त्रिपद विस्तार: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 51: | Line 51: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 09/07/2023]] | [[Category:Created On 09/07/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 11:13, 26 July 2023
गणित में, त्रिपद प्रमेय तीन पदों के योग की घात का एकपदी में प्रमेय है। इसके द्वारा प्रमेय दिया गया है
जहां n एक ऋणात्मक पूर्णांक है और योग ऋणात्मक सूचकांकों i, j,, और k के सभी संयोजनों पर इस प्रकार लिया जाता है कि i + j + k = n.[1] त्रिपद गुणांक द्वारा दिए गए हैं
यह सूत्र m = 3 के लिए बहुपद सूत्र का एक विशेष स्थिति है। गुणांक को पास्कल के त्रिकोण के तीन आयामों के सामान्यीकरण के साथ परिभाषित किया जा सकता है, जिसे पास्कल का पिरामिड या पास्कल का टेट्राहेड्रोन कहा जाता है।[2]
व्युत्पत्ति
त्रिपद प्रमेय की गणना द्विपद प्रमेय प्रमेय को दो बार प्रयुक्त करके समुच्चय करके की जा सकती है, जो आगे बढ़ता है
ऊपर, परिणामी दूसरी पंक्ति में द्विपद प्रमेय के दूसरे अनुप्रयोग द्वारा मूल्यांकन किया जाता है, जो सूचकांक पर और योग प्रस्तुत करता है .
दो द्विपद गुणांकों के गुणनफल को छोटा करके सरल बनाया जाता है ,
और यहां सूचकांक संयोजनों की घातांक वाले संयोजनों से तुलना करते हुए, उन्हें में पुनः लेबल किया जा सकता है, जो पहले पैराग्राफ में दी गई अभिव्यक्ति प्रदान करता है।
गुण
विस्तारित त्रिपद के पदों की संख्या त्रिभुजाकार संख्या होती है
जहाँ n वह प्रतिपादक है जिससे त्रिपद उठाया जाता है।[3]
उदाहरण
के साथ त्रिपद विस्तार का एक उदाहरण है
यह भी देखें
- द्विपद प्रमेय
- पास्कल का पिरामिड
- बहुपद गुणांक
- त्रिनोमियल त्रिकोण
संदर्भ
- ↑ Koshy, Thomas (2004), Discrete Mathematics with Applications, Academic Press, p. 889, ISBN 9780080477343.
- ↑ Harris, John; Hirst, Jeffry L.; Mossinghoff, Michael (2009), Combinatorics and Graph Theory, Undergraduate Texts in Mathematics (2nd ed.), Springer, p. 146, ISBN 9780387797113.
- ↑ Rosenthal, E. R. (1961), "A Pascal pyramid for trinomial coefficients", The Mathematics Teacher, 54 (5): 336–338, doi:10.5951/MT.54.5.0336.