह देखने के लिए जांचा जाता है कि क्या यह पूरी गणना के साथ आगे बढ़ने लायक है <math>c</math>. | ||
== एएसटी-आधारित फीचर डिटेक्टर == | == एएसटी-आधारित फीचर डिटेक्टर == | ||
एएसटी त्वरित खंड परीक्षण का संक्षिप्त रूप है। यह परीक्षण सुसान कॉर्नर मानदंड का | एएसटी त्वरित खंड परीक्षण का संक्षिप्त रूप है। यह परीक्षण सुसान कॉर्नर मानदंड का आरामदायक संस्करण है। वृत्ताकार डिस्क का मूल्यांकन करने के बजाय, त्रिज्या के मध्यबिंदु वृत्त एल्गोरिथ्म में केवल पिक्सेल <math>r</math> उम्मीदवार के चारों ओर बिंदु पर विचार किया जाता है। अगर <math>n</math> सभी सन्निहित पिक्सेल कम से कम नाभिक से अधिक चमकीले होते हैं <math>t</math> अथवा सभी नाभिक से अधिक गहरे <math>t</math>, तो नाभिक के नीचे के पिक्सेल को विशेषता माना जाता है। बताया गया है कि यह परीक्षण बहुत स्थिर सुविधाएँ उत्पन्न करता है।<ref name="fast"/>जिस क्रम में पिक्सेल का परीक्षण किया जाता है उसका चुनाव तथाकथित [[बीस प्रश्न]] है। इस समस्या के लिए लघु निर्णय वृक्षों के निर्माण से सबसे अधिक कम्प्यूटेशनल रूप से कुशल फीचर डिटेक्टर उपलब्ध होते हैं। | ||
एएसटी पर आधारित पहला कॉर्नर डिटेक्शन एल्गोरिदम फास्ट (त्वरित खंड परीक्षण की विशेषताएं) है।<ref name="fast"/>यद्यपि <math>r</math> सैद्धांतिक रूप से कोई भी मूल्य ले सकता है, FAST केवल 3 के मान का उपयोग करता है (16 पिक्सेल परिधि के | एएसटी पर आधारित पहला कॉर्नर डिटेक्शन एल्गोरिदम फास्ट (त्वरित खंड परीक्षण की विशेषताएं) है।<ref name="fast"/>यद्यपि <math>r</math> सैद्धांतिक रूप से कोई भी मूल्य ले सकता है, FAST केवल 3 के मान का उपयोग करता है (16 पिक्सेल परिधि के वृत्त के अनुरूप), और परीक्षण दिखाते हैं कि सबसे अच्छे परिणाम प्राप्त होते हैं <math>n</math> 9 होना। का यह मान <math>n</math> सबसे निचला है जिस पर किनारों का पता नहीं चलता है। जिस क्रम में पिक्सेल का परीक्षण किया जाता है वह छवियों के प्रशिक्षण सेट से ID3 एल्गोरिदम द्वारा निर्धारित किया जाता है। भ्रामक रूप से, डिटेक्टर का नाम कुछ हद तक ट्रैजकोविक और हेडली के डिटेक्टर का वर्णन करने वाले पेपर के नाम के समान है। | ||
== डिटेक्टरों का स्वचालित संश्लेषण == | == डिटेक्टरों का स्वचालित संश्लेषण == | ||
ट्रुजिलो और ओलाग्यू<ref name="geneticprogramming"/> | ट्रुजिलो और ओलाग्यू<ref name="geneticprogramming"/> ऐसी विधि पेश की गई जिसके द्वारा [[आनुवंशिक प्रोग्रामिंग]] का उपयोग स्वचालित रूप से छवि ऑपरेटरों को संश्लेषित करने के लिए किया जाता है जो रुचि बिंदुओं का पता लगा सकते हैं। टर्मिनल और फ़ंक्शन सेट में आदिम संचालन होते हैं जो पहले से प्रस्तावित कई मानव निर्मित डिज़ाइनों में आम हैं। [[फिटनेस कार्य]] दोहराव दर के माध्यम से प्रत्येक ऑपरेटर की स्थिरता को मापता है, और छवि तल पर ज्ञात बिंदुओं के समान फैलाव को बढ़ावा देता है। उत्तरोत्तर परिवर्तित छवियों के प्रशिक्षण और परीक्षण अनुक्रमों का उपयोग करके विकसित ऑपरेटरों के प्रदर्शन की प्रयोगात्मक रूप से पुष्टि की गई है। इसलिए, प्रस्तावित जीपी एल्गोरिदम को रुचि बिंदु पहचान की समस्या के लिए मानव-प्रतिस्पर्धी माना जाता है। | ||
== स्थानिक-अस्थायी रुचि बिंदु डिटेक्टर == | == स्थानिक-अस्थायी रुचि बिंदु डिटेक्टर == | ||
Line 359: | Line 349: | ||
\end{bmatrix} | \end{bmatrix} | ||
</math> | </math> | ||
फिर, | फिर, उपयुक्त विकल्प के लिए <math>k < 1/27</math>, | ||
निम्नलिखित स्थानिक-अस्थायी हैरिस माप के स्थानिक-अस्थायी चरम सीमा से स्थानिक-अस्थायी रुचि बिंदुओं का पता लगाया जाता है: | निम्नलिखित स्थानिक-अस्थायी हैरिस माप के स्थानिक-अस्थायी चरम सीमा से स्थानिक-अस्थायी रुचि बिंदुओं का पता लगाया जाता है: | ||
Line 373: | Line 363: | ||
- L_{xx} L_{yt}^2 - L_{yy} L_{xt}^2 - L_{tt} L_{xy}^2 \right). | - L_{xx} L_{yt}^2 - L_{yy} L_{xt}^2 - L_{tt} L_{xy}^2 \right). | ||
</math> | </math> | ||
विलेम्स एट अल के काम में,<ref name="willems08"/>के अनुरूप | विलेम्स एट अल के काम में,<ref name="willems08"/>के अनुरूप सरल अभिव्यक्ति <math>\gamma_s = 1</math> और <math>\gamma_{\tau} = 1</math> प्रयोग किया गया। लिंडेबर्ग में,<ref name="lindeberg18"/>ऐसा दिखाया गया <math>\gamma_s = 5/4</math> और <math>\gamma_{\tau} = 5/4</math> बेहतर पैमाने के चयन गुणों का तात्पर्य इस अर्थ में है कि चयनित पैमाने के स्तर स्थानिक सीमा के साथ स्थानिक-अस्थायी गाऊसी बूँद से प्राप्त होते हैं <math>s = s_0</math> और अस्थायी सीमा <math>\tau = \tau_0</math> अंतर अभिव्यक्ति के स्थानिक-अस्थायी स्केल-स्पेस एक्स्ट्रेमा का पता लगाकर किए गए स्केल चयन के साथ, ब्लॉब की स्थानिक सीमा और अस्थायी अवधि से पूरी तरह मेल खाएगा। | ||
लाप्लासियन ऑपरेटर को लिंडेबर्ग द्वारा स्थानिक-अस्थायी वीडियो डेटा तक विस्तारित किया गया है,<ref name="lindeberg18"/>निम्नलिखित दो स्पैटियो-टेम्पोरल ऑपरेटरों के लिए अग्रणी, जो [[पार्श्व जीनिकुलेट नाभिक]] में नॉन-लैग्ड बनाम लैग्ड न्यूरॉन्स के ग्रहणशील क्षेत्रों के मॉडल का भी गठन करते हैं: | लाप्लासियन ऑपरेटर को लिंडेबर्ग द्वारा स्थानिक-अस्थायी वीडियो डेटा तक विस्तारित किया गया है,<ref name="lindeberg18"/>निम्नलिखित दो स्पैटियो-टेम्पोरल ऑपरेटरों के लिए अग्रणी, जो [[पार्श्व जीनिकुलेट नाभिक]] में नॉन-लैग्ड बनाम लैग्ड न्यूरॉन्स के ग्रहणशील क्षेत्रों के मॉडल का भी गठन करते हैं: | ||
Line 383: | Line 373: | ||
