पृथक्करणीय अवस्था: Difference between revisions
(TEXT) |
(TEXT) |
||
Line 3: | Line 3: | ||
== द्विदलीय प्रणालियों की पृथक्करणीयता == | == द्विदलीय प्रणालियों की पृथक्करणीयता == | ||
स्वतंत्रता की दो डिग्री वाले पहले मिश्रित अवस्थाओं पर विचार करें, जिन्हें द्विदलीय अवस्था कहा जाता है। क्वांटम यांत्रिकी के एक अभिधारणा द्वारा इन्हें टेंसर उत्पाद समष्टि <math>H_1\otimes H_2</math> में सदिश के रूप में वर्णित किया जा सकता है। इस | स्वतंत्रता की दो डिग्री वाले पहले मिश्रित अवस्थाओं पर विचार करें, जिन्हें द्विदलीय अवस्था कहा जाता है। क्वांटम यांत्रिकी के एक अभिधारणा द्वारा इन्हें टेंसर उत्पाद समष्टि <math>H_1\otimes H_2</math> में सदिश के रूप में वर्णित किया जा सकता है। इस परिपरिचर्चा में हम [[हिल्बर्ट स्थान|हिल्बर्ट]] समष्टि <math>H_1</math> और <math>H_2</math> के परिमित-आयामी होने के प्रकरण पर ध्यान केंद्रित करते है। | ||
=== शुद्ध अवस्था === | === शुद्ध अवस्था === | ||
Line 22: | Line 22: | ||
भौतिक रूप से, इसका अर्थ यह है कि उपप्रणालियों को एक निश्चित (शुद्ध) अवस्था निर्दिष्ट करना संभव नहीं है, जिसे इसके बदले शुद्ध अवस्थाओं के सांख्यिकीय समुच्चय के रूप में वर्णित किया जाना चाहिए, अर्थात [[घनत्व मैट्रिक्स]] के रूप में है। एक शुद्ध अवस्था <math>\rho=|\psi\rangle\!\langle\psi|</math> इस प्रकार उलझा हुआ है यदि और केवल यदि आंशिक अवस्था <math>\rho_A\equiv\operatorname{Tr}_B(\rho)</math> की वॉन न्यूमैन एन्ट्रापी गैर-शून्य है। | भौतिक रूप से, इसका अर्थ यह है कि उपप्रणालियों को एक निश्चित (शुद्ध) अवस्था निर्दिष्ट करना संभव नहीं है, जिसे इसके बदले शुद्ध अवस्थाओं के सांख्यिकीय समुच्चय के रूप में वर्णित किया जाना चाहिए, अर्थात [[घनत्व मैट्रिक्स]] के रूप में है। एक शुद्ध अवस्था <math>\rho=|\psi\rangle\!\langle\psi|</math> इस प्रकार उलझा हुआ है यदि और केवल यदि आंशिक अवस्था <math>\rho_A\equiv\operatorname{Tr}_B(\rho)</math> की वॉन न्यूमैन एन्ट्रापी गैर-शून्य है। | ||
औपचारिक रूप से, अवस्थाओं के उत्पाद को उत्पाद अवस्था में एम्बेड करना [[सेग्रे एम्बेडिंग]] द्वारा दिया जाता है।<ref>{{Cite journal |last1=Gharahi |first1=Masoud |last2=Mancini |first2=Stefano |last3=Ottaviani |first3=Giorgio |date=2020-10-01 |title=बीजगणितीय ज्यामिति द्वारा मल्टीक्यूबिट उलझाव का सूक्ष्म संरचना वर्गीकरण|journal=Physical Review Research |volume=2 |issue=4 |pages=043003 |doi=10.1103/PhysRevResearch.2.043003|arxiv=1910.09665 |bibcode=2020PhRvR...2d3003G |s2cid=204824024 |doi-access=free }}</ref> अर्थात्, क्वान्टम यांत्रिकीय शुद्ध अवस्था को तभी अलग किया जा सकता है जब वह सेग्रे | औपचारिक रूप से, अवस्थाओं के उत्पाद को उत्पाद अवस्था में एम्बेड करना [[सेग्रे एम्बेडिंग|सेग्रे अंतःस्थापन]] द्वारा दिया जाता है।<ref>{{Cite journal |last1=Gharahi |first1=Masoud |last2=Mancini |first2=Stefano |last3=Ottaviani |first3=Giorgio |date=2020-10-01 |title=बीजगणितीय ज्यामिति द्वारा मल्टीक्यूबिट उलझाव का सूक्ष्म संरचना वर्गीकरण|journal=Physical Review Research |volume=2 |issue=4 |pages=043003 |doi=10.1103/PhysRevResearch.2.043003|arxiv=1910.09665 |bibcode=2020PhRvR...2d3003G |s2cid=204824024 |doi-access=free }}</ref> अर्थात्, क्वान्टम यांत्रिकीय शुद्ध अवस्था को तभी अलग किया जा सकता है जब वह सेग्रे अंतःस्थापन की प्रतिरूप में है। | ||
