रीमैन-रोच प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Relation between genus, degree, and dimension of function spaces over surfaces}}
{{short description|Relation between genus, degree, and dimension of function spaces over surfaces}}
{{Infobox mathematical statement
{{Infobox mathematical statement
| name = Riemann–Roch theorem
| name = रीमैन-रोच प्रमेय
| image =  
| image =  
| caption =  
| caption =  
| field = [[Algebraic geometry]] and [[complex analysis]]
| field = [[बीजीय ज्यामिति]] और [[समष्टि विश्लेषण]]
| conjectured by =  
| conjectured by =  
| conjecture date =  
| conjecture date =  
| first proof by = [[Gustav Roch]]
| first proof by = [[गुस्ताव रोच]]
| first proof date = 1865
| first proof date = 1865
| open problem =  
| open problem =  
Line 13: Line 13:
| implied by =
| implied by =
| equivalent to =  
| equivalent to =  
| generalizations = [[Atiyah–Singer index theorem]]<br />[[Grothendieck–Riemann–Roch theorem]]<br />[[Hirzebruch–Riemann–Roch theorem]]<br />[[Riemann–Roch theorem for surfaces]]<br />[[Riemann–Roch-type theorem]]
| generalizations = [[अतियाह-सिंगर इंडेक्स प्रमेय]]<br />[[ग्रोथेंडिक-रीमैन-रोच प्रमेय]]<br />[[हिरज़ेब्रुच-रीमैन-रोच प्रमेय]]<br />[[सतहों के लिए रीमैन-रोच प्रमेय]]<br />[[रीमैन-रोच-प्रकार प्रमेय]]
| consequences = [[Clifford's theorem on special divisors]]<br>[[Riemann–Hurwitz formula]]
| consequences = [[विशेष भाजक पर क्लिफोर्ड का प्रमेय]]<br>[[रीमैन-हर्विट्ज़ सूत्र]]
}}
}}


'''रीमैन-रोच प्रमेय''' गणित में महत्वपूर्ण प्रमेय है, विशेष रूप से [[जटिल विश्लेषण|समिष्ट विश्लेषण]] और [[बीजगणितीय ज्यामिति]] में, निर्धारित शून्य और अनुमत [[ध्रुव (जटिल विश्लेषण)|ध्रुव (समिष्ट विश्लेषण)]] के साथ [[मेरोमोर्फिक फ़ंक्शन|मेरोमोर्फिक फलन]] के समिष्ट के आयाम की गणना के लिए यह कनेक्टेड कॉम्पैक्ट रीमैन सतह के समिष्ट विश्लेषण को सतह के विशुद्ध रूप से टोपोलॉजिकल [[जीनस (गणित)]] ''g'' के साथ इस तरह से जोड़ता है, जिसे पूरी तरह से बीजगणितीय सेटिंग्स में ले जाया जा सकता है।
'''रीमैन-रोच प्रमेय''' गणित में महत्वपूर्ण प्रमेय है, विशेष रूप से [[जटिल विश्लेषण|समिष्ट विश्लेषण]] और [[बीजगणितीय ज्यामिति]] में, निर्धारित शून्य और अनुमत [[ध्रुव (जटिल विश्लेषण)|ध्रुव (समिष्ट विश्लेषण)]] के साथ [[मेरोमोर्फिक फ़ंक्शन|मेरोमोर्फिक फलन]] के समिष्ट के आयाम की गणना के लिए यह कनेक्टेड कॉम्पैक्ट रीमैन सतह के समिष्ट विश्लेषण को सतह के विशुद्ध रूप से टोपोलॉजिकल [[जीनस (गणित)]] ''g'' के साथ इस तरह से जोड़ता है, जिसे पूरी तरह से बीजगणितीय सेटिंग्स में ले जाया जा सकता है।


प्रारंभ में रीमैन (1857) द्वारा {{harvtxt|रीमैन|1857}} की असमानता के रूप में सिद्ध किया गया, [[बर्नहार्ड रीमैन]] के अल्पकालिक छात्र {{harvs|txt|authorlink=गुस्ताव रोच|first=गुस्ताव|last=रोच|year=1865}} के काम के पश्चात् यह प्रमेय रीमैन सतहों के लिए अपने निश्चित रूप में पहुंच गया था। इसे पश्चात् में [[बीजगणितीय वक्र]], उच्च-आयामी [[बीजगणितीय विविधता]] और उससे आगे तक सामान्यीकृत किया गया था।
प्रारंभ में रीमैन (1857) द्वारा {{harvtxt|रीमैन|1857}} की असमानता के रूप में सिद्ध किया गया, [[बर्नहार्ड रीमैन]] के अल्पकालिक छात्र {{harvs|txt|authorlink=गुस्ताव रोच|first=गुस्ताव|last=रोच|year=1865}} के कार्य के पश्चात् यह प्रमेय रीमैन सतहों के लिए अपने निश्चित रूप में पहुंच गया था। इसे पश्चात् में [[बीजगणितीय वक्र]], उच्च-आयामी [[बीजगणितीय विविधता]] और उससे आगे तक सामान्यीकृत किया गया था।


==प्रारंभिक धारणाएँ==
==प्रारंभिक धारणाएँ==
[[File:Triple torus illustration.png|right|thumb|जीनस 3 की रीमैन सतह।]]रीमैन सतह <math>X</math> इसके अतिरिक्त, इन विवृत उपसमुच्चय के बीच [[संक्रमण मानचित्र]] का [[होलोमोर्फिक फ़ंक्शन|होलोमोर्फिक फलन]] होना आवश्यक है। इसके पश्चात् की स्थिति किसी को <math>\Complex</math> पर होलोमोर्फिक और मेरोमोर्फिक कार्यों से संबंधित समिष्ट विश्लेषण की धारणाओं और तरीकों को सतह <math>X</math> पर स्थानांतरित करने की अनुमति देती है। रीमैन-रोच प्रमेय के प्रयोजनों के लिए, सतह <math>X</math> को सदैव कॉम्पैक्ट माना जाता है। साधारण की भाषा में, रीमैन सतह का जीनस जी उसके हैंडल की संख्या है; उदाहरण के लिए दाईं ओर दिखाई गई रीमैन सतह का जीनस तीन है। अधिक स्पष्ट रूप से, जीनस को पहली बेट्टी संख्या के आधे के रूप में परिभाषित किया गया है, अर्थात, समिष्ट गुणांक वाले पहले एकवचन होमोलॉजी समूह के <math>\Complex</math> -आयाम के आधे के रूप में परिभाषित किया गया है। जीनस कॉम्पैक्ट रीमैन सतहों को होमोमोर्फिज्म <math>H_1(X, \Complex)</math> तक वर्गीकृत करता है, अर्थात, दो ऐसी सतहें होमोमोर्फिक होती हैं यदि और केवल तभी जब उनका जीनस समान होटी है। इसलिए, जीनस रीमैन सतह का एक महत्वपूर्ण टोपोलॉजिकल इनवेरिएंट है। दूसरी ओर, [[हॉज सिद्धांत]] से पता चलता है कि जीनस एक्स पर होलोमोर्फिक वन-फॉर्म के समिष्ट के <math>\Complex</math> -आयाम के साथ मेल खाता है, इसलिए जीनस रीमैन सतह के बारे में समिष्ट-विश्लेषणात्मक जानकारी को भी एन्कोड करता है।<ref>Griffith, Harris, p. 116, 117</ref>
[[File:Triple torus illustration.png|right|thumb|जीनस 3 की रीमैन सतह।]]रीमैन सतह <math>X</math> इसके अतिरिक्त, इन विवृत उपसमुच्चय के बीच [[संक्रमण मानचित्र]] का [[होलोमोर्फिक फ़ंक्शन|होलोमोर्फिक फलन]] होना आवश्यक है। इसके पश्चात् की स्थिति किसी को <math>\Complex</math> पर होलोमोर्फिक और मेरोमोर्फिक कार्यों से संबंधित समिष्ट विश्लेषण की धारणाओं और तरीकों को सतह <math>X</math> पर स्थानांतरित करने की अनुमति देती है। रीमैन-रोच प्रमेय के प्रयोजनों के लिए, सतह <math>X</math> को सदैव कॉम्पैक्ट माना जाता है। साधारण की भाषा में, रीमैन सतह का जीनस G उसके हैंडल की संख्या है; उदाहरण के लिए दाईं ओर दिखाई गई रीमैन सतह का जीनस तीन है। अधिक स्पष्ट रूप से, जीनस को पहली बेट्टी संख्या के आधे के रूप में परिभाषित किया गया है, अर्थात, समिष्ट गुणांक वाले पहले एकवचन होमोलॉजी समूह के <math>\Complex</math> -आयाम के आधे के रूप में परिभाषित किया गया है। जीनस कॉम्पैक्ट रीमैन सतहों को होमोमोर्फिज्म <math>H_1(X, \Complex)</math> तक वर्गीकृत करता है, अर्थात, दो ऐसी सतहें होमोमोर्फिक होती हैं यदि और केवल तभी जब उनका जीनस समान होटी है। इसलिए, जीनस रीमैन सतह का एक महत्वपूर्ण टोपोलॉजिकल इनवेरिएंट है। दूसरी ओर, [[हॉज सिद्धांत]] से पता चलता है कि जीनस एक्स पर होलोमोर्फिक वन-फॉर्म के समिष्ट के <math>\Complex</math> -आयाम के साथ मेल खाता है, इसलिए जीनस रीमैन सतह के बारे में समिष्ट-विश्लेषणात्मक जानकारी को भी एन्कोड करता है।<ref>Griffith, Harris, p. 116, 117</ref>
 




Line 34: Line 35:
:<math>s_\nu :=\begin{cases} a & \text{if } z_\nu \text{ is a zero of order }a \\
:<math>s_\nu :=\begin{cases} a & \text{if } z_\nu \text{ is a zero of order }a \\
                             -a & \text{if } z_\nu \text{ is a pole of order }a. \end{cases}</math>
                             -a & \text{if } z_\nu \text{ is a pole of order }a. \end{cases}</math>




