व्युत्क्रम अनिहितार्थ: Difference between revisions

From Vigyanwiki
Line 45: Line 45:
Q का अर्थ P नहीं है।
Q का अर्थ P नहीं है।


===बोलचाल===
 
{{Empty section|date=February 2011}}
 
[[Category:Articles using small message boxes|Converse Nonimplication]]
[[Category:Collapse templates|Converse Nonimplication]]
[[Category:Commons category link is the pagename|Converse Nonimplication]]
[[Category:Created On 21/07/2023|Converse Nonimplication]]
[[Category:Machine Translated Page|Converse Nonimplication]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Converse Nonimplication]]
[[Category:Pages with empty portal template|Converse Nonimplication]]
[[Category:Pages with script errors|Converse Nonimplication]]
[[Category:Portal-inline template with redlinked portals|Converse Nonimplication]]


==बूलियन बीजगणित==
==बूलियन बीजगणित==

Revision as of 14:30, 25 July 2023

का वेन आरेख
(लाल क्षेत्र सत्य है)

तर्क में, व्युत्क्रम अनिहितार्थ[1] एक तार्किक संयोजक है जो विपरीत निहितार्थ का निषेध है (समकक्ष रूप से, निहितार्थ के व्युत्क्रम का निषेध)।

परिभाषा

विपरीत गैर-निहितार्थ को , या नोट किया गया है, और यह तार्किक रूप से और इसके बराबर है।

ट्रुथ टेबल

की ट्रुथ टेबल है।[2]

True True False
True False False
False True True
False False False


नोटेशन

उलटा अनिहितार्थ नोट किया गया है, जो व्युत्क्रम निहितार्थ () से बायां तीर है, जिसे एक स्ट्रोक (/) से नकार दिया जाता है।

विकल्पों में सम्मिलित हैं

  • , जो विपरीत निहितार्थ को जोड़ता है, एक स्ट्रोक (/) से नकार जाता है।
  • , जो व्युत्क्रम निहितार्थ के बाएँ तीर () को निषेध के टिल्डे () के साथ जोड़ता है।
  • एमपीक्यू, बोचेंस्की संकेतन में

गुण

असत्य-संरक्षण: वह व्याख्या जिसके तहत सभी चरों को 'असत्य' का सत्य मान दिया जाता है, विपरीत गैर-निहितार्थ के परिणामस्वरूप 'असत्य' का सत्य मान उत्पन्न करता है

प्राकृतिक भाषा

व्याकरणिक

उदाहरण,

यदि वर्षा (P) होती है तो मैं भीग (Q) जाता हूं, सिर्फ इसलिए कि मैं गीला (Q) हूं इसका मतलब यह नहीं है कि बारिश हो रही है, असल में मैं अपने कपड़ों (~P) में सह-शिक्षा कर्मचारियों के साथ एक पूल पार्टी में गया था और यही कारण है कि मैं इस स्थिति (Q) में इस व्याख्यान की सुविधा प्रदान कर रहा हूं।

अलंकारिक

Q का अर्थ P नहीं है।

बूलियन बीजगणित

एक सामान्य बूलियन बीजगणित में व्युत्क्रम गैर-निहितार्थ को इस प्रकार परिभाषित किया गया है।

2-अल्पांश बूलियन बीजगणित का उदाहरण: 2 अल्पांश {0,1} जिसमें 0 शून्य और 1 इकाई अल्पांश है, ऑपरेटर पूरक ऑपरेटर के रूप में, संयुक्त ऑपरेटर के रूप में और मीट ऑपरेटर के रूप में, प्रतिज्ञप्तिक तर्क के बूलियन बीजगणित का निर्माण करते हैं।

1 0
x 0 1
और
y
1 1 1
0 0 1
0 1 x
और
y
1 0 1
0 0 0
0 1 x
फिर साधन
y
1 0 0
0 0 1
0 1 x
(नकार) (समावेशी या) (और) (विपरीत गैर-निरूपण)