उपरोक्त | उपरोक्त परिपरिचर्चा को उस अवस्था तक बढ़ाया जा सकता है जब अवस्था अनंत-आयामी है और वस्तुतः कुछ भी नहीं बदला है।{{Clarify|reason=this statement should be made more precise|date=December 2021}} | ||
===मिश्रित अवस्थाएँ=== | ===मिश्रित अवस्थाएँ=== | ||
मिश्रित अवस्था के प्रकरण पर विचार | मिश्रित अवस्था के प्रकरण पर विचार करें। मिश्रित प्रणाली की मिश्रित अवस्था का वर्णन <math>H_1 \otimes H_2</math> पर कार्य करने वाले घनत्व मैट्रिक्स <math>\rho</math> द्वारा किया जाता है। ρ वियोज्य है यदि <math>p_k\geq 0</math>, <math>\{ \rho_1^k \}</math> और <math>\{ \rho_2^k \}</math> उपस्थित है, जो संबंधित उपप्रणालियों की मिश्रित अवस्थाएँ हैं जैसे कि | ||
:<math> | :<math> | ||
\rho=\sum_k p_k \rho_1^k \otimes \rho_2^k | \rho=\sum_k p_k \rho_1^k \otimes \rho_2^k | ||
</math> | </math> | ||
जहां | |||
:<math>\; | :<math>\; | ||
\sum_k p_k = 1. | \sum_k p_k = 1. | ||
</math> | </math> | ||
अन्यथा <math>\rho</math> उलझी हुई अवस्था | अन्यथा <math>\rho</math> को उलझी हुई अवस्था कहा जाता है। उपरोक्त अभिव्यक्ति में सामान्यता खोए बिना हम यह मान सकते हैं कि <math>\{ \rho_1^k \}</math> और <math>\{ \rho_2^k \}</math> सभी श्रेणी-1 अनुमान हैं, अर्थात, वे उपयुक्त उप-प्रणालियों के शुद्ध समुच्चय का प्रतिनिधित्व करते हैं। परिभाषा से स्पष्ट है कि पृथक्करणीय अवस्थाओं का वर्ग एक उत्तल समुच्चय है। | ||
ध्यान दें कि, फिर से टेंसर उत्पाद की परिभाषा से | ध्यान दें कि, फिर से टेंसर उत्पाद की परिभाषा से किसी भी घनत्व मैट्रिक्स, वास्तव में समग्र अवस्था समष्टि पर कार्य करने वाला कोई भी मैट्रिक्स, वांछित रूप में तुच्छ रूप से लिखा जा सकता है, यदि हम यह आवश्यकता छोड़ देते हैं कि <math>\{ \rho_1^k \}</math> और <math>\{ \rho_2^k \}</math> स्वयं अवस्था और <math>\; \sum_k p_k = 1</math> है। यदि ये आवश्यकताएं संतुष्ट हैं, तो हम कुल अवस्था की व्याख्या असंबद्ध उत्पाद अवस्थाओं पर संभाव्यता वितरण के रूप में कर सकते हैं। | ||
[[क्वांटम चैनल]] | [[क्वांटम चैनल|क्वांटम चैनलों]] के संदर्भ में, स्थानीय क्रियाओं और शास्त्रीय संचार का उपयोग करके किसी अन्य अवस्था से एक अलग अवस्था बनाया जा सकता है जबकि एक उलझी हुई आवस्था नहीं बनाई जा सकती है। | ||
जब अवस्था | जब अवस्था समष्टि अनंत-आयामी होते हैं, तो घनत्व मैट्रिक्स को ट्रेस 1 के साथ सकारात्मक [[ट्रेस क्लास|ट्रेस वर्ग]] संकारक द्वारा प्रतिस्थापित किया जाता है, और एक अवस्था को अलग किया जा सकता है यदि इसे उपरोक्त फॉर्म के अवस्थाओं द्वारा, ट्रेस मानदंड में अनुमानित किया जा सकता है। | ||
यदि केवल एक | यदि केवल एक अशून्य <math>p_k</math> है, तो अवस्था को केवल <math display="inline"> \rho = \rho_1 \otimes \rho_2 </math> के रूप में व्यक्त किया जा सकता है, और इसे केवल अलग करने योग्य या उत्पाद अवस्था कहा जाता है। उत्पाद अवस्था का एक गुण यह है कि एन्ट्रापी के संदर्भ में, | ||
: <math> S(\rho) = S(\rho_1) + S(\rho_2). </math> | : <math> S(\rho) = S(\rho_1) + S(\rho_2). </math> | ||
== बहुपक्षीय प्रकरण का विस्तार == | == बहुपक्षीय प्रकरण का विस्तार == | ||
उपरोक्त | उपरोक्त परिचर्चा दो से अधिक उपप्रणालियों से युक्त क्वांटम प्रणाली के प्रकरण को आसानी से सामान्यीकृत करती है। मान लीजिए कि एक प्रणाली में n उपप्रणाली हैं और अवस्था समष्टि <math>H = H_1 \otimes \cdots \otimes H_n</math> है। एक शुद्ध अवस्था <math>| \psi \rangle \in H</math> यदि यह रूप लेती है तो अलग किया जा सकता है | ||