Line 40: Line 42:
प्रतीक <math>\deg(D)</math> विभाजक <math>D</math> की डिग्री (कभी-कभी सूचकांक भी कहा जाता है) को दर्शाता है, अर्थात <math>D</math> में आने वाले गुणांक का योग यह दिखाया जा सकता है कि वैश्विक मेरोमोर्फिक फलन के विभाजक में सदैव डिग्री 0 होती है, इसलिए विभाजक की डिग्री केवल उसके रैखिक तुल्यता वर्ग पर निर्भर करती है।
प्रतीक <math>\deg(D)</math> विभाजक <math>D</math> की डिग्री (कभी-कभी सूचकांक भी कहा जाता है) को दर्शाता है, अर्थात <math>D</math> में आने वाले गुणांक का योग यह दिखाया जा सकता है कि वैश्विक मेरोमोर्फिक फलन के विभाजक में सदैव डिग्री 0 होती है, इसलिए विभाजक की डिग्री केवल उसके रैखिक तुल्यता वर्ग पर निर्भर करती है।


संख्या <math>\ell(D)</math> वह मात्रा है जो प्राथमिक रुचि की है: सतह पर मेरोमॉर्फिक फलन <math>h</math> के [[आयाम (वेक्टर स्थान)|आयाम (सदिश समिष्ट)]] का आयाम <math>\Complex</math> से अधिक), जैसे कि <math>(h) + D</math> के सभी गुणांक गैर-ऋणात्मक हैं। सामान्यतः, हम इसे सभी मेरोमोर्फिक कार्यों के रूप में सोच सकते हैं जिनके प्रत्येक बिंदु पर ध्रुव <math>D</math> में संबंधित गुणांक से भी बदतर नहीं हैं; यदि <math>D</math> में <math>z</math> पर गुणांक ऋणात्मक है, तो हमें आवश्यकता है कि <math>h</math> में <math>z</math> पर कम से कम उस बहुलता का एक शून्य हो - यदि D में गुणांक धनात्मक है, तो h में अधिकतम उसी क्रम का एक ध्रुव हो सकता है। रैखिक रूप से समतुल्य भाजक के लिए सदिश समिष्ट वैश्विक मेरोमोर्फिक फलन (जो एक अदिश तक अच्छी तरह से परिभाषित है) के साथ गुणन के माध्यम से स्वाभाविक रूप से आइसोमोर्फिक होते हैं।
संख्या <math>\ell(D)</math> वह मात्रा है जो प्राथमिक रुचि की है: सतह पर मेरोमॉर्फिक फलन <math>h</math> के [[आयाम (वेक्टर स्थान)|आयाम (सदिश समिष्ट)]] का आयाम <math>\Complex</math> से अधिक), जैसे कि <math>(h) + D</math> के सभी गुणांक गैर-ऋणात्मक हैं। सामान्यतः, हम इसे सभी मेरोमोर्फिक कार्यों के रूप में सोच सकते हैं जिनके प्रत्येक बिंदु पर ध्रुव <math>D</math> में संबंधित गुणांक से भी उत्तम नहीं हैं; यदि <math>D</math> में <math>z</math> पर गुणांक ऋणात्मक है, तो हमें आवश्यकता है कि <math>h</math> में <math>z</math> पर कम से कम उस बहुलता का एक शून्य हो - यदि D में गुणांक धनात्मक है, तो h में अधिकतम उसी क्रम का एक ध्रुव हो सकता है। रैखिक रूप से समतुल्य भाजक के लिए सदिश समिष्ट वैश्विक मेरोमोर्फिक फलन (जो एक अदिश तक अच्छी तरह से परिभाषित है) के साथ गुणन के माध्यम से स्वाभाविक रूप से आइसोमोर्फिक होते हैं।


== प्रमेय का कथन ==
== प्रमेय का कथन                                                                                       ==


विहित विभाजक <math>K</math> स्थितियों के साथ जीनस <math>g</math> की एक कॉम्पैक्ट रीमैन सतह के लिए रीमैन-रोच प्रमेय
विहित विभाजक <math>K</math> स्थितियों के साथ जीनस <math>g</math> की एक कॉम्पैक्ट रीमैन सतह के लिए रीमैन-रोच प्रमेय


:<math>\ell(D)-\ell(K-D) = \deg(D) - g + 1.</math>
:<math>\ell(D)-\ell(K-D) = \deg(D) - g + 1.</math>


सामान्यतः, संख्या <math>\ell(D)</math> रुचि की होती है, जबकि <math>\ell(K-D)</math> को एक सुधार शब्द के रूप में माना जाता है (जिसे विशिष्टता का सूचकांक भी कहा जाता है <ref>Stichtenoth p.22</ref><ref>Mukai pp.295–297</ref> इसलिए प्रमेय को अधिकांशतः यह कहकर व्याख्यायित किया जा सकता है
सामान्यतः, संख्या <math>\ell(D)</math> रुचि की होती है, जबकि <math>\ell(K-D)</math> को एक सुधार शब्द के रूप में माना जाता है (जिसे विशिष्टता का सूचकांक भी कहा जाता है <ref>Stichtenoth p.22</ref><ref>Mukai pp.295–297</ref> इसलिए प्रमेय को अधिकांशतः यह कहकर व्याख्यायित किया जा सकता है
Line 56: Line 57:


:<math>\ell(D) \ge \deg(D) - g + 1.</math>
:<math>\ell(D) \ge \deg(D) - g + 1.</math>
इसे रीमैन की असमानता कहा जाता है। रोच के कथन का हिस्सा असमानता के पक्षों के बीच संभावित अंतर का वर्णन है। जीनस की सामान्य रीमैन सतह पर <math>g</math>, <math>K</math> की डिग्री है इस प्रकार <math>2g-2</math>, भाजक का प्रतिनिधित्व करने के लिए चुने गए मेरोमोर्फिक रूप से स्वतंत्र है। यह <math>D=K</math> डालने से होता है  प्रमेय में. विशेषकर, जब तक <math>D</math> कम से कम डिग्री <math>2g-1</math> है , सुधार शब्द 0 है, इसलिए
इसे रीमैन की असमानता कहा जाता है। रोच के कथन का भाग असमानता के पक्षों के बीच संभावित अंतर का वर्णन है। जीनस की सामान्य रीमैन सतह पर <math>g</math>, <math>K</math> की डिग्री है इस प्रकार <math>2g-2</math>, भाजक का प्रतिनिधित्व करने के लिए चुने गए मेरोमोर्फिक रूप से स्वतंत्र है। यह <math>D=K</math> डालने से होता है  प्रमेय में. विशेषकर, जब तक <math>D</math> कम से कम डिग्री <math>2g-1</math> है , सुधार शब्द 0 है, इसलिए


:<math>\ell(D) = \deg(D) - g + 1.</math>
:<math>\ell(D) = \deg(D) - g + 1.</math>
प्रमेय को अब निम्न जीनस की सतहों के लिए चित्रित किया जाता है। कई अन्य निकट से संबंधित प्रमेय भी हैं: [[लाइन बंडल]] का उपयोग करके इस प्रमेय का समतुल्य सूत्रीकरण और बीजगणितीय वक्रों के लिए प्रमेय का सामान्यीकरण है।
प्रमेय को अब निम्न जीनस की सतहों के लिए चित्रित किया जाता है। कई अन्य निकट से संबंधित प्रमेय भी हैं: [[लाइन बंडल|रेखा बंडल]] का उपयोग करके इस प्रमेय का समतुल्य सूत्रीकरण और बीजगणितीय वक्रों के लिए प्रमेय का सामान्यीकरण है।


===उदाहरण                                                                                                                                                                                                                                                  ===
===उदाहरण                                                                                                                                                                                                                                                  ===
Line 65: Line 66:


:<math>\ell(n\cdot P), n\ge 0</math>
:<math>\ell(n\cdot P), n\ge 0</math>
अर्थात, फ़ंक्शन के स्थान का आयाम जो <math>P</math> को छोड़कर प्रत्येक समिष्ट होलोमोर्फिक है, जहां फ़ंक्शन को अधिकतम <math>n</math> पर ऑर्डर का ध्रुव रखने की अनुमति है। <math>n = 0</math> के लिए, फलन का संपूर्ण होना आवश्यक है, अर्थात, संपूर्ण सतह <math>X</math> पर होलोमोर्फिक लिउविल के प्रमेय के अनुसार, ऐसा फलन आवश्यक रूप से स्थिर है। इसलिए,  <math>\ell(0) = 1</math> सामान्यतः, अनुक्रम <math>\ell(n\cdot P)</math> बढ़ता हुआ क्रम है।
अर्थात, फलन के समिष्ट का आयाम जो <math>P</math> को छोड़कर प्रत्येक समिष्ट होलोमोर्फिक है, जहां फलन को अधिकतम <math>n</math> पर ऑर्डर का ध्रुव रखने की अनुमति है। <math>n = 0</math> के लिए, फलन का संपूर्ण होना आवश्यक है, अर्थात, संपूर्ण सतह <math>X</math> पर होलोमोर्फिक लिउविल के प्रमेय के अनुसार, ऐसा फलन आवश्यक रूप से स्थिर है। इसलिए,  <math>\ell(0) = 1</math> सामान्यतः, अनुक्रम <math>\ell(n\cdot P)</math> बढ़ता हुआ क्रम है।


====जीनस शून्य====
====जीनस शून्य====
Line 85: Line 86:


====जीनस एक                                                                                                                                                                                                                                                                                            ====
====जीनस एक                                                                                                                                                                                                                                                                                            ====
[[File:Torus_cycles2.svg|right|thumb|एक टोरस.]]अगला मामला जीनस की रीमैन सतह का है <math>g = 1</math>, जैसे [[ टोरस्र्स |टोरस्र्स]] <math>\Complex/\Lambda</math>, जहाँ <math>\Lambda</math> द्वि-आयामी [[जाली (समूह)]] है (एक समूह समरूपी है <math>\Z^2</math>). इसका जीनस है: इसका पहला एकवचन होमोलॉजी समूह दो लूपों द्वारा स्वतंत्र रूप से उत्पन्न होता है, जैसा कि दाईं ओर चित्रण में दिखाया गया है। मानक समिष्ट समन्वय <math>z</math> पर <math>C</math> एक-रूप उत्पन्न करता है <math>\omega = dz</math> पर <math>X</math> वह प्रत्येक समिष्ट होलोमोर्फिक है, अर्थात उसमें कोई ध्रुव नहीं है। इसलिए, <math>K</math>, का भाजक <math>\omega</math> शून्य है.
[[File:Torus_cycles2.svg|right|thumb|एक टोरस.]]अगला स्थिति जीनस <math>g = 1</math> की एक रीमैन सतह है, जैसे कि टोरस <math>\Complex/\Lambda</math>, जहां <math>\Lambda</math> एक द्वि-आयामी जालक है (एक समूह आइसोमॉर्फिक है <math>\Z^2</math>)इसका जीनस एक है: इसका पहला एकवचन होमोलॉजी समूह दो लूपों द्वारा स्वतंत्र रूप से उत्पन्न होता है, जैसा कि दाईं ओर चित्रण में दिखाया गया है। C पर मानक कॉम्प्लेक्स कोऑर्डिनेट <math>z</math>, <math>X</math> पर एक-रूप <math>\omega = dz</math> उत्पन्न करता है जो प्रत्येक समिष्ट होलोमोर्फिक है, अर्थात, इसमें कोई ध्रुव नहीं है। इसलिए, <math>\omega</math> का भाजक <math>K</math> शून्य है।