\partial_{tt,\mathrm{norm}} (\nabla_{(x,y),\mathrm{norm}}^2 L) = s^{\gamma_s} \tau^{\gamma_{\tau}} (L_{xxtt} + L_{yytt}). | \partial_{tt,\mathrm{norm}} (\nabla_{(x,y),\mathrm{norm}}^2 L) = s^{\gamma_s} \tau^{\gamma_{\tau}} (L_{xxtt} + L_{yytt}). | ||
</math> | </math> | ||
पहले ऑपरेटर के लिए, स्केल चयन गुणों का उपयोग करना आवश्यक है <math>\gamma_s = 1</math> और <math>\gamma_{\tau} = 1/2</math>, यदि हम चाहते हैं कि यह ऑपरेटर स्थानिक-अस्थायी पैमाने के स्तर पर स्थानिक-अस्थायी पैमाने पर अपना अधिकतम मूल्य मान ले, जो | पहले ऑपरेटर के लिए, स्केल चयन गुणों का उपयोग करना आवश्यक है <math>\gamma_s = 1</math> और <math>\gamma_{\tau} = 1/2</math>, यदि हम चाहते हैं कि यह ऑपरेटर स्थानिक-अस्थायी पैमाने के स्तर पर स्थानिक-अस्थायी पैमाने पर अपना अधिकतम मूल्य मान ले, जो शुरुआत गाऊसी ब्लॉब की स्थानिक सीमा और अस्थायी अवधि को दर्शाता है। दूसरे ऑपरेटर के लिए, स्केल चयन गुणों का उपयोग करने की आवश्यकता है <math>\gamma_s = 1</math> और <math>\gamma_{\tau} = 3/4</math>, यदि हम चाहते हैं कि यह ऑपरेटर स्थानिक-अस्थायी पैमाने के स्तर पर स्थानिक सीमा और पलक झपकते गॉसियन ब्लॉब की लौकिक अवधि को दर्शाते हुए अपने अधिकतम मूल्य को मान ले। | ||
स्थानिक-अस्थायी रुचि बिंदु डिटेक्टरों के रंग विस्तार की जांच एवर्ट्स एट अल द्वारा की गई है।<ref name="everts14"/> | स्थानिक-अस्थायी रुचि बिंदु डिटेक्टरों के रंग विस्तार की जांच एवर्ट्स एट अल द्वारा की गई है।<ref name="everts14"/> | ||
== ग्रन्थसूची == | == ग्रन्थसूची == | ||
Line 694: | Line 682: | ||
}} | }} | ||
== संदर्भ कार्यान्वयन == | == संदर्भ कार्यान्वयन == |
Revision as of 18:52, 18 July 2023
Feature detection |
---|
Edge detection |
Corner detection |
Blob detection |
Ridge detection |
Hough transform |
Structure tensor |
Affine invariant feature detection |
Feature description |
Scale space |
कॉर्नर डिटेक्शन दृष्टिकोण है जिसका उपयोग कंप्यूटर दृष्टि सिस्टम के भीतर कुछ प्रकार के फ़ीचर डिटेक्शन (कंप्यूटर विज़न) को निकालने और छवि की सामग्री का अनुमान लगाने के लिए किया जाता है। कॉर्नर डिटेक्शन का उपयोग अक्सर गति पहचान, छवि पंजीकरण, वीडियो ट्रैकिंग, फोटोग्राफिक मोज़ेक, पैनोरमा सिलाई, 3 डी पुनर्निर्माण और ऑब्जेक्ट पहचान में किया जाता है। कॉर्नर डिटेक्शन रुचि बिंदु डिटेक्शन के विषय के साथ ओवरलैप होता है।
औपचारिकीकरण
कोने को दो किनारों के प्रतिच्छेदन के रूप में परिभाषित किया जा सकता है। कोने को बिंदु के रूप में भी परिभाषित किया जा सकता है जिसके लिए बिंदु के स्थानीय पड़ोस में दो प्रमुख और अलग-अलग किनारे की दिशाएं हैं।
रुचि बिंदु छवि में बिंदु है जिसकी अच्छी तरह से परिभाषित स्थिति होती है और इसे मजबूती से पहचाना जा सकता है। इसका मतलब यह है कि रुचि का बिंदु कोना हो सकता है, लेकिन यह उदाहरण के लिए, स्थानीय तीव्रता का अलग बिंदु अधिकतम या न्यूनतम, रेखा का अंत या वक्र पर बिंदु भी हो सकता है जहां वक्रता स्थानीय रूप से अधिकतम होती है।
व्यवहार में, अधिकांश तथाकथित कोने का पता लगाने के तरीके सामान्य रूप से रुचि बिंदुओं का पता लगाते हैं, और वास्तव में, कोने और रुचि बिंदु शब्द का उपयोग साहित्य के माध्यम से कमोबेश दूसरे के स्थान पर किया जाता है।[1]परिणामस्वरूप, यदि केवल कोनों का पता लगाना है तो यह निर्धारित करने के लिए पता लगाए गए रुचि बिंदुओं का स्थानीय विश्लेषण करना आवश्यक है कि इनमें से कौन सा वास्तविक कोने हैं। किनारों का पता लगाने के उदाहरण जिनका उपयोग पोस्ट-प्रोसेसिंग के साथ कोनों का पता लगाने के लिए किया जा सकता है, किर्श संचालक और फ़्री-चेन मास्किंग सेट हैं।[2] कोने, रुचि बिंदु और फीचर का साहित्य में परस्पर उपयोग किया जाता है, जिससे समस्या भ्रमित हो जाती है। विशेष रूप से, ऐसे कई बूँद का पता लगाना हैं जिन्हें रुचि बिंदु ऑपरेटर के रूप में संदर्भित किया जा सकता है, लेकिन जिन्हें कभी-कभी गलती से कॉर्नर डिटेक्टर के रूप में संदर्भित किया जाता है। इसके अलावा, लम्बी वस्तुओं की उपस्थिति को पकड़ने के लिए रिज का पता लगाने की धारणा मौजूद है।
कॉर्नर डिटेक्टर आमतौर पर बहुत मजबूत नहीं होते हैं और पहचान कार्य पर व्यक्तिगत त्रुटियों के प्रभाव को हावी होने से रोकने के लिए अक्सर बड़े अतिरेक की आवश्यकता होती है।
कोने डिटेक्टर की गुणवत्ता का निर्धारण विभिन्न प्रकाश व्यवस्था, अनुवाद, रोटेशन और अन्य परिवर्तनों की स्थितियों के तहत कई समान छवियों में ही कोने का पता लगाने की क्षमता है।
छवियों में कोने का पता लगाने का सरल तरीका सहसंबंध का उपयोग करना है, लेकिन यह कम्प्यूटेशनल रूप से बहुत महंगा और उप-इष्टतम हो जाता है। अक्सर उपयोग किया जाने वाला वैकल्पिक दृष्टिकोण हैरिस और स्टीफंस (नीचे) द्वारा प्रस्तावित विधि पर आधारित है, जो बदले में मोरावेक द्वारा विधि का सुधार है।
मोरवेक कॉर्नर डिटेक्शन एल्गोरिदम
यह सबसे शुरुआती कोने का पता लगाने वाले एल्गोरिदम में से है और कोने को कम आत्म-समानता वाले बिंदु के रूप में परिभाषित करता है।[3]एल्गोरिदम यह देखने के लिए छवि में प्रत्येक पिक्सेल का परीक्षण करता है कि कोई कोना मौजूद है या नहीं, यह विचार करके कि पिक्सेल पर केंद्रित पैच पास के, बड़े पैमाने पर ओवरलैपिंग पैच के समान है। समानता को दो पैच के संबंधित पिक्सेल के बीच वर्ग अंतर (एसएसडी) का योग लेकर मापा जाता है। कम संख्या अधिक समानता दर्शाती है.