:<math>| \psi \rangle = | \psi_1 \rangle \otimes \cdots \otimes | \psi_n \rangle .</math> | :<math>| \psi \rangle = | \psi_1 \rangle \otimes \cdots \otimes | \psi_n \rangle .</math> | ||
इसी प्रकार, H पर कार्य करने वाली एक मिश्रित अवस्था ρ वियोज्य है यदि यह एक | इसी प्रकार, H पर कार्य करने वाली एक मिश्रित अवस्था ρ वियोज्य है यदि यह एक अवमुख योग है | ||
:<math>\rho = \sum_k p_k \rho_1 ^k \otimes \cdots \otimes \rho_n ^k.</math> | :<math>\rho = \sum_k p_k \rho_1 ^k \otimes \cdots \otimes \rho_n ^k.</math> | ||
या, अनंत-आयामी प्रकरण में, ρ वियोज्य है यदि इसे उपरोक्त | या, अनंत-आयामी प्रकरण में, ρ वियोज्य है यदि इसे उपरोक्त रूप के अवस्थाओं द्वारा ट्रेस मानदंड में अनुमानित किया जा सकता है। | ||
== पृथक्करणीयता मानदंड == | == पृथक्करणीयता मानदंड == | ||
यह तय करने की समस्या कि क्या कोई अवस्था सामान्य रूप से अलग किया जा सकता है, कभी-कभी पृथक्करण समस्या कहलाती है | यह तय करने की समस्या कि क्या कोई अवस्था सामान्य रूप से अलग किया जा सकता है, कभी-कभी पृथक्करण समस्या कहलाती है [[क्वांटम सूचना सिद्धांत]] में। यह एक कठिन समस्या मानी जाती है। इसे कई मामलों में एनपी-हार्ड दिखाया गया है <ref name="NP-hard1">Gurvits, L., Classical deterministic complexity of Edmonds’ problem and quantum entanglement, in Proceedings of the 35th ACM Symposium on Theory of Computing, ACM Press, New York, 2003.</ref><ref name="NP-hard2">Sevag Gharibian, Strong NP-Hardness of the Quantum Separability Problem, Quantum Information and Computation, Vol. 10, No. 3&4, pp. 343-360, 2010. arXiv:0810.4507.</ref> और सामान्यतः ऐसा ही माना जाता है। इस कठिनाई के लिए कुछ सराहना प्राप्त की जा सकती है यदि कोई एक निश्चित आयाम के लिए प्रत्यक्ष क्रूर बल दृष्टिकोण को नियोजित करके समस्या को हल करने का प्रयास करता है। हम देखते हैं कि समस्या शीघ्र ही कठिन हो जाती है, यहां तक कि कम आयामों के लिए भी। अत: अधिक परिष्कृत फॉर्मूलेशन की आवश्यकता है। पृथक्करण समस्या वर्तमान शोध का विषय है। | ||
पृथक्करण मानदंड एक आवश्यक शर्त है जिसे अवस्था को अलग होने के लिए पूरा करना होगा। निम्न-आयामी (2 एक्स 2 और 2 एक्स 3) मामलों में, [[पेरेस-होरोडेकी मानदंड]] वास्तव में पृथक्करण के लिए एक आवश्यक और पर्याप्त शर्त है। अन्य पृथक्करण मानदंडों में [[सीमा मानदंड]], कमी मानदंड और अनिश्चितता संबंधों पर आधारित (लेकिन इन्हीं तक सीमित नहीं) शामिल हैं।<ref>{{cite journal |last1=Hofmann |first1=Holger F. |last2=Takeuchi |first2=Shigeki |title=उलझाव के हस्ताक्षर के रूप में स्थानीय अनिश्चितता संबंधों का उल्लंघन|journal=Physical Review A |date=22 September 2003 |volume=68 |issue=3 |page=032103 |doi=10.1103/PhysRevA.68.032103|arxiv=quant-ph/0212090 |bibcode=2003PhRvA..68c2103H |s2cid=54893300 }}</ref><ref>{{cite journal |last1=Gühne |first1=Otfried |title=अनिश्चितता संबंधों के माध्यम से उलझाव की विशेषता|journal=Physical Review Letters |date=18 March 2004 |volume=92 |issue=11 |page=117903 |doi=10.1103/PhysRevLett.92.117903|arxiv=quant-ph/0306194 |pmid=15089173 |bibcode=2004PhRvL..92k7903G |s2cid=5696147 }}</ref><ref>{{cite journal |last1=Gühne |first1=Otfried |last2=Lewenstein |first2=Maciej |title=एंट्रोपिक अनिश्चितता संबंध और उलझाव|journal=Physical Review A |date=24 August 2004 |volume=70 |issue=2 |page=022316 |doi=10.1103/PhysRevA.70.022316|arxiv=quant-ph/0403219 |bibcode=2004PhRvA..70b2316G |s2cid=118952931 }}</ref><ref>{{cite journal |last1=Huang |first1=Yichen |title=अवतल-फ़ंक्शन अनिश्चितता संबंधों के माध्यम से उलझाव मानदंड|journal=Physical Review A |date=29 July 2010 |volume=82 |issue=1 |page=012335 |doi=10.1103/PhysRevA.82.012335 |bibcode=2010PhRvA..82a2335H}}</ref> रेफरी देखें.