इस सतह पर यही क्रम है
इस सतह पर यही क्रम है


:1, 1, 2, 3, 4, 5 ... ;
:1, 1, 2, 3, 4, 5 ... ;
और यह मामले की विशेषता है <math>g = 1</math>. वास्तव में, के लिए <math>D = 0</math>, <math>\ell(K-D)=\ell(0)=1</math>, जैसा कि ऊपर बताया गया था। के लिए <math>D= n\cdot P</math> साथ <math>n>0</math>, की डिग्री <math>K-D</math> सख्ती से ऋणात्मक है, ताकि सुधार शब्द 0 हो। आयामों का अनुक्रम [[अण्डाकार कार्य]]ों के सिद्धांत से भी प्राप्त किया जा सकता है।


और यह मामले की विशेषता है <math>g = 1</math>. वास्तव में, के लिए <math>D = 0</math>, <math>\ell(K-D)=\ell(0)=1</math>, जैसा कि ऊपर बताया गया था। के लिए <math>D= n\cdot P</math> साथ <math>n>0</math>, की डिग्री <math>K-D</math> सख्ती से ऋणात्मक है, ताकि सुधार शब्द 0 हो। आयामों का अनुक्रम [[अण्डाकार कार्य]]ों के सिद्धांत से भी प्राप्त किया जा सकता है।
और यह स्थिति <math>g = 1</math> की विशेषता बताता है। सामान्यतः, जैसा कि ऊपर उल्लेख किया गया था, <math>D = 0</math> <math>\ell(K-D)=\ell(0)=1</math> के लिए। n>0 के साथ <math>D= n\cdot P</math> के लिए, <math>K-D</math> की डिग्री सख्ती से ऋणात्मक है, जिससे सुधार शब्द 0 होते है। आयामों का अनुक्रम वृत्ताकार कार्यों के सिद्धांत से भी प्राप्त किया जा सकता है।


====जीनस दो और उससे आगे====
====जीनस दो और उससे आगे====
के लिए <math>g=2</math>, ऊपर उल्लिखित अनुक्रम है
<math>g=2</math> के लिए , ऊपर उल्लिखित अनुक्रम है


:1, 1, ?, 2, 3, ....
:1, 1, ?, 2, 3, ....


इससे पता चलता है कि ? बिंदु के आधार पर डिग्री 2 का पद या तो 1 या 2 होता है। यह सिद्ध किया जा सकता है कि किसी भी जीनस 2 वक्र में ठीक छह बिंदु होते हैं जिनका क्रम 1, 1, 2, 2, ... होता है और शेष बिंदुओं का सामान्य अनुक्रम 1, 1, 1, 2, ... होता है। विशेष रूप से, जीनस 2 वक्र [[हाइपरलिप्टिक वक्र]] है। के लिए <math>g>2</math> यह सदैव सत्य है कि अधिकांश बिंदुओं पर अनुक्रम प्रारंभ होता है <math>g+1</math> और अन्य अनुक्रमों के साथ सीमित रूप से कई बिंदु हैं ([[वीयरस्ट्रैस बिंदु]] देखें)।


===रीमैन-लाइन बंडलों के लिए रोच===
इससे पता चलता है कि ? बिंदु के आधार पर डिग्री 2 का पद या तो 1 या 2 होता है। यह सिद्ध किया जा सकता है कि किसी भी जीनस 2 वक्र में ठीक छह बिंदु होते हैं जिनका क्रम 1, 1, 2, 2, ... होता है और बाकी बिंदुओं का सामान्य अनुक्रम 1, 1, 1, 2, होता है ... विशेष रूप से, एक जीनस 2 वक्र एक हाइपरलिप्टिक वक्र होता है। <math>g>2</math> के लिए यह सदैव सही है कि अधिकांश बिंदुओं पर अनुक्रम <math>g+1</math> से प्रारंभ होता है और अन्य अनुक्रमों के साथ सीमित रूप से कई बिंदु होते हैं ([[वीयरस्ट्रैस बिंदु]] देखें)।
रीमैन सतह पर विभाजकों और [[होलोमोर्फिक लाइन बंडल]]ों के बीच घनिष्ठ पत्राचार का उपयोग करते हुए, प्रमेय को अलग, फिर भी समकक्ष तरीके से कहा जा सकता है: मान लीजिए कि L, X पर होलोमोर्फिक लाइन बंडल है। <math>H^0(X,L)</math> एल के होलोमोर्फिक अनुभागों के समिष्ट को निरूपित करें। यह समिष्ट परिमित-आयामी होगा; इसका आयाम दर्शाया गया है <math>h^0(X,L)</math>. मान लीजिए कि K, X पर [[विहित बंडल]] को निरूपित करता है। फिर, रीमैन-रोच प्रमेय कहता है कि
 
===रीमैन-रेखा बंडलों के लिए रोच===
रीमैन सतह पर विभाजकों और [[होलोमोर्फिक लाइन बंडल|होलोमोर्फिक रेखा बंडल]] के बीच घनिष्ठ पत्राचार का उपयोग करते हुए, प्रमेय को अलग, फिर भी समकक्ष विधि से कहा जा सकता है: मान लीजिए कि L, X पर होलोमोर्फिक रेखा बंडल है। <math>H^0(X,L)</math> L के होलोमोर्फिक अनुभागों के समिष्ट को निरूपित करें। यह समिष्ट परिमित-आयामी होगा; इसका आयाम <math>h^0(X,L)</math> दर्शाया गया है . मान लीजिए कि K, X पर [[विहित बंडल]] को निरूपित करता है। फिर, रीमैन-रोच प्रमेय कहता है कि


:<math>h^0(X,L)-h^0(X,L^{-1}\otimes K)=\deg(L)+1-g.</math>
:<math>h^0(X,L)-h^0(X,L^{-1}\otimes K)=\deg(L)+1-g.</math>
पिछले अनुभाग का प्रमेय विशेष मामला है जब एल [[बिंदु बंडल]] है।
पिछले अनुभाग का प्रमेय विशेष स्थिति है जब L [[बिंदु बंडल]] है।


प्रमेय को यह दिखाने के लिए लागू किया जा सकता है कि K के g रैखिक रूप से स्वतंत्र होलोमोर्फिक खंड हैं, या X पर एक-रूप निम्नानुसार हैं। एल को तुच्छ बंडल मानते हुए, <math> h^0(X,L)=1</math> चूँकि X पर एकमात्र होलोमोर्फिक फलन स्थिरांक हैं। L की डिग्री शून्य है, और <math>L^{-1}</math> तुच्छ बंडल है. इस प्रकार,
प्रमेय को यह दिखाने के लिए प्रयुक्त किया जा सकता है कि K के g रैखिक रूप से स्वतंत्र होलोमोर्फिक खंड हैं, या X पर एक-रूप निम्नानुसार हैं। L को <math> h^0(X,L)=1</math> सामान्य बंडल मानते हुए,  चूँकि X पर एकमात्र होलोमोर्फिक फलन स्थिरांक हैं। L की डिग्री शून्य है, और <math>L^{-1}</math> सामान्य बंडल है. इस प्रकार,


:<math>1-h^0(X,K)=1-g.</math>
:<math>1-h^0(X,K)=1-g.</math>
इसलिए, <math>h^0(X,K)=g</math>, यह साबित करते हुए कि जी होलोमोर्फिक एक-रूप हैं।
इसलिए, <math>h^0(X,K)=g</math>, यह सिद्ध करते हुए कि G होलोमोर्फिक एक-रूप हैं।


=== विहित बंडल की डिग्री ===
=== विहित बंडल की डिग्री ===
विहित बंडल के पश्चात् से <math>K</math> है <math>h^0(X,K)=g</math>, रीमैन-रोच को लागू करना <math>L = K</math> देता है
चूँकि विहित बंडल <math>K</math> में <math>h^0(X,K)=g</math> है, रीमैन-रोच को <math>L = K</math> पर प्रयुक्त करने से प्राप्त होता है


:<math>h^0(X,K)-h^0(X,K^{-1}\otimes K)=\deg(K)+1-g</math>
:<math>h^0(X,K)-h^0(X,K^{-1}\otimes K)=\deg(K)+1-g</math>
Line 118: Line 121:


:<math>g - 1 = \deg(K) + 1 - g</math>
:<math>g - 1 = \deg(K) + 1 - g</math>
इसलिए विहित बंडल की डिग्री है <math>\deg(K) = 2g - 2</math>.
इसलिए विहित बंडल की डिग्री <math>\deg(K) = 2g - 2</math> है .