यदि पिक्सेल एकसमान तीव्रता के क्षेत्र में है, तो आस-पास के पैच समान दिखेंगे। यदि पिक्सेल किनारे पर है, तो किनारे के लंबवत दिशा में पास के पैच काफी अलग दिखेंगे, लेकिन किनारे के समानांतर दिशा में पास के पैच के परिणामस्वरूप केवल छोटा सा बदलाव होगा। यदि पिक्सेल सभी दिशाओं में भिन्नता वाले फीचर पर है, तो आस-पास का कोई भी पैच समान नहीं दिखेगा।
कोने की ताकत को पैच और उसके पड़ोसियों (क्षैतिज, ऊर्ध्वाधर और दो विकर्णों पर) के बीच सबसे छोटे एसएसडी के रूप में परिभाषित किया गया है। कारण यह है कि यदि यह संख्या अधिक है, तो सभी बदलावों में भिन्नता या तो इसके बराबर होती है या इससे बड़ी होती है, इसलिए कैप्चरिंग से आस-पास के सभी पैच अलग दिखते हैं।
यदि सभी स्थानों के लिए कोने की ताकत संख्या की गणना की जाती है, तो यह स्थान के लिए स्थानीय रूप से अधिकतम है, यह दर्शाता है कि इसमें रुचि की विशेषता मौजूद है।
जैसा कि मोरावेक ने बताया है, इस ऑपरेटर के साथ मुख्य समस्याओं में से यह है कि यह समदैशिक नहीं है: यदि कोई किनारा मौजूद है जो पड़ोसियों (क्षैतिज, ऊर्ध्वाधर या विकर्ण) की दिशा में नहीं है, तो सबसे छोटा एसएसडी होगा बड़ा और किनारे को गलत तरीके से रुचि बिंदु के रूप में चुना जाएगा।[4]
हैरिस और स्टीफेंस / शि-तोमासी कोने का पता लगाने वाले एल्गोरिदम
हैरिस और स्टीफंस[5]स्थानांतरित पैच का उपयोग करने के बजाय, सीधे दिशा के संबंध में कोने के स्कोर के अंतर पर विचार करके मोरावेक के कोने डिटेक्टर में सुधार किया गया। (इस कोने के स्कोर को अक्सर ऑटोसहसंबंध के रूप में जाना जाता है, क्योंकि इस शब्द का उपयोग उस पेपर में किया जाता है जिसमें इस डिटेक्टर का वर्णन किया गया है। हालांकि, पेपर में गणित स्पष्ट रूप से इंगित करता है कि वर्ग अंतर के योग का उपयोग किया जाता है।)
व्यापकता की हानि के बिना, हम मान लेंगे कि ग्रेस्केल 2-आयामी छवि का उपयोग किया जाता है। बता दें कि यह छवि दी गई है . क्षेत्र पर छवि पैच लेने पर विचार करें और इसे स्थानांतरित करना . इन दो पैच के बीच वर्ग अंतर (एसएसडी) का भारित योग दर्शाया गया है , द्वारा दिया गया है:
टेलर श्रृंखला द्वारा अनुमान लगाया जा सकता है। होने देना और की आंशिक छवि व्युत्पन्न हो , ऐसा है कि
इससे सन्निकटन उत्पन्न होता है
जिसे मैट्रिक्स रूप में लिखा जा सकता है:
जहां ए संरचना टेंसर है,
शब्दों में, हम छवि तीव्रता के आंशिक व्युत्पन्न का सहप्रसरण पाते हैं के प्रति सम्मान के साथ और कुल्हाड़ियाँ
कोण कोष्ठक औसत को दर्शाते हैं (अर्थात् संक्षेपण)। ). छवि पर स्लाइड करने वाली विंडो के प्रकार को दर्शाता है। यदि बॉक्स ब्लर का उपयोग किया जाता है तो प्रतिक्रिया एनिसोट्रॉपिक होगी, लेकिन यदि गॉसियन फ़ंक्शन का उपयोग किया जाता है, तो प्रतिक्रिया आइसोट्रोपिक होगी।
कोने (या सामान्य तौर पर रुचि बिंदु) की विशेषता बड़ी विविधता है वेक्टर की सभी दिशाओं में . के eigenvalues का विश्लेषण करके , इस लक्षण वर्णन को निम्नलिखित तरीके से व्यक्त किया जा सकता है: रुचि बिंदु के लिए दो बड़े eigenvalues होने चाहिए। स्वदेशी मूल्यों के परिमाण के आधार पर, इस तर्क के आधार पर निम्नलिखित अनुमान लगाए जा सकते हैं:
- अगर और फिर यह पिक्सेल रुचि की कोई विशेषता नहीं है.
- अगर और कुछ बड़ा सकारात्मक मूल्य है, तो बढ़त पाई जाती है।
- अगर और बड़े सकारात्मक मान हैं, तो कोना मिल जाता है।
हैरिस और स्टीफंस ने ध्यान दिया कि आइगेनवैल्यू की सटीक गणना कम्प्यूटेशनल रूप से महंगी है, क्योंकि इसके लिए वर्गमूल की गणना की आवश्यकता होती है, और इसके बजाय सुझाव देते हैं निम्नलिखित फ़ंक्शन , कहाँ ट्यून करने योग्य संवेदनशीलता पैरामीटर है:
इसलिए, एल्गोरिथ्म[6]वास्तव में मैट्रिक्स के eigenvalue अपघटन की गणना करने की आवश्यकता नहीं है और इसके बजाय यह निर्धारक और ट्रेस (रैखिक बीजगणित) का मूल्यांकन करने के लिए पर्याप्त है ढूँढ़ने के लिए कोने, या सामान्यतः रुचि बिंदु।
शि-तोमासी[7]कॉर्नर डिटेक्टर सीधे गणना करता है क्योंकि कुछ मान्यताओं के तहत, ट्रैकिंग के लिए कोने अधिक स्थिर होते हैं। ध्यान दें कि इस विधि को कभी-कभी कनाडे-टोमासी कॉर्नर डिटेक्टर के रूप में भी जाना जाता है।
का मान है अनुभवजन्य रूप से निर्धारित किया जाना है, और साहित्य में 0.04-0.15 की सीमा में मूल्यों को व्यवहार्य बताया गया है।
कोई भी पैरामीटर सेट करने से बच सकता है नोबल का उपयोग करके[8]कोने का माप जो eigenvalues के अनुकूल माध्य के बराबर है:
छोटा सा सकारात्मक स्थिरांक होना।
अगर कोने की स्थिति के लिए सटीक मैट्रिक्स के रूप में व्याख्या की जा सकती है, कोने की स्थिति के लिए परिशुद्धता मैट्रिक्स है , अर्थात।
के eigenvalues का योग , जिसे उस मामले में कोने की स्थिति के सामान्यीकृत विचरण (या कुल अनिश्चितता) के रूप में व्याख्या किया जा सकता है, नोबल के कोने के माप से संबंधित है निम्नलिखित समीकरण द्वारा:
फोरस्टनर कॉर्नर डिटेक्टर
कुछ मामलों में, कोई उपपिक्सेल सटीकता के साथ कोने के स्थान की गणना करना चाह सकता है। अनुमानित समाधान प्राप्त करने के लिए, फ़ोरस्टनर[9] एल्गोरिदम किसी दिए गए विंडो में कोने की सभी स्पर्शरेखा रेखाओं के निकटतम बिंदु को हल करता है और यह न्यूनतम-वर्ग समाधान है। एल्गोरिदम इस तथ्य पर निर्भर करता है कि आदर्श कोने के लिए, स्पर्शरेखा रेखाएं ही बिंदु पर प्रतिच्छेद करती हैं।
स्पर्श रेखा का समीकरण पिक्सेल पर द्वारा दिया गया है:
कहाँ छवि का ग्रेडिएंट वेक्टर है पर .
बिंदु विंडो में सभी स्पर्शरेखा रेखाओं के सबसे निकट है:
से दूरी स्पर्शरेखा रेखाओं के लिए ग्रेडिएंट परिमाण द्वारा भारित किया जाता है, इस प्रकार मजबूत ग्रेडिएंट वाले पिक्सेल से गुजरने वाली स्पर्शरेखाओं को अधिक महत्व दिया जाता है।
के लिए समाधान :
के रूप में परिभाषित किया गया है:
के संबंध में विभेदन करके इस समीकरण को न्यूनतम किया जा सकता है और इसे 0 के बराबर सेट करना:
ध्यान दें कि संरचना टेंसर है. समीकरण का हल पाने के लिए, उलटा होना चाहिए, जिसका तात्पर्य यह है पूर्ण रैंक (रैंक 2) होना चाहिए। इस प्रकार, समाधान
केवल वहीं मौजूद है जहां विंडो में वास्तविक कोना मौजूद है .
इस कोने के स्थानीयकरण विधि के लिए स्वचालित पैमाने का चयन करने की पद्धति लिंडेबर्ग द्वारा प्रस्तुत की गई है[10][11]सामान्यीकृत अवशिष्ट को कम करके
तराजू के ऊपर. इस प्रकार, विधि में शोर छवि डेटा के लिए मोटे पैमाने के स्तर और आदर्श कोने जैसी संरचनाओं के लिए बेहतर पैमाने के स्तर का चयन करके, छवि डेटा में शोर स्तर के लिए छवि ग्रेडिएंट्स की गणना के लिए स्केल स्तरों को स्वचालित रूप से अनुकूलित करने की क्षमता होती है।
टिप्पणियाँ:
- न्यूनतम-वर्ग समाधान गणना में अवशिष्ट के रूप में देखा जा सकता है: यदि , तो कोई त्रुटि नहीं थी.