<ref>{{cite journal|last1=Gühne|first1=Otfried|last2=Tóth|first2=Géza|title=उलझाव का पता लगाना|journal=Physics Reports|volume=474|issue=1–6|pages=1–75|doi=10.1016/j.physrep.2009.02.004|arxiv = 0811.2803 |bibcode = 2009PhR...474....1G|year=2009 |s2cid=119288569 }}</ref> असतत चर प्रणालियों में पृथक्करण मानदंड की समीक्षा के लिए। | पृथक्करण मानदंड एक आवश्यक शर्त है जिसे अवस्था को अलग होने के लिए पूरा करना होगा। निम्न-आयामी (2 एक्स 2 और 2 एक्स 3) मामलों में, [[पेरेस-होरोडेकी मानदंड]] वास्तव में पृथक्करण के लिए एक आवश्यक और पर्याप्त शर्त है। अन्य पृथक्करण मानदंडों में [[सीमा मानदंड]], कमी मानदंड और अनिश्चितता संबंधों पर आधारित (लेकिन इन्हीं तक सीमित नहीं) शामिल हैं।<ref>{{cite journal |last1=Hofmann |first1=Holger F. |last2=Takeuchi |first2=Shigeki |title=उलझाव के हस्ताक्षर के रूप में स्थानीय अनिश्चितता संबंधों का उल्लंघन|journal=Physical Review A |date=22 September 2003 |volume=68 |issue=3 |page=032103 |doi=10.1103/PhysRevA.68.032103|arxiv=quant-ph/0212090 |bibcode=2003PhRvA..68c2103H |s2cid=54893300 }}</ref><ref>{{cite journal |last1=Gühne |first1=Otfried |title=अनिश्चितता संबंधों के माध्यम से उलझाव की विशेषता|journal=Physical Review Letters |date=18 March 2004 |volume=92 |issue=11 |page=117903 |doi=10.1103/PhysRevLett.92.117903|arxiv=quant-ph/0306194 |pmid=15089173 |bibcode=2004PhRvL..92k7903G |s2cid=5696147 }}</ref><ref>{{cite journal |last1=Gühne |first1=Otfried |last2=Lewenstein |first2=Maciej |title=एंट्रोपिक अनिश्चितता संबंध और उलझाव|journal=Physical Review A |date=24 August 2004 |volume=70 |issue=2 |page=022316 |doi=10.1103/PhysRevA.70.022316|arxiv=quant-ph/0403219 |bibcode=2004PhRvA..70b2316G |s2cid=118952931 }}</ref><ref>{{cite journal |last1=Huang |first1=Yichen |title=अवतल-फ़ंक्शन अनिश्चितता संबंधों के माध्यम से उलझाव मानदंड|journal=Physical Review A |date=29 July 2010 |volume=82 |issue=1 |page=012335 |doi=10.1103/PhysRevA.82.012335 |bibcode=2010PhRvA..82a2335H}}</ref> रेफरी देखें.<ref>{{cite journal|last1=Gühne|first1=Otfried|last2=Tóth|first2=Géza|title=उलझाव का पता लगाना|journal=Physics Reports|volume=474|issue=1–6|pages=1–75|doi=10.1016/j.physrep.2009.02.004|arxiv = 0811.2803 |bibcode = 2009PhR...474....1G|year=2009 |s2cid=119288569 }}</ref> असतत चर प्रणालियों में पृथक्करण मानदंड की समीक्षा के लिए। | ||
Line 68: | Line 68: | ||
== बीजगणितीय ज्यामिति के माध्यम से लक्षण वर्णन == | == बीजगणितीय ज्यामिति के माध्यम से लक्षण वर्णन == | ||