===बीजगणितीय वक्रों के लिए रीमैन-रोच प्रमेय===
===बीजगणितीय वक्रों के लिए रीमैन-रोच प्रमेय===
रीमैन सतहों पर विभाजकों के लिए रीमैन-रोच प्रमेय के उपरोक्त सूत्रीकरण में प्रत्येक आइटम का बीजगणितीय ज्यामिति में एनालॉग है। रीमैन सतह का एनालॉग बीजगणितीय विविधता का विलक्षण बिंदु है | फ़ील्ड k पर गैर-एकवचन बीजगणितीय वक्र C। शब्दावली में अंतर (वक्र बनाम सतह) इसलिए है क्योंकि वास्तविक [[ कई गुना |कई गुना]] के रूप में रीमैन सतह का आयाम दो है, लेकिन समिष्ट मैनिफोल्ड के रूप में है। रीमैन सतह की सघनता इस शर्त के समानांतर है कि बीजगणितीय वक्र पूर्ण विविधता है, जो प्रक्षेप्य विविधता के बराबर है। सामान्य क्षेत्र k में, एकवचन (सह) समरूपता की कोई अच्छी धारणा नहीं है। तथाकथित [[ज्यामितीय जीनस]] को इस प्रकार परिभाषित किया गया है
रीमैन सतहों पर विभाजकों के लिए रीमैन-रोच प्रमेय के उपरोक्त सूत्रीकरण में प्रत्येक आइटम का बीजगणितीय ज्यामिति में एनालॉग है। रीमैन सतह का एनालॉग बीजगणितीय विविधता का विलक्षण बिंदु है | क्षेत्र k पर गैर-एकवचन बीजगणितीय वक्र C शब्दावली में अंतर (वक्र बनाम सतह) इसलिए है क्योंकि वास्तविक [[ कई गुना |मैनिफोल्ड]] के रूप में रीमैन सतह का आयाम दो है, किन्तु समिष्ट मैनिफोल्ड के रूप में है। रीमैन सतह की सघनता इस नियम के समानांतर है कि बीजगणितीय वक्र पूर्ण विविधता है, जो प्रक्षेप्य विविधता के समान है। सामान्य क्षेत्र k में, एकवचन (सह) समरूपता की कोई अच्छी धारणा नहीं है। तथाकथित [[ज्यामितीय जीनस]] को इस प्रकार परिभाषित किया गया है


:<math>g(C) := \dim_k \Gamma(C, \Omega^1_C)</math>
:<math>g(C) := \dim_k \Gamma(C, \Omega^1_C)</math>
अर्थात, विश्व स्तर पर परिभाषित (बीजगणितीय) एक-रूपों के समिष्ट के आयाम के रूप में (काहलर अंतर देखें)। अंत में, रीमैन सतह पर मेरोमोर्फिक कार्यों को स्थानीय रूप से होलोमोर्फिक कार्यों के अंशों के रूप में दर्शाया जाता है। इसलिए उन्हें [[तर्कसंगत कार्य]]ों द्वारा प्रतिस्थापित किया जाता है जो स्थानीय रूप से [[नियमित कार्य]]ों के अंश होते हैं। इस प्रकार, लेखन <math>\ell(D)</math> वक्र पर तर्कसंगत कार्यों के समिष्ट के आयाम (k से अधिक) के लिए, जिसके प्रत्येक बिंदु पर ध्रुव D में संबंधित गुणांक से बदतर नहीं हैं, ऊपर जैसा ही सूत्र है:
अर्थात, विश्व स्तर पर परिभाषित (बीजगणितीय) एक-रूपों के समिष्ट के आयाम के रूप में (काहलर अंतर देखें)। अंत में, रीमैन सतह पर मेरोमोर्फिक कार्यों को स्थानीय रूप से होलोमोर्फिक कार्यों के अंशों के रूप में दर्शाया जाता है। इसलिए उन्हें [[तर्कसंगत कार्य]] द्वारा प्रतिस्थापित किया जाता है जो स्थानीय रूप से [[नियमित कार्य]] के अंश होते हैं। इस प्रकार, लेखन <math>\ell(D)</math> वक्र पर तर्कसंगत कार्यों के समिष्ट के आयाम (k से अधिक) के लिए, जिसके प्रत्येक बिंदु पर ध्रुव D में संबंधित गुणांक से उत्तम नहीं हैं, ऊपर जैसा ही सूत्र है:


:<math>\ell(D)-\ell(K-D) = \deg(D) - g + 1.</math>
:<math>\ell(D)-\ell(K-D) = \deg(D) - g + 1.</math>
जहां C [[बीजगणितीय रूप से बंद फ़ील्ड]] k पर प्रक्षेप्य गैर-एकवचन बीजगणितीय वक्र है। वास्तव में, ही सूत्र किसी भी क्षेत्र पर प्रक्षेप्य वक्रों के लिए लागू होता है, सिवाय इसके कि विभाजक की डिग्री को आधार क्षेत्र के संभावित विस्तार और विभाजक का समर्थन करने वाले बिंदुओं के [[अवशेष क्षेत्र]]ों से आने वाली [[बहुलता (गणित)]] को ध्यान में रखना होगा।<ref>{{Citation | last1=Liu | first1=Qing | title=Algebraic Geometry and Arithmetic Curves | publisher=[[Oxford University Press]] | isbn=978-0-19-850284-5 | year=2002}}, Section 7.3</ref> अंत में, एक [[ आर्टिनियन अंगूठी |आर्टिनियन अंगूठी]] पर उचित वक्र के लिए, विभाजक से जुड़ी लाइन बंडल की यूलर विशेषता विभाजक की डिग्री (उचित रूप से परिभाषित) और संरचनात्मक शीफ की यूलर विशेषता द्वारा दी जाती है। <math>\mathcal O</math>.<ref>* {{Citation | last1=Altman | first1=Allen | last2=Kleiman | first2=Steven | author2-link=Steven Kleiman | title=Introduction to Grothendieck duality theory | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Lecture Notes in Mathematics, Vol. 146 | year=1970}}, Theorem VIII.1.4., p. 164</ref>
जहां C [[बीजगणितीय रूप से बंद फ़ील्ड|बीजगणितीय रूप से संवृत क्षेत्र]] k पर प्रक्षेप्य गैर-एकवचन बीजगणितीय वक्र है। वास्तव में, ही सूत्र किसी भी क्षेत्र पर प्रक्षेप्य वक्रों के लिए प्रयुक्त होता है, सिवाय इसके कि विभाजक की डिग्री को आधार क्षेत्र के संभावित विस्तार और विभाजक का समर्थन करने वाले बिंदुओं के [[अवशेष क्षेत्र]] से आने वाली [[बहुलता (गणित)]] को ध्यान में रखना होता है।<ref>{{Citation | last1=Liu | first1=Qing | title=Algebraic Geometry and Arithmetic Curves | publisher=[[Oxford University Press]] | isbn=978-0-19-850284-5 | year=2002}}, Section 7.3</ref> अंत में, एक [[ आर्टिनियन अंगूठी |आर्टिनियन वलय]] पर उचित वक्र के लिए, विभाजक से जुड़ी रेखा बंडल की यूलर विशेषता विभाजक की डिग्री (उचित रूप से परिभाषित) और संरचनात्मक शीफ की यूलर विशेषता द्वारा दी जाती है। .<ref>* {{Citation | last1=Altman | first1=Allen | last2=Kleiman | first2=Steven | author2-link=Steven Kleiman | title=Introduction to Grothendieck duality theory | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Lecture Notes in Mathematics, Vol. 146 | year=1970}}, Theorem VIII.1.4., p. 164</ref>
प्रमेय में सहजता की धारणा को भी शिथिल किया जा सकता है: बीजगणितीय रूप से बंद क्षेत्र पर (प्रक्षेपी) वक्र के लिए, जिसके सभी स्थानीय वलय गोरेन्स्टीन वलय हैं, ऊपर जैसा ही कथन मान्य है, बशर्ते कि ऊपर परिभाषित ज्यामितीय जीनस है [[अंकगणित जीनस]] जी द्वारा प्रतिस्थापित<sub>''a''</sub>, के रूप में परिभाषित
 
प्रमेय <math>\mathcal O</math> में सहजता की धारणा को भी शिथिल किया जा सकता है: बीजगणितीय रूप से संवृत क्षेत्र पर (प्रक्षेपी) वक्र के लिए, जिसके सभी स्थानीय वलय गोरेन्स्टीन वलय हैं, ऊपर जैसा ही कथन मान्य है, परंतु कि ऊपर परिभाषित ज्यामितीय जीनस है [[अंकगणित जीनस]] g<sub>''a''</sub> द्वारा प्रतिस्थापित, के रूप में परिभाषित है


:<math>g_a := \dim_k H^1(C, \mathcal O_C).</math><ref>{{Citation | last1=Hartshorne | first1=Robin | author1-link=Robin Hartshorne | title=Generalized divisors on Gorenstein curves and a theorem of Noether | year=1986 | journal=Journal of Mathematics of Kyoto University | issn=0023-608X | volume=26 | issue=3 | pages=375–386 | doi=10.1215/kjm/1250520873 | doi-access=free }}</ref>
:<math>g_a := \dim_k H^1(C, \mathcal O_C).</math><ref>{{Citation | last1=Hartshorne | first1=Robin | author1-link=Robin Hartshorne | title=Generalized divisors on Gorenstein curves and a theorem of Noether | year=1986 | journal=Journal of Mathematics of Kyoto University | issn=0023-608X | volume=26 | issue=3 | pages=375–386 | doi=10.1215/kjm/1250520873 | doi-access=free }}</ref>
(चिकने वक्रों के लिए, ज्यामितीय जीनस अंकगणित से सहमत होता है।) प्रमेय को सामान्य एकवचन वक्रों (और उच्च-आयामी किस्मों) तक भी बढ़ाया गया है।<ref>{{Citation | last1=Baum | first1=Paul | last2=Fulton | first2=William | author2-link=William Fulton (mathematician) | last3=MacPherson | first3=Robert | author3-link=Robert MacPherson (mathematician) | title=Riemann–Roch for singular varieties | year=1975 | journal=[[Publications Mathématiques de l'IHÉS]] | volume=45 | issn=1618-1913 | issue=45 | pages=101–145| doi=10.1007/BF02684299 | s2cid=83458307 | url=http://www.numdam.org/item/PMIHES_1975__45__101_0/ }}</ref>
(स्मूथ वक्रों के लिए, ज्यामितीय जीनस अंकगणित से सहमत होता है।) प्रमेय को सामान्य एकवचन वक्रों (और उच्च-आयामी विविधताएँ) तक भी बढ़ाया गया है।<ref>{{Citation | last1=Baum | first1=Paul | last2=Fulton | first2=William | author2-link=William Fulton (mathematician) | last3=MacPherson | first3=Robert | author3-link=Robert MacPherson (mathematician) | title=Riemann–Roch for singular varieties | year=1975 | journal=[[Publications Mathématiques de l'IHÉS]] | volume=45 | issn=1618-1913 | issue=45 | pages=101–145| doi=10.1007/BF02684299 | s2cid=83458307 | url=http://www.numdam.org/item/PMIHES_1975__45__101_0/ }}</ref>
 




Line 137: Line 142:


=== [[हिल्बर्ट बहुपद]] ===
=== [[हिल्बर्ट बहुपद]] ===
रीमैन-रोच के महत्वपूर्ण परिणामों में से यह है कि यह वक्र पर लाइन बंडलों के हिल्बर्ट बहुपद की गणना के लिए सूत्र देता है। यदि लाइन बंडल <math>\mathcal{L}</math> पर्याप्त है, तो हिल्बर्ट बहुपद पहली डिग्री देगा <math>\mathcal{L}^{\otimes n}</math> प्रक्षेप्य समिष्ट में एम्बेडिंग देना। उदाहरण के लिए, विहित शीफ <math>\omega_C</math> की डिग्री है <math>2g - 2</math>, जो जीनस के लिए पर्याप्त लाइन बंडल देता है <math>g \geq 2</math>.<ref>Note the moduli of elliptic curves can be constructed independently, see https://arxiv.org/abs/0812.1803, and there is only one smooth curve of genus 0, <math>\mathbb{P}^1</math>, which can be found using deformation theory. See https://arxiv.org/abs/math/0507286</ref> अगर हम सेट करते हैं <math>\omega_C(n) = \omega_C^{\otimes n}</math> फिर रीमैन-रोच फॉर्मूला पढ़ता है
रीमैन-रोच के महत्वपूर्ण परिणामों में से एक यह है कि यह एक वक्र पर रेखा बंडलों के हिल्बर्ट बहुपद की गणना के लिए एक सूत्र देता है। यदि एक रेखा बंडल <math>\mathcal{L}</math> पर्याप्त है, तो हिल्बर्ट बहुपद पहली डिग्री <math>\mathcal{L}^{\otimes n}</math> देगा, जो प्रोजेक्टिव स्पेस में एम्बेडिंग देगा। उदाहरण के लिए, कैनोनिकल शीफ़ <math>\omega_C</math> में डिग्री होती है, जो जीनस <math>2g - 2</math> के लिए पर्याप्त रेखा बंडल <math>g \geq 2</math> देती है।<ref>Note the moduli of elliptic curves can be constructed independently, see https://arxiv.org/abs/0812.1803, and there is only one smooth curve of genus 0, <math>\mathbb{P}^1</math>, which can be found using deformation theory. See https://arxiv.org/abs/math/0507286</ref> यदि हम सेट करते हैं तो रीमैन-रोच <math>\omega_C(n) = \omega_C^{\otimes n}</math> सूत्र पढ़ता है


:<math>\begin{align}
:<math>\begin{align}
Line 145: Line 150:
&= (2n-1)(g-1)
&= (2n-1)(g-1)
\end{align}</math>
\end{align}</math>
डिग्री दे रहे हैं <math>1</math> हिल्बर्ट बहुपद का <math>\omega_C</math>
 
 
<math>\omega_C</math> की डिग्री <math>1</math> हिल्बर्ट बहुपद देता है
:<math>H_{\omega_C}(t) = 2(g-1)t - g + 1 </math>
:<math>H_{\omega_C}(t) = 2(g-1)t - g + 1 </math>
क्योंकि त्रि-विहित पूला <math>\omega_C^{\otimes 3}</math> वक्र को एम्बेड करने के लिए हिल्बर्ट बहुपद का उपयोग किया जाता है
क्योंकि त्रि-विहित पूला <math>\omega_C^{\otimes 3}</math> वक्र को एम्बेड करने के लिए हिल्बर्ट बहुपद का उपयोग किया जाता है


<math>H_C(t) = H_{\omega_C^{\otimes 3}}(t)</math>
<math>H_C(t) = H_{\omega_C^{\otimes 3}}(t)</math>
सामान्यतः [[हिल्बर्ट योजना]] (और बीजीय वक्रों के मापांक) का निर्माण करते समय इस पर विचार किया जाता है। यह बहुपद है
सामान्यतः [[हिल्बर्ट योजना]] (और बीजीय वक्रों के मापांक) का निर्माण करते समय इस पर विचार किया जाता है। यह बहुपद है


Line 156: Line 164:
&= 6(g-1)t + (1-g)
&= 6(g-1)t + (1-g)
\end{align}</math>
\end{align}</math>
और इसे जीनस जी वक्र का हिल्बर्ट बहुपद कहा जाता है।
 
और इसे जीनस G वक्र का हिल्बर्ट बहुपद कहा जाता है।


=== प्लुरिकैनोनिकल एम्बेडिंग ===
=== प्लुरिकैनोनिकल एम्बेडिंग ===
Line 167: Line 176:
तब से <math>\deg(\omega_C^{\otimes n}) = n(2g-2)</math>
तब से <math>\deg(\omega_C^{\otimes n}) = n(2g-2)</math>
:<math>h^0 \left (C, \left (\omega_C^{\otimes (n-1)} \right )^\vee \right ) = 0</math>
:<math>h^0 \left (C, \left (\omega_C^{\otimes (n-1)} \right )^\vee \right ) = 0</math>
के लिए <math>n \geq 3</math>, क्योंकि इसकी डिग्री सभी के लिए ऋणात्मक है <math>g \geq 2</math>, जिसका अर्थ है कि इसका कोई वैश्विक खंड नहीं है, वैश्विक खंडों से कुछ प्रक्षेप्य समिष्ट में एम्बेडिंग है <math>\omega_C^{\otimes n}</math>. विशेष रूप से, <math>\omega_C^{\otimes 3}</math> में एम्बेडिंग देता है <math>\mathbb{P}^{N} \cong \mathbb{P}(H^0(C,\omega_C^{\otimes 3}))</math> जहाँ <math>N = 5g - 5 - 1 = 5g - 6</math> तब से <math>h^0(\omega_C^{\otimes 3}) = 6g - 6 - g + 1</math>. यह बीजगणितीय वक्रों के मॉड्यूली के निर्माण में उपयोगी है क्योंकि इसका उपयोग हिल्बर्ट बहुपद के साथ हिल्बर्ट योजना के निर्माण के लिए प्रक्षेप्य समिष्ट के रूप में किया जा सकता है। <math>H_C(t)</math>.<ref>{{Cite journal| last1=Deligne |first1=P. |last2= Mumford |first2=D.|title=दिए गए जीनस के वक्रों के स्थान की अपरिवर्तनीयता| url= http://www.numdam.org/item/PMIHES_1969__36__75_0/|journal=IHES|year=1969 |volume=36|pages=75–110|doi=10.1007/BF02684599 |citeseerx=10.1.1.589.288 |s2cid=16482150 }}</ref>
 
 
<math>n \geq 3</math> के लिए, चूँकि इसकी डिग्री सभी <math>g \geq 2</math> के लिए ऋणात्मक है, जिसका अर्थ है कि इसमें कोई वैश्विक अनुभाग नहीं है, <math>N = 5g - 5 - 1 = 5g - 6</math> के वैश्विक अनुभागों से कुछ प्रक्षेप्य समिष्ट में एम्बेडिंग है। विशेष रूप से, <math>\omega_C^{\otimes n}</math> <math>\omega_C^{\otimes 3}</math> में एक एम्बेडिंग देता है जहां <math>\mathbb{P}^{N} \cong \mathbb{P}(H^0(C,\omega_C^{\otimes 3}))</math> से <math>N = 5g - 5 - 1 = 5g - 6</math> होता है। यह बीजीय वक्रों के मॉड्यूलि स्पेस के निर्माण में उपयोगी है क्योंकि इसका उपयोग हिल्बर्ट बहुपद <math>h^0(\omega_C^{\otimes 3}) = 6g - 6 - g + 1</math> के साथ हिल्बर्ट योजना के निर्माण के लिए प्रक्षेप्य समिष्ट के रूप में किया जा सकता है।<ref>{{Cite journal| last1=Deligne |first1=P. |last2= Mumford |first2=D.|title=दिए गए जीनस के वक्रों के स्थान की अपरिवर्तनीयता| url= http://www.numdam.org/item/PMIHES_1969__36__75_0/|journal=IHES|year=1969 |volume=36|pages=75–110|doi=10.1007/BF02684599 |citeseerx=10.1.1.589.288 |s2cid=16482150 }}</ref>




Line 174: Line 185:


=== रीमैन-हर्विट्ज़ सूत्र ===
=== रीमैन-हर्विट्ज़ सूत्र ===
रीमैन सतहों या बीजगणितीय वक्रों के बीच (विस्तारित) मानचित्रों से संबंधित रीमैन-हर्विट्ज़ फॉर्मूला रीमैन-रोच प्रमेय का परिणाम है।
रीमैन सतहों या बीजगणितीय वक्रों के बीच (विस्तारित) मानचित्रों से संबंधित रीमैन-हर्विट्ज़ सूत्र रीमैन-रोच प्रमेय का परिणाम है।


=== विशेष भाजक पर क्लिफोर्ड का प्रमेय ===
=== विशेष भाजक पर क्लिफोर्ड का प्रमेय ===
विशेष भाजक पर क्लिफोर्ड का प्रमेय भी रीमैन-रोच प्रमेय का परिणाम है। इसमें कहा गया है कि विशेष भाजक के लिए (अर्थात्, ऐसा कि <math>\ell(K-D)>0</math>) संतुष्टि देने वाला <math>\ell(D)>0,</math> निम्नलिखित असमानता कायम है:<ref>{{Citation|last1=Fulton|first1=William|title=Algebraic curves|url=http://www.math.lsa.umich.edu/~wfulton/CurveBook.pdf|year=1989|series=Advanced Book Classics|publisher=[[Addison-Wesley]]|isbn=978-0-201-51010-2|author1-link=William Fulton (mathematician)}}, p. 109</ref>
विशेष भाजक पर क्लिफोर्ड का प्रमेय भी रीमैन-रोच प्रमेय का परिणाम है। इसमें कहा गया है कि विशेष भाजक के लिए (अर्थात्, ऐसा कि <math>\ell(K-D)>0</math>) संतुष्टि देने वाला <math>\ell(D)>0,</math> निम्नलिखित असमानता स्थिर है:<ref>{{Citation|last1=Fulton|first1=William|title=Algebraic curves|url=http://www.math.lsa.umich.edu/~wfulton/CurveBook.pdf|year=1989|series=Advanced Book Classics|publisher=[[Addison-Wesley]]|isbn=978-0-201-51010-2|author1-link=William Fulton (mathematician)}}, p. 109</ref>
:<math>\ell(D) \leq \frac{\deg D}2+1.</math>
:<math>\ell(D) \leq \frac{\deg D}2+1.</math>