- इस एल्गोरिदम को स्पर्शरेखा रेखाओं को सामान्य रेखाओं में बदलकर वृत्ताकार विशेषताओं के केंद्रों की गणना करने के लिए संशोधित किया जा सकता है।
मल्टी-स्केल हैरिस ऑपरेटर
दूसरे क्षण मैट्रिक्स की गणना (कभी-कभी इसे संरचना टेंसर भी कहा जाता है) हैरिस ऑपरेटर में, छवि डेरिवेटिव की गणना की आवश्यकता होती है छवि डोमेन के साथ-साथ स्थानीय पड़ोस पर इन डेरिवेटिव के गैर-रेखीय संयोजनों का योग। चूंकि डेरिवेटिव की गणना में आमतौर पर स्केल-स्पेस स्मूथिंग का चरण शामिल होता है, हैरिस ऑपरेटर की परिचालन परिभाषा के लिए दो स्केल पैरामीटर की आवश्यकता होती है: (i) इमेज डेरिवेटिव की गणना से पहले स्मूथिंग के लिए स्थानीय स्केल, और (ii) एकीकरण स्केल एकीकृत छवि डिस्क्रिप्टर में व्युत्पन्न ऑपरेटरों पर गैर-रेखीय संचालन को संचित करने के लिए।
साथ मूल छवि तीव्रता को दर्शाते हुए, आइए के स्केल स्पेस प्रतिनिधित्व को निरूपित करें गॉसियन कर्नेल के साथ कनवल्शन द्वारा प्राप्त किया गया
स्थानीय पैमाने के पैरामीटर के साथ :
और जाने और के आंशिक व्युत्पन्न को निरूपित करें . इसके अलावा, गाऊसी विंडो फ़ंक्शन का परिचय दें एकीकरण स्केल पैरामीटर के साथ . फिर, स्ट्रक्चर टेंसर#मल्टी-स्केल स्ट्रक्चर टेंसर|मल्टी-स्केल सेकेंड-मोमेंट मैट्रिक्स[12][13][14]के रूप में परिभाषित किया जा सकता है
फिर, हम eigenvalues की गणना कर सकते हैं के eigenvalues के समान तरीके से और मल्टी-स्केल हैरिस कॉर्नर माप को इस प्रकार परिभाषित करें
स्थानीय पैमाने के पैरामीटर के चयन के संबंध में और एकीकरण स्केल पैरामीटर , ये स्केल पैरामीटर आमतौर पर सापेक्ष एकीकरण स्केल पैरामीटर द्वारा युग्मित होते हैं ऐसा है कि , कहाँ आमतौर पर अंतराल में चुना जाता है .[12][13]इस प्रकार, हम बहु-स्तरीय हैरिस कॉर्नर माप की गणना कर सकते हैं किसी भी पैमाने पर मल्टी-स्केल कॉर्नर डिटेक्टर प्राप्त करने के लिए स्केल-स्पेस में, जो इमेज डोमेन में विभिन्न आकारों की कॉर्नर संरचनाओं पर प्रतिक्रिया करता है।
व्यवहार में, इस मल्टी-स्केल कॉर्नर डिटेक्टर को अक्सर स्केल चयन चरण द्वारा पूरक किया जाता है, जहां स्केल-सामान्यीकृत लाप्लासियन ऑपरेटर[11][12]: स्केल-स्पेस में हर पैमाने पर गणना की जाती है और स्वचालित स्केल चयन (हैरिस-लाप्लास ऑपरेटर) के साथ स्केल अनुकूलित कोने बिंदुओं की गणना उन बिंदुओं से की जाती है जो साथ हैं:[15]
- मल्टी-स्केल कोने माप की स्थानिक मैक्सिमा
- स्केल-सामान्यीकृत लाप्लासियन ऑपरेटर के पैमाने पर स्थानीय मैक्सिमा या मिनिमा[11] :
स्तर वक्र वक्रता दृष्टिकोण
कोने का पता लगाने का पुराना तरीका उन बिंदुओं का पता लगाना है जहां आइसोलिन्स की वक्रता और ढाल परिमाण साथ उच्च हैं।[16][17] ऐसे बिंदुओं का पता लगाने का अलग तरीका पुनर्स्केल स्तर वक्र वक्रता (स्तर वक्र वक्रता का उत्पाद और तीन की शक्ति तक बढ़ाए गए ढाल परिमाण) की गणना करना है।
और कुछ पैमाने पर इस अंतर अभिव्यक्ति के सकारात्मक मैक्सिमा और नकारात्मक मिनिमा का पता लगाने के लिए स्केल स्पेस प्रतिनिधित्व में मूल छवि का.[10][11] हालाँकि, एकल पैमाने पर पुनर्स्केल स्तर वक्र वक्रता इकाई की गणना करते समय मुख्य समस्या यह है कि यह शोर और स्केल स्तर की पसंद के प्रति संवेदनशील हो सकता है। की गणना करना बेहतर तरीका है-सामान्यीकृत पुनर्स्केल्ड स्तर वक्र वक्रता
साथ और इस अभिव्यक्ति के हस्ताक्षरित स्केल-स्पेस एक्स्ट्रेमा का पता लगाने के लिए, ये ऐसे बिंदु और स्केल हैं जो स्पेस और स्केल दोनों के संबंध में सकारात्मक मैक्सिमा और नकारात्मक मिनिमा हैं।
मोटे पैमाने पर स्थानीयकरण त्रुटि में वृद्धि को संभालने के लिए पूरक स्थानीयकरण कदम के साथ संयोजन में।[10][11][12]इस तरह, बड़े पैमाने के मूल्य बड़े स्थानिक विस्तार वाले गोल कोनों से जुड़े होंगे जबकि छोटे पैमाने के मूल्य छोटे स्थानिक विस्तार वाले तेज कोनों से जुड़े होंगे। यह दृष्टिकोण स्वचालित स्केल चयन वाला पहला कॉर्नर डिटेक्टर है (ऊपर हैरिस-लाप्लास ऑपरेटर से पहले) और इसका उपयोग छवि डोमेन में बड़े पैमाने पर बदलाव के तहत कोनों को ट्रैक करने के लिए किया गया है।[18]और जियोन (मनोविज्ञान)-आधारित वस्तु पहचान के लिए संरचनात्मक छवि सुविधाओं की गणना करने के लिए किनारों से कोने की प्रतिक्रियाओं का मिलान करने के लिए।[19]
गॉसियन का लाप्लासियन, गॉसियन के अंतर और हेसियन स्केल-स्पेस ब्याज बिंदुओं के निर्धारक
लकड़ी का लट्ठा[11][12][15]गॉसियन, DoG के लाप्लासियन का संक्षिप्त रूप है[20]गॉसियन के अंतर के लिए संक्षिप्त शब्द है (DoG LoG का अनुमान है), और DoH हेसियन के निर्धारक के लिए संक्षिप्त शब्द है।[11]ये सभी स्केल-अपरिवर्तनीय ब्याज बिंदु स्केल-सामान्यीकृत अंतर अभिव्यक्तियों के स्केल-स्पेस एक्स्ट्रेमा का पता लगाकर निकाले जाते हैं, यानी, स्केल-स्पेस में बिंदु जहां संबंधित स्केल-सामान्यीकृत अंतर अभिव्यक्तियां अंतरिक्ष और स्केल दोनों के संबंध में स्थानीय एक्स्स्ट्रेमा मानती हैं।[11]: कहाँ उपयुक्त पैमाने-सामान्यीकृत अंतर इकाई को दर्शाता है (नीचे परिभाषित)।
इन डिटेक्टरों को ब्लॉब डिटेक्शन में अधिक पूरी तरह से वर्णित किया गया है। गॉसियन का स्केल-सामान्यीकृत लाप्लासियन और गॉसियन विशेषताओं का अंतर (लिंडेबर्ग 1994, 1998; लोव 2004)[11][12][20]