क्वांटम यांत्रिकी को [[प्रक्षेप्य हिल्बर्ट स्थान|प्रक्षेप्य हिल्बर्ट | क्वांटम यांत्रिकी को [[प्रक्षेप्य हिल्बर्ट स्थान|प्रक्षेप्य हिल्बर्ट समष्टि]] पर तैयार किया जा सकता है, और ऐसे दो अवस्थाओं का [[श्रेणीबद्ध उत्पाद]] सेग्रे अंतःस्थापन है। द्विदलीय प्रकरण में, एक क्वांटम अवस्था को अलग किया जा सकता है यदि और केवल तभी जब यह सेग्रे अंतःस्थापन की [[छवि (गणित)|प्रतिबिंब]] में निहित होते है। [[जॉन मैग्ने लीनास, जान मायरहेम]] और [[एरिक ओवरम]] ने अपने दस्तावेज़ में <nowiki>''उलझाव के ज्यामितीय रूप''</nowiki><ref name="geom approach">"Geometrical aspects of entanglement", Physical Review A 74, 012313 (2006)</ref> में समस्या का वर्णन किया है और सामान्य अवस्था मैट्रिक्स के उपसमुच्चय के रूप में अलग-अलग अवस्थाओं की ज्यामिति का अध्ययन किया है। इस उपसमुच्चय का पेरेज़-होरोडेकी मानदंड रखने वाले अवस्थाओं के उपसमुच्चय के साथ कुछ प्रतिच्छेदन है। इस दस्तावेज़ में, लीनास एट अल और अन्य सामान्य प्रकरण में पृथक्करण के परीक्षण के लिए एक संख्यात्मक दृष्टिकोण भी देते हैं। | ||
[[ | |||
== पृथक्करण | == पृथक्करण परीक्षण == | ||
सामान्य प्रकरण में पृथक्करण के लिए परीक्षण एक एनपी-हार्ड समस्या है।<ref name="NP-hard1" /><ref name="NP-hard2" /> लीनास एट अल | सामान्य प्रकरण में पृथक्करण के लिए परीक्षण एक एनपी-हार्ड समस्या है।<ref name="NP-hard1" /><ref name="NP-hard2" /> लीनास एट अल<ref name="geom approach" /> और अन्य ने परीक्षण के लिए एक पुनरावृत्त, संभाव्य एल्गोरिदम तैयार किया कि क्या कोई दी गई अवस्था अलग करने योग्य है। जब एल्गोरिदम सफल होता है, तो यह दिए गए अवस्था को एक अलग करने योग्य अवस्था के रूप में एक स्पष्ट, यादृच्छिक, प्रतिनिधित्व देता है। अन्यथा यह दिए गए अवस्था की निकटतम वियोज्य अवस्था से दूरी बताता है जिसे वह खोज सकता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* उलझाव | * [[उलझाव प्रमाण]] | ||
== संदर्भ == | == संदर्भ == |
Revision as of 20:03, 15 July 2023
क्वांटम यांत्रिकी में, वियोज्य अवस्थाएँ एक समग्र अवस्था से संबंधित क्वांटम अवस्थाएँ होती हैं जिन्हें अलग उपसमष्टि से संबंधित अलग अवस्था में विभाजित किया जा सकता है। एक अवस्था को उलझा हुआ कहा जाता है यदि यह अलग करने योग्य नहीं है। सामान्य रूप में, यह निर्धारित करना कि क्या कोई अवस्था अलग करने योग्य है या नहीं, और समस्या को एनपी कठिन के रूप में वर्गीकृत किया गया है।
द्विदलीय प्रणालियों की पृथक्करणीयता
स्वतंत्रता की दो डिग्री वाले पहले मिश्रित अवस्थाओं पर विचार करें, जिन्हें द्विदलीय अवस्था कहा जाता है। क्वांटम यांत्रिकी के एक अभिधारणा द्वारा इन्हें टेंसर उत्पाद समष्टि में सदिश के रूप में वर्णित किया जा सकता है। इस परिपरिचर्चा में हम हिल्बर्ट समष्टि और के परिमित-आयामी होने के प्रकरण पर ध्यान केंद्रित करते है।
शुद्ध अवस्था
मान लीजिए कि और क्रमशः और , के लिए लम्बवत् आधार हैं। का आधार तब , या अधिक संक्षिप्त संकेतन में होता है। टेंसर उत्पाद की परिभाषा से, मानक 1 के किसी भी सदिश, अर्थात समग्र प्रणाली की शुद्ध अवस्था को इस प्रकार लिखा जा सकता है।
जहाँ एक स्थिरांक है। अगर को एक साधारण टेंसर के रूप में लिखा जा सकता है, अर्थात् के साथ i-वें समष्टि में एक शुद्ध अवस्था के रूप में इसे एक उत्पाद अवस्था कहा जाता है, और, विशेष रूप से, अलग करने योग्य है। अन्यथा इसे उलझा हुआ कहा जाता है। ध्यान दें कि, भले ही उत्पाद और अलग-अलग अवस्थाओं की धारणाएं शुद्ध अवस्थाओं के अनुरूप हैं, वे मिश्रित अवस्थाओं के अधिक सामान्य प्रकरण में नहीं हैं।
शुद्ध तभी उलझती हैं जब उनकी आंशिक अवस्थाएँ शुद्ध नहीं होतीं है। इसे देखने के लिए, के श्मिट अपघटन को इस रूप में लिखें