Line 184: Line 195:


=== बीजगणितीय वक्रों के लिए प्रमाण ===
=== बीजगणितीय वक्रों के लिए प्रमाण ===
बीजगणितीय वक्रों के कथन को [[सेरे द्वैत]] का उपयोग करके सिद्ध किया जा सकता है। पूर्णांक <math>\ell(D)</math> लाइन बंडल के वैश्विक अनुभागों के समिष्ट का आयाम है <math>\mathcal L(D)</math> D से संबद्ध (cf. [[कार्टियर विभाजक]])। इसलिए, [[शीफ़ कोहोमोलोजी]] के संदर्भ में, हमारे पास है <math>\ell (D) = \mathrm {dim} H^0 (X, \mathcal L(D))</math>, और इसी तरह <math>\ell (\mathcal K_X - D) = \dim H^0 (X, \omega_X \otimes \mathcal L(D)^\vee) </math>. लेकिन वक्र के विशेष मामले में गैर-एकवचन प्रक्षेप्य किस्मों के लिए सेरे द्वैत यह बताता है <math>H^0 (X, \omega_X \otimes \mathcal L(D)^\vee)</math> दोहरे के समरूपी है <math>H^1 (X, \mathcal L (D))^\vee</math>. इस प्रकार बायां हाथ विभाजक डी की [[यूलर विशेषता]] के बराबर होता है। जब डी = 0, हम पाते हैं कि संरचना शीफ ​​के लिए यूलर विशेषता है <math>1-g</math> परिभाषा से। सामान्य विभाजक के लिए प्रमेय को साबित करने के लिए, विभाजक में एक-एक करके अंक जोड़कर आगे बढ़ सकते हैं और यह सुनिश्चित कर सकते हैं कि यूलर विशेषता दाहिने हाथ की ओर तदनुसार बदल जाती है।
बीजगणितीय वक्रों के कथन को [[सेरे द्वैत]] का उपयोग करके सिद्ध किया जा सकता है। पूर्णांक <math>\mathcal L(D)</math> <math>\ell(D)</math> (cf. [[कार्टियर विभाजक]]) से संबद्ध लाइन बंडल <math>\ell (D) = \mathrm {dim} H^0 (X, \mathcal L(D))</math> के वैश्विक अनुभागों के समिष्ट का आयाम है। [[शीफ़ कोहोमोलोजी]] के संदर्भ में, हमारे पास <math>\ell (\mathcal K_X - D) = \dim H^0 (X, \omega_X \otimes \mathcal L(D)^\vee) </math>, और इसी तरह <math>H^0 (X, \omega_X \otimes \mathcal L(D)^\vee)</math> भी है। किन्तु वक्र के विशेष स्थिति में गैर-एकवचन प्रक्षेप्य विविधताएँ के लिए सेरे द्वैत बताता है कि <math>H^0 (X, \omega_X \otimes \mathcal L(D)^\vee)</math> दोहरे <math>H^1 (X, \mathcal L (D))^\vee</math> के लिए समरूपी है। इस प्रकार बायां हाथ विभाजक डी की [[यूलर विशेषता]] के समान होता है। जब d = 0, हम पाते हैं कि संरचना शीफ के लिए यूलर विशेषता परिभाषा के अनुसार 1-g है। सामान्य विभाजक के लिए प्रमेय को सिद्ध करने के लिए, विभाजक में एक करके अंक जोड़कर आगे बढ़ सकते हैं और यह सुनिश्चित कर सकते हैं कि यूलर विशेषता दाहिने हाथ की ओर तदनुसार बदल जाती है।


=== कॉम्पैक्ट रीमैन सतहों के लिए प्रमाण ===
=== कॉम्पैक्ट रीमैन सतहों के लिए प्रमाण ===
कॉम्पैक्ट रीमैन सतहों के लिए प्रमेय को बीजगणितीय ज्यामिति और विश्लेषणात्मक ज्यामिति का उपयोग करके बीजगणितीय संस्करण से निकाला जा सकता है#Chow.27s प्रमेय|चाउ के प्रमेय और [[GAGA]] सिद्धांत: वास्तव में, प्रत्येक कॉम्पैक्ट रीमैन सतह को कुछ समिष्ट प्रक्षेप्य समिष्ट में बीजगणितीय समीकरणों द्वारा परिभाषित किया जाता है। (चाउ का प्रमेय कहता है कि प्रक्षेप्य समिष्ट की किसी भी बंद विश्लेषणात्मक उप-विविधता को बीजगणितीय समीकरणों द्वारा परिभाषित किया गया है, और जीएजीए सिद्धांत कहता है कि बीजगणितीय विविधता की शीफ कोहोलॉजी समान समीकरणों द्वारा परिभाषित विश्लेषणात्मक विविधता की शीफ कोहोलॉजी के समान है)।
कॉम्पैक्ट रीमैन सतहों के लिए प्रमेय को बीजगणितीय ज्यामिति और विश्लेषणात्मक ज्यामिति का उपयोग करके बीजगणितीय संस्करण से निकाला जा सकता है Chow.27s प्रमेय या चाउ के प्रमेय और [[GAGA|गागा]] सिद्धांत: वास्तव में, प्रत्येक कॉम्पैक्ट रीमैन सतह को कुछ समिष्ट प्रक्षेप्य समिष्ट में बीजगणितीय समीकरणों द्वारा परिभाषित किया जाता है। (चाउ का प्रमेय कहता है कि प्रक्षेप्य समिष्ट की किसी भी संवृत विश्लेषणात्मक उप-विविधता को बीजगणितीय समीकरणों द्वारा परिभाषित किया गया है, और जीएजीए सिद्धांत कहता है कि बीजगणितीय विविधता की शीफ कोहोलॉजी समान समीकरणों द्वारा परिभाषित विश्लेषणात्मक विविधता की शीफ कोहोलॉजी के समान है)।


कोई व्यक्ति बीजगणितीय वक्रों के मामले में प्रमाण के समान तर्क देकर, लेकिन प्रतिस्थापित करके चाउ के प्रमेय के उपयोग से बच सकता है <math>\mathcal L(D)</math> पूले के साथ <math>\mathcal O_D</math> मेरोमॉर्फिक फ़ंक्शंस h जैसे कि भाजक के सभी गुणांक <math>(h) + D</math> गैर-ऋणात्मक हैं. यहां तथ्य यह है कि जब कोई विभाजक में बिंदु जोड़ता है तो यूलर विशेषता वांछित रूप में बदल जाती है, जिसे छोटे स्पष्ट अनुक्रम से प्रेरित लंबे स्पष्ट अनुक्रम से पढ़ा जा सकता है।
कोई व्यक्ति बीजगणितीय वक्रों के स्थिति में प्रमाण के समान तर्क देकर चाउ के प्रमेय के उपयोग से बच सकता है, किन्तु <math>\mathcal L(D)</math> को मेरोमोर्फिक फलन <math>(h) + D</math> के शीफ़ <math>\mathcal O_D</math> के साथ प्रतिस्थापित कर सकता है जिससे विभाजक के सभी गुणांक गैर-ऋणात्मक होंते है। यहां तथ्य यह है कि जब कोई विभाजक में एक बिंदु जोड़ता है तो यूलर विशेषता वांछित रूप में बदल जाती है, जिसे छोटे स्पष्ट अनुक्रम से प्रेरित लंबे स्पष्ट अनुक्रम से पढ़ा जा सकता है।


:<math>0 \to \mathcal O_D \to \mathcal O_{D + P} \to \mathbb C_P \to 0</math>
:<math>0 \to \mathcal O_D \to \mathcal O_{D + P} \to \mathbb C_P \to 0</math>
जहाँ <math>\mathbb C_P</math> पी पर [[गगनचुंबी इमारत का ढेर]] है, और नक्शा है <math>\mathcal O_{D + P} \to \mathbb C_P</math> को लौटाता है <math>-k-1</math>वें लॉरेंट गुणांक, कहां <math>k = D(P)</math>.<ref>{{Citation | last1=Forster | first1=Otto | title=Lectures on Riemann Surfaces | publisher=[[Springer Nature]] | isbn=    978-1-4612-5963-3 | year=1981}}, Section 16</ref>
जहाँ <math>\mathbb C_P</math> पी पर [[गगनचुंबी इमारत का ढेर]] है, और नक्शा है <math>\mathcal O_{D + P} \to \mathbb C_P</math> को लौटाता है <math>-k-1</math>वें लॉरेंट गुणांक, कहां <math>k = D(P)</math>.<ref>{{Citation | last1=Forster | first1=Otto | title=Lectures on Riemann Surfaces | publisher=[[Springer Nature]] | isbn=    978-1-4612-5963-3 | year=1981}}, Section 16</ref>
जहां <math>\mathbb C_P</math> P पर स्काइस्क्रैपर शीफ है, और मानचित्र <math>\mathcal O_{D + P} \to \mathbb C_P</math> <math>-k-1</math> लॉरेंट गुणांक लौटाता है, जहां <math>k = D(P)</math> है <ref>{{Citation | last1=Forster | first1=Otto | title=Lectures on Riemann Surfaces | publisher=[[Springer Nature]] | isbn=    978-1-4612-5963-3 | year=1981}}, Section 16</ref>