जरूरी नहीं कि अत्यधिक चयनात्मक विशेषताएं बनाएं, क्योंकि ये ऑपरेटर किनारों के पास भी प्रतिक्रियाएं दे सकते हैं। गॉसियन डिटेक्टर के अंतर की कोने का पता लगाने की क्षमता में सुधार करने के लिए, स्केल-अपरिवर्तनीय सुविधा परिवर्तन में उपयोग किए जाने वाले फ़ीचर डिटेक्टर[20]इसलिए सिस्टम अतिरिक्त पोस्ट-प्रोसेसिंग चरण का उपयोग करता है, जहां डिटेक्शन स्केल पर छवि के हेस्सियन मैट्रिक्स के आइगेनवैल्यू की जांच हैरिस ऑपरेटर की तरह ही की जाती है। यदि eigenvalues का अनुपात बहुत अधिक है, तो स्थानीय छवि को बहुत किनारे जैसा माना जाता है, इसलिए सुविधा को अस्वीकार कर दिया जाता है। इसके अलावा गॉसियन फ़ीचर डिटेक्टर के लिंडेबर्ग के लाप्लासियन को किनारों के पास प्रतिक्रियाओं को दबाने के लिए पूरक अंतर अपरिवर्तनीय पर पूरक थ्रेशोल्डिंग शामिल करने के लिए परिभाषित किया जा सकता है।[21] हेसियन ऑपरेटर का स्केल-सामान्यीकृत निर्धारक (लिंडेबर्ग 1994, 1998)[11][12]: दूसरी ओर, अच्छी तरह से स्थानीयकृत छवि सुविधाओं के लिए अत्यधिक चयनात्मक है और केवल तभी प्रतिक्रिया करता है जब दो छवि दिशाओं में महत्वपूर्ण ग्रे-स्तर भिन्नताएं होती हैं[11][14]और इस और अन्य मामलों में गॉसियन के लाप्लासियन की तुलना में बेहतर रुचि बिंदु डिटेक्टर है। हेसियन का निर्धारक एफ़िन सहसंयोजक विभेदक अभिव्यक्ति है और इसमें लाप्लासियन ऑपरेटर की तुलना में एफ़िन छवि परिवर्तनों के तहत बेहतर पैमाने पर चयन गुण हैं। (लिंडेबर्ग 2013, 2015)।[21][22] प्रयोगात्मक रूप से इसका तात्पर्य यह है कि हेसियन रुचि बिंदुओं के निर्धारक में लाप्लासियन रुचि बिंदुओं की तुलना में स्थानीय छवि विरूपण के तहत बेहतर दोहराव गुण होते हैं, जिसके परिणामस्वरूप उच्च दक्षता स्कोर और कम 1-परिशुद्धता (सूचना पुनर्प्राप्ति) स्कोर के संदर्भ में छवि-आधारित मिलान का बेहतर प्रदर्शन होता है। .[21]
इन और अन्य स्केल-स्पेस इंटरेस्ट पॉइंट डिटेक्टरों के स्केल चयन गुणों, एफ़िन ट्रांसफ़ॉर्मेशन गुणों और प्रयोगात्मक गुणों का विस्तार से विश्लेषण किया गया है (लिंडेबर्ग 2013, 2015)।[21][22]
लिंडेबर्ग हेसियन फीचर ताकत उपायों के आधार पर स्केल-स्पेस रुचि बिंदु
हेसियन मैट्रिक्स के संरचनात्मक रूप से समान गुणों से प्रेरित समारोह का और दूसरे क्षण का मैट्रिक्स (संरचना टेंसर) , जैसे कि कर सकते हैं एफ़िन छवि विकृतियों के तहत उनके समान परिवर्तन गुणों के संदर्भ में प्रकट होना[13][21]:,
- ,
लिंडेबर्ग (2013, 2015)[21][22]हेस्सियन मैट्रिक्स से संबंधित तरीकों से चार फीचर ताकत उपायों को परिभाषित करने का प्रस्ताव किया गया है क्योंकि हैरिस और शि-एंड-टोमासी ऑपरेटरों को संरचना टेंसर (दूसरे-पल मैट्रिक्स) से परिभाषित किया गया है। विशेष रूप से, उन्होंने निम्नलिखित अहस्ताक्षरित और हस्ताक्षरित हेस्सियन सुविधा शक्ति उपायों को परिभाषित किया:
- अहस्ताक्षरित हेसियन सुविधा शक्ति माप I:
- हस्ताक्षरित हेस्सियन सुविधा शक्ति माप I:
- अहस्ताक्षरित हेसियन सुविधा शक्ति माप II:
- हस्ताक्षरित हेस्सियन सुविधा शक्ति माप II:
कहाँ और हेसियन मैट्रिक्स के ट्रेस और निर्धारक को निरूपित करें स्केल-स्पेस प्रतिनिधित्व का किसी भी पैमाने पर , जबकि
- हेसियन मैट्रिक्स के eigenvalues को निरूपित करें।[23]
अहस्ताक्षरित हेसियन सुविधा शक्ति माप सकारात्मक मूल्यों द्वारा स्थानीय चरम सीमा पर प्रतिक्रिया करता है और काठी बिंदुओं के प्रति संवेदनशील नहीं है, जबकि हस्ताक्षरित हेसियन सुविधा शक्ति मापती है नकारात्मक मूल्यों द्वारा सैडल बिंदुओं पर अतिरिक्त प्रतिक्रिया करता है। अहस्ताक्षरित हेसियन सुविधा शक्ति माप सिग्नल की स्थानीय ध्रुवीयता के प्रति असंवेदनशील है, जबकि हस्ताक्षरित हेसियन सुविधा शक्ति मापती है सिग्नल की स्थानीय ध्रुवता पर उसके आउटपुट के संकेत द्वारा प्रतिक्रिया करता है।
लिंडेबर्ग में (2015)[21]इन चार विभेदक संस्थाओं को स्केल-स्पेस एक्स्ट्रेमा डिटेक्शन के आधार पर स्थानीय पैमाने के चयन के साथ जोड़ा गया था
या स्केल लिंकिंग। इसके अलावा, हस्ताक्षरित और अहस्ताक्षरित हेसियन में ताकत के उपाय हैं और पूरक थ्रेशोल्डिंग के साथ जोड़ा गया था .
12 पोस्टर वाले पोस्टर डेटासेट पर स्केलिंग ट्रांसफॉर्मेशन के तहत छवि मिलान पर प्रयोगों द्वारा, 6 के स्केलिंग कारक तक स्केलिंग ट्रांसफॉर्मेशन पर मल्टी-व्यू मिलान और स्थानीय छवि डिस्क्रिप्टर के साथ 45 डिग्री के तिरछे कोण तक दिशा भिन्नता को देखने के लिए। स्केल-इनवेरिएंट फीचर में शुद्ध छवि डिस्क्रिप्टर छवि पिरामिड या मूल एसयूआरएफ से परिभाषित मूल एसआईएफटी के बजाय गाऊसी व्युत्पन्न ऑपरेटरों (गॉस-एसआईएफटी और गॉस-एसयूआरएफ) के संदर्भ में छवि माप के लिए मजबूत फीचर ऑपरेटरों को बदलते हैं और तेज करते हैं। हार वेवलेट्स से, यह दिखाया गया कि अहस्ताक्षरित हेसियन सुविधा शक्ति माप के आधार पर स्केल-स्पेस ब्याज बिंदु का पता लगाना हेसियन के निर्धारक से प्राप्त स्केल-स्पेस ब्याज बिंदुओं की तुलना में सर्वोत्तम प्रदर्शन और बेहतर प्रदर्शन की अनुमति दी गई . दोनों अहस्ताक्षरित हेस्सियन सुविधा शक्ति माप , हस्ताक्षरित हेसियन सुविधा शक्ति माप और हेस्सियन का निर्धारक गॉसियन के लाप्लासियन की तुलना में बेहतर प्रदर्शन की अनुमति दी गई . जब स्केल लिंकिंग और पूरक थ्रेशोल्डिंग के साथ जोड़ा जाता है , हस्ताक्षरित हेसियन सुविधा शक्ति माप इसके अतिरिक्त गॉसियन के लाप्लासियन की तुलना में बेहतर प्रदर्शन की अनुमति दी गई .