जहाँ धनात्मक वास्तविक संख्याएँ हैं, की श्मिट श्रेणी है, और क्रमशः और में लंबात्मक अवस्थाओं के समुच्चय हैं। अवस्था उलझी हुई है यदि और केवल यदि है। साथ ही आंशिक अवस्था का स्वरूप होता है
इसका तात्पर्य यह है कि शुद्ध है --- अर्थात, इकाई-श्रेणी के साथ प्रक्षेपण है --- यदि और केवल यदि , जो कि के वियोज्य होने के समतुल्य है।
भौतिक रूप से, इसका अर्थ यह है कि उपप्रणालियों को एक निश्चित (शुद्ध) अवस्था निर्दिष्ट करना संभव नहीं है, जिसे इसके बदले शुद्ध अवस्थाओं के सांख्यिकीय समुच्चय के रूप में वर्णित किया जाना चाहिए, अर्थात घनत्व मैट्रिक्स के रूप में है। एक शुद्ध अवस्था इस प्रकार उलझा हुआ है यदि और केवल यदि आंशिक अवस्था की वॉन न्यूमैन एन्ट्रापी गैर-शून्य है।
औपचारिक रूप से, अवस्थाओं के उत्पाद को उत्पाद अवस्था में एम्बेड करना सेग्रे अंतःस्थापन द्वारा दिया जाता है।[1] अर्थात्, क्वान्टम यांत्रिकीय शुद्ध अवस्था को तभी अलग किया जा सकता है जब वह सेग्रे अंतःस्थापन की प्रतिरूप में है।
उपरोक्त परिपरिचर्चा को उस अवस्था तक बढ़ाया जा सकता है जब अवस्था अनंत-आयामी है और वस्तुतः कुछ भी नहीं बदला है।[clarification needed]
मिश्रित अवस्थाएँ
मिश्रित अवस्था के प्रकरण पर विचार करें। मिश्रित प्रणाली की मिश्रित अवस्था का वर्णन पर कार्य करने वाले घनत्व मैट्रिक्स द्वारा किया जाता है। ρ वियोज्य है यदि , और उपस्थित है, जो संबंधित उपप्रणालियों की मिश्रित अवस्थाएँ हैं जैसे कि
जहां
अन्यथा को उलझी हुई अवस्था कहा जाता है। उपरोक्त अभिव्यक्ति में सामान्यता खोए बिना हम यह मान सकते हैं कि और सभी श्रेणी-1 अनुमान हैं, अर्थात, वे उपयुक्त उप-प्रणालियों के शुद्ध समुच्चय का प्रतिनिधित्व करते हैं। परिभाषा से स्पष्ट है कि पृथक्करणीय अवस्थाओं का वर्ग एक उत्तल समुच्चय है।
ध्यान दें कि, फिर से टेंसर उत्पाद की परिभाषा से किसी भी घनत्व मैट्रिक्स, वास्तव में समग्र अवस्था समष्टि पर कार्य करने वाला कोई भी मैट्रिक्स, वांछित रूप में तुच्छ रूप से लिखा जा सकता है, यदि हम यह आवश्यकता छोड़ देते हैं कि और स्वयं अवस्था और है। यदि ये आवश्यकताएं संतुष्ट हैं, तो हम कुल अवस्था की व्याख्या असंबद्ध उत्पाद अवस्थाओं पर संभाव्यता वितरण के रूप में कर सकते हैं।
क्वांटम चैनलों के संदर्भ में, स्थानीय क्रियाओं और शास्त्रीय संचार का उपयोग करके किसी अन्य अवस्था से एक अलग अवस्था बनाया जा सकता है जबकि एक उलझी हुई आवस्था नहीं बनाई जा सकती है।
जब अवस्था समष्टि अनंत-आयामी होते हैं, तो घनत्व मैट्रिक्स को ट्रेस 1 के साथ सकारात्मक ट्रेस वर्ग संकारक द्वारा प्रतिस्थापित किया जाता है, और एक अवस्था को अलग किया जा सकता है यदि इसे उपरोक्त फॉर्म के अवस्थाओं द्वारा, ट्रेस मानदंड में अनुमानित किया जा सकता है।
यदि केवल एक अशून्य है, तो अवस्था को केवल के रूप में व्यक्त किया जा सकता है, और इसे केवल अलग करने योग्य या उत्पाद अवस्था कहा जाता है। उत्पाद अवस्था का एक गुण यह है कि एन्ट्रापी के संदर्भ में,
बहुपक्षीय प्रकरण का विस्तार
उपरोक्त परिचर्चा दो से अधिक उपप्रणालियों से युक्त क्वांटम प्रणाली के प्रकरण को आसानी से सामान्यीकृत करती है। मान लीजिए कि एक प्रणाली में n उपप्रणाली हैं और अवस्था समष्टि है। एक शुद्ध अवस्था यदि यह रूप लेती है तो अलग किया जा सकता है
इसी प्रकार, H पर कार्य करने वाली एक मिश्रित अवस्था ρ वियोज्य है यदि यह एक अवमुख योग है
या, अनंत-आयामी प्रकरण में, ρ वियोज्य है यदि इसे उपरोक्त रूप के अवस्थाओं द्वारा ट्रेस मानदंड में अनुमानित किया जा सकता है।
पृथक्करणीयता मानदंड