== अंकगणित रीमैन-रोच प्रमेय ==
== अंकगणित रीमैन-रोच प्रमेय ==
अंकगणित रीमैन-रोच प्रमेय के संस्करण में कहा गया है कि यदि k [[वैश्विक क्षेत्र]] है, और f, k के [[एडेल अंगूठी]] का उपयुक्त स्वीकार्य कार्य है, तो प्रत्येक आदर्श a के लिए, [[पॉइसन योग सूत्र]] होता है:
अंकगणित रीमैन-रोच प्रमेय के संस्करण में कहा गया है कि यदि k [[वैश्विक क्षेत्र]] है, और f, k के [[एडेल अंगूठी|एडेल वलय]] का उपयुक्त स्वीकार्य कार्य है, तो प्रत्येक आदर्श a के लिए, [[पॉइसन योग सूत्र]] होता है:
:<math>\frac{1}{|a|}\sum_{x\in k}\hat f(x/a) = \sum_{x\in k}f(ax).</math>
:<math>\frac{1}{|a|}\sum_{x\in k}\hat f(x/a) = \sum_{x\in k}f(ax).</math>
विशेष मामले में जब k परिमित क्षेत्र पर बीजगणितीय वक्र का कार्य क्षेत्र है और f कोई ऐसा वर्ण है जो k पर तुच्छ है, तो यह ज्यामितीय रीमैन-रोच प्रमेय को पुनः प्राप्त करता है।<ref>{{citation|author1=Ramakrishnan, Dinakar|author2=Valenza, Robert|title=Fourier analysis on number fields|publisher=Springer-Verlag|year=1999}}, Chapter 7. </ref>
विशेष स्थिति में जब k परिमित क्षेत्र पर बीजगणितीय वक्र का कार्य क्षेत्र है और f कोई ऐसा वर्ण है जो k पर सामान्य है, तो यह ज्यामितीय रीमैन-रोच प्रमेय को पुनः प्राप्त करता है।<ref>{{citation|author1=Ramakrishnan, Dinakar|author2=Valenza, Robert|title=Fourier analysis on number fields|publisher=Springer-Verlag|year=1999}}, Chapter 7. </ref>
 
अंकगणित रीमैन-रोच प्रमेय के अन्य संस्करण पारंपरिक रीमैन-रोच प्रमेय से अधिक स्पष्ट रूप से मिलते-जुलते होने के लिए अरकेलोव सिद्धांत का उपयोग करते हैं।
अंकगणित रीमैन-रोच प्रमेय के अन्य संस्करण पारंपरिक रीमैन-रोच प्रमेय से अधिक स्पष्ट रूप से मिलते-जुलते होने के लिए अरकेलोव सिद्धांत का उपयोग करते हैं।


== रीमैन-रोच प्रमेय का सामान्यीकरण ==
== रीमैन-रोच प्रमेय का सामान्यीकरण ==
{{see also|Riemann–Roch-type theorem}}
{{see also|रीमैन-रोच-प्रकार प्रमेय}}
वक्रों के लिए रीमैन-रोच प्रमेय को 1850 के दशक में रीमैन और रोच द्वारा रीमैन सतहों के लिए और 1931 में [[फ्रेडरिक कार्ल श्मिट]] द्वारा बीजगणितीय वक्रों के लिए सिद्ध किया गया था क्योंकि वह [[विशेषता (बीजगणित)]] के सही क्षेत्रों पर काम कर रहे थे। जैसा कि [[पीटर रॉकेट]] ने कहा है,<ref>{{Cite web|url=http://www.rzuser.uni-heidelberg.de/~ci3/manu.html#RH|title = Manuscripts}}</ref>
वक्रों के लिए रीमैन-रोच प्रमेय को 1850 के दशक में रीमैन और रोच द्वारा रीमैन सतहों के लिए और 1931 में [[फ्रेडरिक कार्ल श्मिट]] द्वारा बीजगणितीय वक्रों के लिए सिद्ध किया गया था क्योंकि वह [[विशेषता (बीजगणित)]] के सही क्षेत्रों पर कार्य कर रहे थे। जैसा कि [[पीटर रॉकेट]] ने कहा है,<ref>{{Cite web|url=http://www.rzuser.uni-heidelberg.de/~ci3/manu.html#RH|title = Manuscripts}}</ref>


<ब्लॉककोट>एफ.के. श्मिट की पहली मुख्य उपलब्धि यह खोज है कि कॉम्पैक्ट रीमैन सतहों पर रीमैन-रोच के शास्त्रीय प्रमेय को परिमित आधार क्षेत्र के साथ फलन फ़ील्ड में स्थानांतरित किया जा सकता है। दरअसल, रीमैन-रोच प्रमेय का उनका प्रमाण मनमाने ढंग से पूर्ण आधार क्षेत्रों के लिए काम करता है, जरूरी नहीं कि यह सीमित हो।
एफ.के. श्मिट की पहली मुख्य उपलब्धि यह खोज है कि कॉम्पैक्ट रीमैन सतहों पर रीमैन-रोच के मौलिक प्रमेय को परिमित आधार क्षेत्र के साथ फलन क्षेत्र में स्थानांतरित किया जा सकता है। सामान्यतः, रीमैन-रोच प्रमेय का उनका प्रमाण इच्छानुसार से पूर्ण आधार क्षेत्रों के लिए कार्य करता है, आवश्यक नहीं कि यह सीमित होटी है।


यह इस अर्थ में मूलभूत है कि वक्रों के लिए पश्चात् का सिद्धांत उससे प्राप्त जानकारी को परिष्कृत करने का प्रयास करता है (उदाहरण के लिए ब्रिल-नोएदर सिद्धांत में)।
यह इस अर्थ में मूलभूत है कि वक्रों के लिए पश्चात् का सिद्धांत उससे प्राप्त जानकारी को परिष्कृत करने का प्रयास करता है (उदाहरण के लिए ब्रिल-नोएदर सिद्धांत में)।


उच्च आयामों में संस्करण हैं ([[भाजक (बीजगणितीय ज्यामिति)]], या रेखा बंडल की उचित धारणा के लिए)। उनका सामान्य सूत्रीकरण प्रमेय को दो भागों में विभाजित करने पर निर्भर करता है। एक, जिसे अब सेरे द्वैत कहा जाएगा, व्याख्या करता है <math>\ell(K-D)</math> प्रथम शीफ़ कोहोमोलॉजी समूह के आयाम के रूप में शब्द; साथ <math>\ell(D)</math> ज़ीरोथ कोहोमोलॉजी समूह का आयाम, या अनुभागों का समिष्ट, प्रमेय का बायाँ भाग यूलर विशेषता बन जाता है, और दाएँ हाथ की ओर रीमैन सतह की टोपोलॉजी के अनुसार सही की गई डिग्री के रूप में इसकी गणना होती है।
उच्च आयामों में संस्करण हैं ([[भाजक (बीजगणितीय ज्यामिति)]], या रेखा बंडल की उचित धारणा के लिए)। उनका सामान्य सूत्रीकरण प्रमेय को दो भागों में विभाजित करने पर निर्भर करता है। एक, जिसे अब सेरे द्वैत कहा जाता है, इस प्रकार  <math>\ell(K-D)</math> व्याख्या करता है  प्रथम शीफ़ कोहोमोलॉजी समूह के आयाम के रूप में शब्द एक साथ <math>\ell(D)</math> ज़ीरोथ कोहोमोलॉजी समूह का आयाम, या अनुभागों का समिष्ट, प्रमेय का बायाँ भाग यूलर विशेषता बन जाता है, और दाएँ हाथ की ओर रीमैन सतह की टोपोलॉजी के अनुसार सही की गई डिग्री के रूप में इसकी गणना होती है।
 
आयाम दो की बीजगणितीय ज्यामिति में ऐसा सूत्र बीजगणितीय ज्यामिति के इतालवी स्कूल द्वारा पाया गया था; सतहों के लिए रीमैन-रोच प्रमेय सिद्ध हुआ (इसके कई संस्करण हैं, पहला संभवतः [[ मैक्स नोएदर |मैक्स नोएदर]] के कारण है)।


आयाम दो की बीजगणितीय ज्यामिति में ऐसा सूत्र बीजगणितीय ज्यामिति के इतालवी स्कूल द्वारा पाया गया था; सतहों के लिए रीमैन-रोच प्रमेय साबित हुआ (इसके कई संस्करण हैं, पहला संभवतः [[ मैक्स नोएदर |मैक्स नोएदर]] के कारण है)।
एक एन-आयामी सामान्यीकरण, हिरज़ेब्रुच-रीमैन-रोच प्रमेय, [[फ्रेडरिक हिरज़ेब्रुच]] द्वारा [[बीजगणितीय टोपोलॉजी]] में [[विशेषता वर्ग]] के अनुप्रयोग के रूप में पाया और सिद्ध किया गया था; वह [[कुनिहिको कोदैरा]] के कार्य से बहुत प्रभावित थे। लगभग उसी समय [[ जीन पियरे सेरे |जीन पियरे सेरे]] , सेरे द्वैत का सामान्य रूप दे रहे थे, जैसा कि अब हम जानते हैं।


एक एन-आयामी सामान्यीकरण, हिरज़ेब्रुच-रीमैन-रोच प्रमेय, [[फ्रेडरिक हिरज़ेब्रुच]] द्वारा [[बीजगणितीय टोपोलॉजी]] में [[विशेषता वर्ग]]ों के अनुप्रयोग के रूप में पाया और सिद्ध किया गया था; वह [[कुनिहिको कोदैरा]] के काम से बहुत प्रभावित थे। लगभग उसी समय [[ जीन पियरे सेरे |जीन पियरे सेरे]] , सेरे द्वैत का सामान्य रूप दे रहे थे, जैसा कि अब हम जानते हैं।
[[अलेक्जेंडर ग्रोथेंडिक]] ने 1957 में दूरगामी सामान्यीकरण सिद्ध किया था, जिसे अब ग्रोथेंडिक-रीमैन-रोच प्रमेय के रूप में जाना जाता है। उनका कार्य रीमैन-रोच को विविधता के बारे में प्रमेय के रूप में नहीं, किन्तु दो विविधताएँ के बीच रूपवाद के रूप में पुनर्व्याख्या करता है। इस प्रकार प्रमाणों का विवरण 1958 में [[आर्मंड बोरेल]] और जीन-पियरे सेरे द्वारा प्रकाशित किया गया था।<ref>A. Borel and J.-P. Serre. Bull. Soc. Math. France 86 (1958), 97-136.</ref> पश्चात् में, ग्रोथेंडिक और उनके सहयोगियों ने प्रमाण को सरल और सामान्यीकृत किया था।<ref>SGA 6, Springer-Verlag (1971).</ref>