इसके अलावा, यह दिखाया गया कि हेसियन मैट्रिक्स से परिभाषित ये सभी विभेदक स्केल-स्पेस ब्याज बिंदु डिटेक्टर संरचना से परिभाषित हैरिस और शि-एंड-टोमासी ऑपरेटरों की तुलना में बड़ी संख्या में ब्याज बिंदुओं का पता लगाने और बेहतर मिलान प्रदर्शन की अनुमति देते हैं। टेंसर (दूसरे क्षण का मैट्रिक्स)।
इन चार हेसियन फीचर शक्ति उपायों और स्केल-स्पेस ब्याज बिंदुओं का पता लगाने के लिए अन्य अंतर इकाइयों के स्केल चयन गुणों का सैद्धांतिक विश्लेषण, जिसमें गॉसियन के लाप्लासियन और हेसियन के निर्धारक शामिल हैं, लिंडेबर्ग (2013) में दिया गया है।[22]और लिंडेबर्ग (2015) में उनके एफ़िन परिवर्तन गुणों के साथ-साथ प्रयोगात्मक गुणों का विश्लेषण।[21]
एफ़िन-अनुकूलित ब्याज बिंदु ऑपरेटर
स्वचालित स्केल चयन के साथ मल्टी-स्केल हैरिस ऑपरेटर से प्राप्त ब्याज बिंदु स्थानिक डोमेन में अनुवाद, रोटेशन और समान पुनर्स्केलिंग के लिए अपरिवर्तनीय हैं। हालाँकि, जो छवियाँ कंप्यूटर विज़न सिस्टम के लिए इनपुट का निर्माण करती हैं, वे भी परिप्रेक्ष्य विकृतियों के अधीन हैं। रुचि बिंदु ऑपरेटर प्राप्त करने के लिए जो परिप्रेक्ष्य परिवर्तनों के लिए अधिक मजबूत है, प्राकृतिक दृष्टिकोण फीचर डिटेक्टर तैयार करना है जो कि परिवर्तनों को प्रभावित करने के लिए अपरिवर्तनीय है। व्यवहार में, एफ़िन अपरिवर्तनीय रुचि बिंदुओं को एफ़िन आकार अनुकूलन लागू करके प्राप्त किया जा सकता है जहां स्मूथिंग कर्नेल का आकार रुचि बिंदु के आसपास स्थानीय छवि संरचना से मेल खाने के लिए पुनरावृत्त रूप से विकृत होता है या समकक्ष रूप से स्थानीय छवि पैच पुनरावृत्त रूप से विकृत होता है जबकि स्मूथिंग का आकार होता है कर्नेल घूर्णी रूप से सममित रहता है (लिंडेबर्ग 1993, 2008; लिंडेबर्ग और गार्डिंग 1997; मिकोलाजस्क और श्मिट 2004)।[12][13][14][15]इसलिए, आमतौर पर उपयोग किए जाने वाले मल्टी-स्केल हैरिस ऑपरेटर के अलावा, इस आलेख में सूचीबद्ध अन्य कोने डिटेक्टरों के साथ-साथ ब्लॉब डिटेक्शन जैसे गॉसियन ऑपरेटर के लाप्लासियन/अंतर, हेसियन के निर्धारक, पर एफ़िन आकार अनुकूलन लागू किया जा सकता है।[14]और हेस्सियन-लाप्लास ऑपरेटर।
वैंग और ब्रैडी कॉर्नर डिटेक्शन एल्गोरिदम
वैंग और ब्रैडी[24]डिटेक्टर छवि को सतह मानता है, और उन स्थानों की तलाश करता है जहां छवि किनारे पर बड़ी वक्रता होती है। दूसरे शब्दों में, एल्गोरिदम उन स्थानों की तलाश करता है जहां किनारा तेजी से दिशा बदलता है। कोने का स्कोर, , द्वारा दिया गया है:
कहाँ ग्रेडिएंट के लंबवत इकाई वेक्टर है, और यह निर्धारित करता है कि डिटेक्टर कितना एज-फ़ोबिक है। लेखक यह भी ध्यान देते हैं कि शोर को कम करने के लिए स्मूथिंग (गॉसियन का सुझाव दिया गया है) की आवश्यकता है।
स्मूथिंग भी कोनों के विस्थापन का कारण बनती है, इसलिए लेखक 90 डिग्री के कोने के विस्थापन के लिए अभिव्यक्ति प्राप्त करते हैं, और इसे पहचाने गए कोनों पर सुधार कारक के रूप में लागू करते हैं।
सुसान कॉर्नर डिटेक्टर
सुसान[25]यह संक्षिप्त शब्द है जो नाभिक को आत्मसात करने वाले सबसे छोटे एकमूल्य खंड के लिए खड़ा है। यह विधि 1994 के यूके पेटेंट का विषय है जो अब लागू नहीं है।[26] सुविधा का पता लगाने के लिए, सुसान परीक्षण किए जाने वाले पिक्सेल (नाभिक) के ऊपर गोलाकार मास्क लगाता है। मुखौटे का क्षेत्र है , और इस मास्क में पिक्सेल का प्रतिनिधित्व किया जाता है . केन्द्रक पर है . तुलना फ़ंक्शन का उपयोग करके प्रत्येक पिक्सेल की तुलना नाभिक से की जाती है:
कहाँ चमक अंतर सीमा है,[27] पिक्सेल की चमक है और घातांक की शक्ति अनुभवजन्य रूप से निर्धारित की गई है। इस फ़ंक्शन में चिकने आयताकार फ़ंक्शन | टॉप-हैट या आयताकार फ़ंक्शन की उपस्थिति होती है। सुसान का क्षेत्रफल इस प्रकार दिया गया है:
अगर तो, आयताकार फलन है मास्क में पिक्सेल की संख्या है जो अंदर हैं नाभिक का. सुसान ऑपरेटर की प्रतिक्रिया इस प्रकार दी गई है:
कहाँ को 'ज्यामितीय सीमा' नाम दिया गया है। दूसरे शब्दों में, SUSAN ऑपरेटर का स्कोर केवल तभी सकारात्मक होता है जब क्षेत्र काफी छोटा हो। स्थानीय स्तर पर सबसे छोटा SUSAN गैर-अधिकतम दमन का उपयोग करके पाया जा सकता है, और यह संपूर्ण SUSAN ऑपरेटर है।
मूल्य यह निर्धारित करता है कि यूनीवैल्यू सेगमेंट का हिस्सा माने जाने से पहले नाभिक के समान बिंदु कितने समान होने चाहिए। का मान है यूनीवैल्यू सेगमेंट का न्यूनतम आकार निर्धारित करता है। अगर काफी बड़ा है, तो यह किनारे का पता लगाना बन जाता है।
कोने का पता लगाने के लिए, दो और चरणों का उपयोग किया जाता है। सबसे पहले सुसान का केन्द्रक पाया जाता है। उचित कोने में केन्द्रक नाभिक से दूर होगा। दूसरा चरण इस बात पर जोर देता है कि नाभिक से केन्द्रक के माध्यम से मास्क के किनारे तक की रेखा पर सभी बिंदु सुसान में हैं।
ट्रैजकोविक और हेडली कॉर्नर डिटेक्टर
सुसान के समान ही यह डिटेक्टर[28]आस-पास के पिक्सेल की जांच करके सीधे परीक्षण करता है कि पिक्सेल के नीचे का पैच स्व-समान है या नहीं। विचार किया जाने वाला पिक्सेल है, और वृत्त पर बिंदु है आसपास केंद्रित . बिंदु के विपरीत बिंदु है व्यास के साथ.
प्रतिक्रिया फ़ंक्शन को इस प्रकार परिभाषित किया गया है:
यह तब बड़ा होगा जब ऐसी कोई दिशा नहीं होगी जिसमें केंद्र पिक्सेल व्यास के साथ दो निकटवर्ती पिक्सेल के समान हो। पृथक वृत्त ( मध्यबिंदु वृत्त एल्गोरिथ्म) है, इसलिए अधिक आइसोट्रोपिक प्रतिक्रिया देने के लिए मध्यवर्ती व्यास के लिए प्रक्षेप का उपयोग किया जाता है। चूँकि कोई भी गणना ऊपरी सीमा देती है , क्षैतिज और ऊर्ध्वाधर दिशाओं को पहले यह देखने के लिए जांचा जाता है कि क्या यह पूरी गणना के साथ आगे बढ़ने लायक है .