यह तय करने की समस्या कि क्या कोई अवस्था सामान्य रूप से अलग किया जा सकता है, कभी-कभी पृथक्करण समस्या कहलाती है क्वांटम सूचना सिद्धांत में। यह एक कठिन समस्या मानी जाती है। इसे कई मामलों में एनपी-हार्ड दिखाया गया है [2][3] और सामान्यतः ऐसा ही माना जाता है। इस कठिनाई के लिए कुछ सराहना प्राप्त की जा सकती है यदि कोई एक निश्चित आयाम के लिए प्रत्यक्ष क्रूर बल दृष्टिकोण को नियोजित करके समस्या को हल करने का प्रयास करता है। हम देखते हैं कि समस्या शीघ्र ही कठिन हो जाती है, यहां तक कि कम आयामों के लिए भी। अत: अधिक परिष्कृत फॉर्मूलेशन की आवश्यकता है। पृथक्करण समस्या वर्तमान शोध का विषय है।
पृथक्करण मानदंड एक आवश्यक शर्त है जिसे अवस्था को अलग होने के लिए पूरा करना होगा। निम्न-आयामी (2 एक्स 2 और 2 एक्स 3) मामलों में, पेरेस-होरोडेकी मानदंड वास्तव में पृथक्करण के लिए एक आवश्यक और पर्याप्त शर्त है। अन्य पृथक्करण मानदंडों में सीमा मानदंड, कमी मानदंड और अनिश्चितता संबंधों पर आधारित (लेकिन इन्हीं तक सीमित नहीं) शामिल हैं।[4][5][6][7] रेफरी देखें.[8] असतत चर प्रणालियों में पृथक्करण मानदंड की समीक्षा के लिए।
सतत परिवर्तनशील प्रणालियों में, पेरेस-होरोडेकी मानदंड भी लागू होता है। विशेष रूप से, साइमन [9] विहित ऑपरेटरों के दूसरे क्रम के क्षणों के संदर्भ में पेरेस-होरोडेकी मानदंड का एक विशेष संस्करण तैयार किया और दिखाया कि यह आवश्यक और पर्याप्त है -मोड गॉसियन अवस्था (संदर्भ देखें।[10] प्रतीत होता है कि भिन्न लेकिन अनिवार्य रूप से समतुल्य दृष्टिकोण के लिए)। यह बाद में पाया गया [11] साइमन की अवस्था भी आवश्यक और पर्याप्त है -मोड गॉसियन अवस्था, लेकिन अब इसके लिए पर्याप्त नहीं है -मोड गॉसियन अवस्था। कैनोनिकल ऑपरेटरों के उच्च क्रम के क्षणों को ध्यान में रखकर साइमन की अवस्था को सामान्यीकृत किया जा सकता है [12][13] या एन्ट्रोपिक उपायों का उपयोग करके।[14][15]
बीजगणितीय ज्यामिति के माध्यम से लक्षण वर्णन
क्वांटम यांत्रिकी को प्रक्षेप्य हिल्बर्ट समष्टि पर तैयार किया जा सकता है, और ऐसे दो अवस्थाओं का श्रेणीबद्ध उत्पाद सेग्रे अंतःस्थापन है। द्विदलीय प्रकरण में, एक क्वांटम अवस्था को अलग किया जा सकता है यदि और केवल तभी जब यह सेग्रे अंतःस्थापन की प्रतिबिंब में निहित होते है। जॉन मैग्ने लीनास, जान मायरहेम और एरिक ओवरम ने अपने दस्तावेज़ में ''उलझाव के ज्यामितीय रूप''[16] में समस्या का वर्णन किया है और सामान्य अवस्था मैट्रिक्स के उपसमुच्चय के रूप में अलग-अलग अवस्थाओं की ज्यामिति का अध्ययन किया है। इस उपसमुच्चय का पेरेज़-होरोडेकी मानदंड रखने वाले अवस्थाओं के उपसमुच्चय के साथ कुछ प्रतिच्छेदन है। इस दस्तावेज़ में, लीनास एट अल और अन्य सामान्य प्रकरण में पृथक्करण के परीक्षण के लिए एक संख्यात्मक दृष्टिकोण भी देते हैं।
पृथक्करण परीक्षण
सामान्य प्रकरण में पृथक्करण के लिए परीक्षण एक एनपी-हार्ड समस्या है।[2][3] लीनास एट अल[16] और अन्य ने परीक्षण के लिए एक पुनरावृत्त, संभाव्य एल्गोरिदम तैयार किया कि क्या कोई दी गई अवस्था अलग करने योग्य है। जब एल्गोरिदम सफल होता है, तो यह दिए गए अवस्था को एक अलग करने योग्य अवस्था के रूप में एक स्पष्ट, यादृच्छिक, प्रतिनिधित्व देता है। अन्यथा यह दिए गए अवस्था की निकटतम वियोज्य अवस्था से दूरी बताता है जिसे वह खोज सकता है।
यह भी देखें
संदर्भ
- ↑ Gharahi, Masoud; Mancini, Stefano; Ottaviani, Giorgio (2020-10-01). "बीजगणितीय ज्यामिति द्वारा मल्टीक्यूबिट उलझाव का सूक्ष्म संरचना वर्गीकरण". Physical Review Research. 2 (4): 043003. arXiv:1910.09665. Bibcode:2020PhRvR...2d3003G. doi:10.1103/PhysRevResearch.2.043003. S2CID 204824024.