4-अल्पांश बूलियन बीजगणित का उदाहरण: 6 के 4 विभाजक {1,2,3,6} जिनमें 1 शून्य और 6 इकाई अल्पांश हैं, ऑपरेटर (6 का सहविभाजक) पूरक ऑपरेटर के रूप में, (न्यूनतम समापवर्तक) संयुक्त ऑपरेटर के रूप में और (महत्तम सामान्य भाजक) मीट ऑपरेटर के रूप में, एक बूलियन बीजगणित का निर्माण करते हैं।

6 3 2 1
x 1 2 3 6
और
y
6 6 6 6 6
3 3 6 3 6
2 2 2 6 6
1 1 2 3 6
1 2 3 6 x
और
y
6 1 2 3 6
3 1 1 3 3
2 1 2 1 2
1 1 1 1 1
1 2 3 6 x
फिर साधन
y
6 1 1 1 1
3 1 2 1 2
2 1 1 3 3
1 1 2 3 6
1 2 3 6 x
(सहविभाजक 6) (न्यूनतम समापवर्त्य) (महत्तम सामान्य भाजक) (x का सबसे बड़ा भाजक y के साथ सहअभाज्य है)

गुण

असंबद्ध

यदि और केवल यदि #s5 है (दो-अल्पांश बूलियन बीजगणित में बाद की स्थिति या तक कम हो जाती है)। इसलिए एक गैर-तुच्छ बूलियन बीजगणित में व्युत्क्रम अनिहितार्थ असंबद्ध है।

स्पष्टतः, यह साहचर्य है यदि और केवल यदि है।

अविनिमेय

  • यदि और केवल यदि #s6 है। इसलिए व्युत्क्रम अनिहितार्थ असंबद्ध है।

तटस्थ और अवशोषक अल्पांश

  • 0 एक बायां उदासीन अल्पांश () है और एक दायां अवशोषित अल्पांश () है।
  • , , और .
  • निहितार्थ , व्युत्क्रम अनिहितार्थ का द्वैत है #s7।
व्युत्क्रम अनिहितार्थ असंबद्ध है।
चरण उपयोग करना जिसके परिणामस्वरूप
s.1 परिभाषा
s.2 परिभाषा
s.3 s.1 s.2
s.4
s.5 s.4.दाएँ - इकाई अल्पांश का विस्तार करें
s.6 s.5.दाएं - अभिव्यक्ति का मूल्यांकन करें
s.7 s.4.बाएं = s.6.दाएं
s.8
s.9 s.8 - सामान्य कारकों को पुनः समूहित करें
s.10 s.9 - पूरकों का जुड़ना एकता के बराबर है
s.11 s.10.दाएं - अभिव्यक्ति का मूल्यांकन करें
s.12 s.8 s.11
s.13
s.14 s.12 s.13
s.15 s.3 s.14
निहितार्थ व्युत्क्रम अनिहितार्थ का द्वैत है
चरण उपयोग करना जिसके परिणामस्वरूप
s.1 परिभाषा
s.2 s.1.दाएँ - .का दोहराव + है
s.3 s.2.दाएँ - इन्वोल्यूशन पूरक
s.4 s.3.दाएँ - डी मॉर्गन के नियम एक बार अनप्रयुक्‍त होते हैं
s.5 s.4.दाएँ - क्रमविनिमेय नियम
s.6 s.5.दाएँ
s.7 s.6.दाएँ
s.8 s.7.दाएँ
s.9 s.1.बाएं = s.8.दाएं

कंप्यूटर विज्ञान

कंप्यूटर विज्ञान में विपरीत गैर-निहितार्थ का एक उदाहरण तब पाया जा सकता है जब डेटाबेस से तालिकाओं के एक सेट पर दायां बाहरी जोड़ निष्पादित किया जाता है, यदि "बाएं" तालिका से जुड़ने की स्थिति से मेल नहीं खाने वाले रिकॉर्ड को बाहर रखा जा रहा है।[3]


संदर्भ

  1. Lehtonen, Eero, and Poikonen, J.H.
  2. Knuth 2011, p. 49
  3. "एसक्यूएल जॉइन का एक दृश्य स्पष्टीकरण". 11 October 2007.


बाहरी संबंध