एएसटी-आधारित फीचर डिटेक्टर
एएसटी त्वरित खंड परीक्षण का संक्षिप्त रूप है। यह परीक्षण सुसान कॉर्नर मानदंड का आरामदायक संस्करण है। वृत्ताकार डिस्क का मूल्यांकन करने के बजाय, त्रिज्या के मध्यबिंदु वृत्त एल्गोरिथ्म में केवल पिक्सेल उम्मीदवार के चारों ओर बिंदु पर विचार किया जाता है। अगर सभी सन्निहित पिक्सेल कम से कम नाभिक से अधिक चमकीले होते हैं अथवा सभी नाभिक से अधिक गहरे , तो नाभिक के नीचे के पिक्सेल को विशेषता माना जाता है। बताया गया है कि यह परीक्षण बहुत स्थिर सुविधाएँ उत्पन्न करता है।[29]जिस क्रम में पिक्सेल का परीक्षण किया जाता है उसका चुनाव तथाकथित बीस प्रश्न है। इस समस्या के लिए लघु निर्णय वृक्षों के निर्माण से सबसे अधिक कम्प्यूटेशनल रूप से कुशल फीचर डिटेक्टर उपलब्ध होते हैं।
एएसटी पर आधारित पहला कॉर्नर डिटेक्शन एल्गोरिदम फास्ट (त्वरित खंड परीक्षण की विशेषताएं) है।[29]यद्यपि सैद्धांतिक रूप से कोई भी मूल्य ले सकता है, FAST केवल 3 के मान का उपयोग करता है (16 पिक्सेल परिधि के वृत्त के अनुरूप), और परीक्षण दिखाते हैं कि सबसे अच्छे परिणाम प्राप्त होते हैं 9 होना। का यह मान सबसे निचला है जिस पर किनारों का पता नहीं चलता है। जिस क्रम में पिक्सेल का परीक्षण किया जाता है वह छवियों के प्रशिक्षण सेट से ID3 एल्गोरिदम द्वारा निर्धारित किया जाता है। भ्रामक रूप से, डिटेक्टर का नाम कुछ हद तक ट्रैजकोविक और हेडली के डिटेक्टर का वर्णन करने वाले पेपर के नाम के समान है।
डिटेक्टरों का स्वचालित संश्लेषण
ट्रुजिलो और ओलाग्यू[30] ऐसी विधि पेश की गई जिसके द्वारा आनुवंशिक प्रोग्रामिंग का उपयोग स्वचालित रूप से छवि ऑपरेटरों को संश्लेषित करने के लिए किया जाता है जो रुचि बिंदुओं का पता लगा सकते हैं। टर्मिनल और फ़ंक्शन सेट में आदिम संचालन होते हैं जो पहले से प्रस्तावित कई मानव निर्मित डिज़ाइनों में आम हैं। फिटनेस कार्य दोहराव दर के माध्यम से प्रत्येक ऑपरेटर की स्थिरता को मापता है, और छवि तल पर ज्ञात बिंदुओं के समान फैलाव को बढ़ावा देता है। उत्तरोत्तर परिवर्तित छवियों के प्रशिक्षण और परीक्षण अनुक्रमों का उपयोग करके विकसित ऑपरेटरों के प्रदर्शन की प्रयोगात्मक रूप से पुष्टि की गई है। इसलिए, प्रस्तावित जीपी एल्गोरिदम को रुचि बिंदु पहचान की समस्या के लिए मानव-प्रतिस्पर्धी माना जाता है।
स्थानिक-अस्थायी रुचि बिंदु डिटेक्टर
लैपटेव और लिंडेबर्ग द्वारा हैरिस ऑपरेटर को अंतरिक्ष-समय तक विस्तारित किया गया है।[31]होने देना द्वारा परिभाषित अनुपात-अस्थायी दूसरे-पल मैट्रिक्स को निरूपित करें
फिर, उपयुक्त विकल्प के लिए , निम्नलिखित स्थानिक-अस्थायी हैरिस माप के स्थानिक-अस्थायी चरम सीमा से स्थानिक-अस्थायी रुचि बिंदुओं का पता लगाया जाता है:
हेसियन ऑपरेटर के निर्धारक को विलेम्स एट अल द्वारा संयुक्त अंतरिक्ष-समय तक बढ़ा दिया गया है [32]और लिंडेबर्ग,[33]निम्नलिखित पैमाने-सामान्यीकृत विभेदक अभिव्यक्ति की ओर अग्रसर:
विलेम्स एट अल के काम में,[32]के अनुरूप सरल अभिव्यक्ति और प्रयोग किया गया। लिंडेबर्ग में,[33]ऐसा दिखाया गया और बेहतर पैमाने के चयन गुणों का तात्पर्य इस अर्थ में है कि चयनित पैमाने के स्तर स्थानिक सीमा के साथ स्थानिक-अस्थायी गाऊसी बूँद से प्राप्त होते हैं और अस्थायी सीमा अंतर अभिव्यक्ति के स्थानिक-अस्थायी स्केल-स्पेस एक्स्ट्रेमा का पता लगाकर किए गए स्केल चयन के साथ, ब्लॉब की स्थानिक सीमा और अस्थायी अवधि से पूरी तरह मेल खाएगा।
लाप्लासियन ऑपरेटर को लिंडेबर्ग द्वारा स्थानिक-अस्थायी वीडियो डेटा तक विस्तारित किया गया है,[33]निम्नलिखित दो स्पैटियो-टेम्पोरल ऑपरेटरों के लिए अग्रणी, जो पार्श्व जीनिकुलेट नाभिक में नॉन-लैग्ड बनाम लैग्ड न्यूरॉन्स के ग्रहणशील क्षेत्रों के मॉडल का भी गठन करते हैं:
पहले ऑपरेटर के लिए, स्केल चयन गुणों का उपयोग करना आवश्यक है और , यदि हम चाहते हैं कि यह ऑपरेटर स्थानिक-अस्थायी पैमाने के स्तर पर स्थानिक-अस्थायी पैमाने पर अपना अधिकतम मूल्य मान ले, जो शुरुआत गाऊसी ब्लॉब की स्थानिक सीमा और अस्थायी अवधि को दर्शाता है। दूसरे ऑपरेटर के लिए, स्केल चयन गुणों का उपयोग करने की आवश्यकता है और , यदि हम चाहते हैं कि यह ऑपरेटर स्थानिक-अस्थायी पैमाने के स्तर पर स्थानिक सीमा और पलक झपकते गॉसियन ब्लॉब की लौकिक अवधि को दर्शाते हुए अपने अधिकतम मूल्य को मान ले।
स्थानिक-अस्थायी रुचि बिंदु डिटेक्टरों के रंग विस्तार की जांच एवर्ट्स एट अल द्वारा की गई है।[34]
ग्रन्थसूची
- ↑ Andrew Willis and Yunfeng Sui (2009). "An Algebraic Model for fast Corner Detection". 2009 IEEE 12th International Conference on Computer Vision. IEEE. pp. 2296–2302. doi:10.1109/ICCV.2009.5459443. ISBN 978-1-4244-4420-5.
- ↑ Shapiro, Linda and George C. Stockman (2001). Computer Vision, p. 257. Prentice Books, Upper Saddle River. ISBN 0-13-030796-3.
- ↑ H. Moravec (1980). "Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover". Tech Report CMU-RI-TR-3 Carnegie-Mellon University, Robotics Institute.
- ↑ Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover, Hans Moravec, March 1980, Computer Science Department, Stanford University (Ph.D. thesis)
- ↑ C. Harris and M. Stephens (1988). "A combined corner and edge detector" (PDF). Proceedings of the 4th Alvey Vision Conference. pp. 147–151.
- ↑ Javier Sánchez, Nelson Monzón and Agustín Salgado (2018). "An Analysis and Implementation of the Harris Corner Detector" (PDF). Image Processing on Line. 8: 305–328. doi:10.5201/ipol.2018.229. Archived from the original on 2018-10-03.
- ↑ J. Shi and C. Tomasi (June 1994). "Good Features to Track". 9th IEEE Conference on Computer Vision and Pattern Recognition. Springer. pp. 593–600. CiteSeerX 10.1.1.36.2669. doi:10.1109/CVPR.1994.323794.
C. Tomasi and T. Kanade (1991). Detection and Tracking of Point Features (Technical report). School of Computer Science, Carnegie Mellon University. CiteSeerX 10.1.1.45.5770. CMU-CS-91-132. - ↑ A. Noble (1989). Descriptions of Image Surfaces (Ph.D.). Department of Engineering Science, Oxford University. p. 45.
- ↑ Förstner, W; Gülch (1987). "विशिष्ट बिंदुओं, कोनों और गोलाकार विशेषताओं के केंद्रों का पता लगाने और सटीक स्थान के लिए एक तेज़ ऑपरेटर" (PDF). ISPRS.