- ↑ 2.0 2.1 Gurvits, L., Classical deterministic complexity of Edmonds’ problem and quantum entanglement, in Proceedings of the 35th ACM Symposium on Theory of Computing, ACM Press, New York, 2003.
- ↑ 3.0 3.1 Sevag Gharibian, Strong NP-Hardness of the Quantum Separability Problem, Quantum Information and Computation, Vol. 10, No. 3&4, pp. 343-360, 2010. arXiv:0810.4507.
- ↑ Hofmann, Holger F.; Takeuchi, Shigeki (22 September 2003). "उलझाव के हस्ताक्षर के रूप में स्थानीय अनिश्चितता संबंधों का उल्लंघन". Physical Review A. 68 (3): 032103. arXiv:quant-ph/0212090. Bibcode:2003PhRvA..68c2103H. doi:10.1103/PhysRevA.68.032103. S2CID 54893300.
- ↑ Gühne, Otfried (18 March 2004). "अनिश्चितता संबंधों के माध्यम से उलझाव की विशेषता". Physical Review Letters. 92 (11): 117903. arXiv:quant-ph/0306194. Bibcode:2004PhRvL..92k7903G. doi:10.1103/PhysRevLett.92.117903. PMID 15089173. S2CID 5696147.
- ↑ Gühne, Otfried; Lewenstein, Maciej (24 August 2004). "एंट्रोपिक अनिश्चितता संबंध और उलझाव". Physical Review A. 70 (2): 022316. arXiv:quant-ph/0403219. Bibcode:2004PhRvA..70b2316G. doi:10.1103/PhysRevA.70.022316. S2CID 118952931.
- ↑ Huang, Yichen (29 July 2010). "अवतल-फ़ंक्शन अनिश्चितता संबंधों के माध्यम से उलझाव मानदंड". Physical Review A. 82 (1): 012335. Bibcode:2010PhRvA..82a2335H. doi:10.1103/PhysRevA.82.012335.
- ↑ Gühne, Otfried; Tóth, Géza (2009). "उलझाव का पता लगाना". Physics Reports. 474 (1–6): 1–75. arXiv:0811.2803. Bibcode:2009PhR...474....1G. doi:10.1016/j.physrep.2009.02.004. S2CID 119288569.
- ↑ Simon, R. (2000). "सतत परिवर्तनीय प्रणालियों के लिए पेरेस-होरोडेकी पृथक्करण मानदंड". Physical Review Letters. 84 (12): 2726–2729. arXiv:quant-ph/9909044. Bibcode:2000PhRvL..84.2726S. doi:10.1103/PhysRevLett.84.2726. PMID 11017310. S2CID 11664720.
- ↑ Duan, Lu-Ming; Giedke, G.; Cirac, J. I.; Zoller, P. (2000). "सतत परिवर्तनीय प्रणालियों के लिए अविभाज्यता मानदंड". Physical Review Letters. 84 (12): 2722–2725. arXiv:quant-ph/9908056. Bibcode:2000PhRvL..84.2722D. doi:10.1103/PhysRevLett.84.2722. PMID 11017309. S2CID 9948874.
- ↑ Werner, R. F.; Wolf, M. M. (2001). "बंधे हुए उलझे हुए गॉसियन राज्य". Physical Review Letters. 86 (16): 3658–3661. arXiv:quant-ph/0009118. Bibcode:2001PhRvL..86.3658W. doi:10.1103/PhysRevLett.86.3658. PMID 11328047. S2CID 20897950.
- ↑ Shchukin, E.; Vogel, W. (2005). "सतत द्विदलीय क्वांटम अवस्थाओं के लिए अविभाज्यता मानदंड". Physical Review Letters. 95 (23): 230502. arXiv:quant-ph/0508132. Bibcode:2005PhRvL..95w0502S. doi:10.1103/PhysRevLett.95.230502. PMID 16384285. S2CID 28595936.
- ↑ Hillery, Mark; Zubairy, M.Suhail (2006). "दो-मोड राज्यों के लिए उलझाव की स्थिति". Physical Review Letters. 96 (5): 050503. arXiv:quant-ph/0507168. Bibcode:2006PhRvL..96e0503H. doi:10.1103/PhysRevLett.96.050503. PMID 16486912. S2CID 43756465.
- ↑ Walborn, S.; Taketani, B.; Salles, A.; Toscano, F.; de Matos Filho, R. (2009). "सतत चर के लिए एंट्रोपिक एंटैंगलमेंट मानदंड". Physical Review Letters. 103 (16): 160505. arXiv:0909.0147. Bibcode:2009PhRvL.103p0505W. doi:10.1103/PhysRevLett.103.160505. PMID 19905682. S2CID 10523704.
- ↑ Yichen Huang (October 2013). "Entanglement Detection: Complexity and Shannon Entropic Criteria". IEEE Transactions on Information Theory. 59 (10): 6774–6778. doi:10.1109/TIT.2013.2257936. S2CID 7149863.
- ↑ 16.0 16.1 "Geometrical aspects of entanglement", Physical Review A 74, 012313 (2006)