- ↑ 10.0 10.1 10.2 T. Lindeberg (1994). "Junction detection with automatic selection of detection scales and localization scales". Proc. 1st International Conference on Image Processing. Vol. I. Austin, Texas. pp. 924–928.
- ↑ 11.00 11.01 11.02 11.03 11.04 11.05 11.06 11.07 11.08 11.09 11.10 Tony Lindeberg (1998). "Feature detection with automatic scale selection". International Journal of Computer Vision. Vol. 30, no. 2. pp. 77–116.
- ↑ 12.0 12.1 12.2 12.3 12.4 12.5 12.6 12.7 T. Lindeberg (1994). Scale-Space Theory in Computer Vision. Springer. ISBN 978-0-7923-9418-1.
- ↑ 13.0 13.1 13.2 13.3 T. Lindeberg and J. Garding "Shape-adapted smoothing in estimation of 3-D depth cues from affine distortions of local 2-D structure". Image and Vision Computing 15 (6): pp 415–434, 1997.
- ↑ 14.0 14.1 14.2 14.3 T. Lindeberg (2008). "Scale-Space". In Benjamin Wah (ed.). Wiley Encyclopedia of Computer Science and Engineering. Vol. IV. John Wiley and Sons. pp. 2495–2504. doi:10.1002/9780470050118.ecse609. ISBN 978-0-470-05011-8.
- ↑ 15.0 15.1 15.2 K. Mikolajczyk, K. and C. Schmid (2004). "Scale and affine invariant interest point detectors" (PDF). International Journal of Computer Vision. 60 (1): 63–86. doi:10.1023/B:VISI.0000027790.02288.f2. S2CID 1704741.
- ↑ L. Kitchen and A. Rosenfeld (1982). "Gray-level corner detection". Pattern Recognition Letters. Vol. 1, no. 2. pp. 95–102.
- ↑ J. J. Koenderink and W. Richards (1988). "Two-dimensional curvature operators". Journal of the Optical Society of America A. Vol. 5, no. 7. pp. 1136–1141.
- ↑ L. Bretzner and T. Lindeberg (1998). "Feature tracking with automatic selection of spatial scales". Computer Vision and Image Understanding. Vol. 71. pp. 385–392.
- ↑ T. Lindeberg and M.-X. Li (1997). "Segmentation and classification of edges using minimum description length approximation and complementary junction cues". Computer Vision and Image Understanding. Vol. 67, no. 1. pp. 88–98.
- ↑ 20.0 20.1 20.2 D. Lowe (2004). "Distinctive Image Features from Scale-Invariant Keypoints". International Journal of Computer Vision. 60 (2): 91. CiteSeerX 10.1.1.73.2924. doi:10.1023/B:VISI.0000029664.99615.94. S2CID 221242327.
- ↑ 21.0 21.1 21.2 21.3 21.4 21.5 21.6 21.7 T. Lindeberg ``Image matching using generalized scale-space interest points", Journal of Mathematical Imaging and Vision, volume 52, number 1, pages 3-36, 2015.
- ↑ 22.0 22.1 22.2 22.3 T. Lindeberg "Scale selection properties of generalized scale-space interest point detectors", Journal of Mathematical Imaging and Vision, Volume 46, Issue 2, pages 177-210, 2013.
- ↑ Lindeberg, T. (1998). "स्वचालित स्केल चयन के साथ किनारे का पता लगाना और रिज का पता लगाना". International Journal of Computer Vision. 30 (2): 117–154. doi:10.1023/A:1008097225773. S2CID 35328443.
- ↑ H. Wang and M. Brady (1995). "Real-time corner detection algorithm for motion estimation". Image and Vision Computing. 13 (9): 695–703. doi:10.1016/0262-8856(95)98864-P.
- ↑ S. M. Smith and J. M. Brady (May 1997). "SUSAN – a new approach to low level image processing". International Journal of Computer Vision. 23 (1): 45–78. doi:10.1023/A:1007963824710. S2CID 15033310.
S. M. Smith and J. M. Brady (January 1997), "Method for digitally processing images to determine the position of edges and/or corners therein for guidance of unmanned vehicle". UK Patent 2272285, Proprietor: Secretary of State for Defence, UK. - ↑ GB patent 2272285, Smith, Stephen Mark, "Determining the position of edges and corners in images", published 1994-05-11, issued 1994-05-11, assigned to Secr Defence
- ↑ "The SUSAN Edge Detector in Detail".
- ↑ M. Trajkovic and M. Hedley (1998). "Fast corner detection". Image and Vision Computing. 16 (2): 75–87. doi:10.1016/S0262-8856(97)00056-5.
- ↑ 29.0 29.1 E. Rosten and T. Drummond (May 2006). "Machine learning for high-speed corner detection". European Conference on Computer Vision.
- ↑ Leonardo Trujillo and Gustavo Olague (2008). "Automated design of image operators that detect interest points" (PDF). Evolutionary Computation. 16 (4): 483–507. doi:10.1162/evco.2008.16.4.483. PMID 19053496. S2CID 17704640. Archived from the original (PDF) on 2011-07-17.
- ↑ Ivan Laptev and Tony Lindeberg (2003). "Space-time interest points". International Conference on Computer Vision. IEEE. pp. 432–439.
- ↑ 32.0 32.1 Geert Willems, Tinne Tuytelaars and Luc van Gool (2008). "An efficient dense and scale-invariant spatiotemporal-temporal interest point detector". European Conference on Computer Vision. Springer Lecture Notes in Computer Science. Vol. 5303. pp. 650–663. doi:10.1007/978-3-540-88688-4_48.
- ↑ 33.0 33.1 33.2 Tony Lindeberg (2018). "Spatio-temporal scale selection in video data". Journal of Mathematical Imaging and Vision. 60 (4): 525–562. doi:10.1007/s10851-017-0766-9.
- ↑ I. Everts, J. van Gemert and T. Gevers (2014). "Evaluation of color spatio-temporal interest points for human action recognition". IEEE Transactions on Image Processing. 23 (4): 1569–1589. doi:10.1109/TIP.2014.2302677.
संदर्भ कार्यान्वयन
यह अनुभाग ऊपर वर्णित कुछ डिटेक्टरों के संदर्भ कार्यान्वयन के लिए बाहरी लिंक प्रदान करता है। ये संदर्भ कार्यान्वयन उस पेपर के लेखकों द्वारा प्रदान किए गए हैं जिसमें डिटेक्टर का पहली बार वर्णन किया गया है। इनमें ऐसे विवरण शामिल हो सकते हैं जो विशेषताओं का वर्णन करने वाले कागजात में मौजूद या स्पष्ट नहीं हैं।
- DoG डिटेक्शन (स्केल-इनवेरिएंट फ़ीचर ट्रांसफ़ॉर्म सिस्टम के भाग के रूप में), Microsoft Windows और x86 Linux निष्पादनयोग्य
- हैरिस-लाप्लेस, स्थिर लिनक्स निष्पादन योग्य। इसमें DoG और LoG डिटेक्टर और सभी डिटेक्टरों के लिए एफ़िन अनुकूलन भी शामिल है।
- फास्ट डिटेक्टर, C, C++, MATLAB स्रोत कोड और विभिन्न ऑपरेटिंग सिस्टम और आर्किटेक्चर के लिए निष्पादन योग्य।
- लिप-विरियो, [LoG, DoG, हैरिस-लाप्लासियन, हेसियन और हेसियन-लाप्लासियन], [SIFT, फ्लिप इनवेरिएंट SIFT, पीसीए-एसआईएफटी, पीएसआईएफटी, स्टीयरेबल फिल्टर, स्पिन] [लिनक्स, विंडोज और सनओएस] निष्पादन योग्य।
- SUSAN लो लेवल इमेज प्रोसेसिंग, सी सोर्स कोड।
- हैरिस कॉर्नर डिटेक्टर का ऑनलाइन कार्यान्वयन - IPOL
यह भी देखें
- बूँद का पता लगाना
- एफ़िन आकार अनुकूलन
- स्केल स्पेस
- रिज का पता लगाना
- रुचि बिंदु का पता लगाना
- सुविधा का पता लगाना (कंप्यूटर विज़न)
- छवि व्युत्पन्न
बाहरी संबंध
- Lindeberg, Tony (2001) [1994], "Corner detection", Encyclopedia of Mathematics, EMS Press
- Brostow, "Corner Detection -- UCL Computer Science"