[[अलेक्जेंडर ग्रोथेंडिक]] ने 1957 में दूरगामी सामान्यीकरण साबित किया, जिसे अब ग्रोथेंडिक-रीमैन-रोच प्रमेय के रूप में जाना जाता है। उनका काम रीमैन-रोच को विविधता के बारे में प्रमेय के रूप में नहीं, बल्कि दो किस्मों के बीच रूपवाद के रूप में पुनर्व्याख्या करता है। सबूतों का विवरण 1958 में [[आर्मंड बोरेल]] और जीन-पियरे सेरे द्वारा प्रकाशित किया गया था।<ref>A. Borel and J.-P. Serre. Bull. Soc. Math. France 86 (1958), 97-136.</ref> पश्चात् में, ग्रोथेंडिक और उनके सहयोगियों ने प्रमाण को सरल और सामान्यीकृत किया।<ref>SGA 6, Springer-Verlag (1971).</ref>
अंततः बीजगणितीय टोपोलॉजी में भी सामान्य संस्करण पाया गया था। ये सभी विकास मूलतः 1950 और 1960 के बीच किए गए थे। उसके पश्चात् अतियाह-सिंगर सूचकांक प्रमेय ने सामान्यीकरण का और मार्ग खोल दिया था। परिणाम स्वरुप, [[सुसंगत शीफ]] की यूलर विशेषता उचित रूप से गणना योग्य है। वैकल्पिक योग के अन्दर केवल सारांश के लिए, लुप्त प्रमेय (बहुविकल्पी) जैसे अतिरिक्त तर्कों का उपयोग किया जाना चाहिए।
अंततः बीजगणितीय टोपोलॉजी में भी सामान्य संस्करण पाया गया। ये सभी विकास मूलतः 1950 और 1960 के बीच किए गए थे। उसके पश्चात् अतियाह-सिंगर सूचकांक प्रमेय ने सामान्यीकरण का और मार्ग खोल दिया। नतीजतन, [[सुसंगत शीफ]] की यूलर विशेषता उचित रूप से गणना योग्य है। वैकल्पिक योग के भीतर केवल सारांश के लिए, लुप्त प्रमेय (बहुविकल्पी) जैसे अतिरिक्त तर्कों का उपयोग किया जाना चाहिए।


== यह भी देखें ==
== यह भी देखें                                                                                                                                                                                                                                               ==


*अरकेलोव सिद्धांत
*अरकेलोव सिद्धांत
*ग्रोथेंडिक-रीमैन-रोच प्रमेय
*ग्रोथेंडिक-रीमैन-रोच प्रमेय
*हिर्ज़ेब्रुच-रीमैन-रोच प्रमेय
*हिर्ज़ेब्रुच-रीमैन-रोच प्रमेय
*कावासाकी का रीमैन-रोच फॉर्मूला
*कावासाकी का रीमैन-रोच सूत्र
*हिल्बर्ट बहुपद
*हिल्बर्ट बहुपद
*बीजगणितीय वक्रों का मापांक
*बीजगणितीय वक्रों का मापांक


== टिप्पणियाँ ==
== टिप्पणियाँ                                                                                                                                                                                                                                                                       ==
{{reflist}}
{{reflist}}



Revision as of 15:10, 23 July 2023

रीमैन-रोच प्रमेय
Fieldबीजीय ज्यामिति और समष्टि विश्लेषण
First proof byगुस्ताव रोच
First proof in1865
Generalizationsअतियाह-सिंगर इंडेक्स प्रमेय
ग्रोथेंडिक-रीमैन-रोच प्रमेय
हिरज़ेब्रुच-रीमैन-रोच प्रमेय
सतहों के लिए रीमैन-रोच प्रमेय
रीमैन-रोच-प्रकार प्रमेय
Consequencesविशेष भाजक पर क्लिफोर्ड का प्रमेय
रीमैन-हर्विट्ज़ सूत्र

रीमैन-रोच प्रमेय गणित में महत्वपूर्ण प्रमेय है, विशेष रूप से समिष्ट विश्लेषण और बीजगणितीय ज्यामिति में, निर्धारित शून्य और अनुमत ध्रुव (समिष्ट विश्लेषण) के साथ मेरोमोर्फिक फलन के समिष्ट के आयाम की गणना के लिए यह कनेक्टेड कॉम्पैक्ट रीमैन सतह के समिष्ट विश्लेषण को सतह के विशुद्ध रूप से टोपोलॉजिकल जीनस (गणित) g के साथ इस तरह से जोड़ता है, जिसे पूरी तरह से बीजगणितीय सेटिंग्स में ले जाया जा सकता है।

प्रारंभ में रीमैन (1857) द्वारा रीमैन (1857) की असमानता के रूप में सिद्ध किया गया, बर्नहार्ड रीमैन के अल्पकालिक छात्र गुस्ताव रोच (1865) के कार्य के पश्चात् यह प्रमेय रीमैन सतहों के लिए अपने निश्चित रूप में पहुंच गया था। इसे पश्चात् में बीजगणितीय वक्र, उच्च-आयामी बीजगणितीय विविधता और उससे आगे तक सामान्यीकृत किया गया था।

प्रारंभिक धारणाएँ

जीनस 3 की रीमैन सतह।

रीमैन सतह इसके अतिरिक्त, इन विवृत उपसमुच्चय के बीच संक्रमण मानचित्र का होलोमोर्फिक फलन होना आवश्यक है। इसके पश्चात् की स्थिति किसी को पर होलोमोर्फिक और मेरोमोर्फिक कार्यों से संबंधित समिष्ट विश्लेषण की धारणाओं और तरीकों को सतह पर स्थानांतरित करने की अनुमति देती है। रीमैन-रोच प्रमेय के प्रयोजनों के लिए, सतह को सदैव कॉम्पैक्ट माना जाता है। साधारण की भाषा में, रीमैन सतह का जीनस G उसके हैंडल की संख्या है; उदाहरण के लिए दाईं ओर दिखाई गई रीमैन सतह का जीनस तीन है। अधिक स्पष्ट रूप से, जीनस को पहली बेट्टी संख्या के आधे के रूप में परिभाषित किया गया है, अर्थात, समिष्ट गुणांक वाले पहले एकवचन होमोलॉजी समूह के -आयाम के आधे के रूप में परिभाषित किया गया है। जीनस कॉम्पैक्ट रीमैन सतहों को होमोमोर्फिज्म तक वर्गीकृत करता है, अर्थात, दो ऐसी सतहें होमोमोर्फिक होती हैं यदि और केवल तभी जब उनका जीनस समान होटी है। इसलिए, जीनस रीमैन सतह का एक महत्वपूर्ण टोपोलॉजिकल इनवेरिएंट है। दूसरी ओर, हॉज सिद्धांत से पता चलता है कि जीनस एक्स पर होलोमोर्फिक वन-फॉर्म के समिष्ट के -आयाम के साथ मेल खाता है, इसलिए जीनस रीमैन सतह के बारे में समिष्ट-विश्लेषणात्मक जानकारी को भी एन्कोड करता है।[1]


एक भाजक (बीजगणितीय ज्यामिति) या वेइल भाजक सतह के बिंदुओं पर मुक्त एबेलियन समूह का तत्व है। सामान्यतः, भाजक पूर्णांक गुणांक के साथ सतह के बिंदुओं का सीमित रैखिक संयोजन है।

कोई मेरोमोर्फिक फलन भाजक निरूपित को जन्म देता है

जहां के सभी शून्यकों और ध्रुवों का समुच्चय है, और द्वारा दिया गया है


समुच्चय को परिमित माना जाता है; यह के सघन होने का परिणाम है और तथ्य यह है कि (गैर-शून्य) होलोमोर्फिक फलन के शून्य में संचय बिंदु नहीं होता है। इसलिए, अच्छी तरह से परिभाषित है। इस रूप के किसी भी भाजक को प्रमुख भाजक कहा जाता है। दो भाजक जो एक मुख्य भाजक से भिन्न होते हैं उन्हें रैखिक समतुल्य कहा जाता है। मेरोमोर्फिक 1-फॉर्म के विभाजक को इसी तरह परिभाषित किया गया है। वैश्विक मेरोमॉर्फिक 1-फॉर्म के विभाजक को विहित विभाजक (सामान्यतः से दर्शाया जाता है) कहा जाता है। कोई भी दो मेरोमॉर्फिक 1-रूप रैखिक रूप से समतुल्य भाजक उत्पन्न करते है, इसलिए विहित विभाजक विशिष्ट रूप से रैखिक समतुल्यता तक निर्धारित होता है (इसलिए "द" विहित विभाजक)।

प्रतीक विभाजक की डिग्री (कभी-कभी सूचकांक भी कहा जाता है) को दर्शाता है, अर्थात में आने वाले गुणांक का योग यह दिखाया जा सकता है कि वैश्विक मेरोमोर्फिक फलन के विभाजक में सदैव डिग्री 0 होती है, इसलिए विभाजक की डिग्री केवल उसके रैखिक तुल्यता वर्ग पर निर्भर करती है।

संख्या वह मात्रा है जो प्राथमिक रुचि की है: सतह पर मेरोमॉर्फिक फलन के आयाम (सदिश समिष्ट) का आयाम से अधिक), जैसे कि के सभी गुणांक गैर-ऋणात्मक हैं। सामान्यतः, हम इसे सभी मेरोमोर्फिक कार्यों के रूप में सोच सकते हैं जिनके प्रत्येक बिंदु पर ध्रुव में संबंधित गुणांक से भी उत्तम नहीं हैं; यदि में पर गुणांक ऋणात्मक है, तो हमें आवश्यकता है कि में पर कम से कम उस बहुलता का एक शून्य हो - यदि D में गुणांक धनात्मक है, तो h में अधिकतम उसी क्रम का एक ध्रुव हो सकता है। रैखिक रूप से समतुल्य भाजक के लिए सदिश समिष्ट वैश्विक मेरोमोर्फिक फलन (जो एक अदिश तक अच्छी तरह से परिभाषित है) के साथ गुणन के माध्यम से स्वाभाविक रूप से आइसोमोर्फिक होते हैं।

प्रमेय का कथन

विहित विभाजक स्थितियों के साथ जीनस की एक कॉम्पैक्ट रीमैन सतह के लिए रीमैन-रोच प्रमेय

सामान्यतः, संख्या रुचि की होती है, जबकि को एक सुधार शब्द के रूप में माना जाता है (जिसे विशिष्टता का सूचकांक भी कहा जाता है [2][3] इसलिए प्रमेय को अधिकांशतः यह कहकर व्याख्यायित किया जा सकता है

dimensioncorrection = degreegenus + 1.

क्योंकि यह सदिश समष्टि का आयाम है, सुधार शब्द सदैव गैर-ऋणात्मक होता है, इसलिए

इसे रीमैन की असमानता कहा जाता है। रोच के कथन का भाग असमानता के पक्षों के बीच संभावित अंतर का वर्णन है। जीनस की सामान्य रीमैन सतह पर , की डिग्री है इस प्रकार , भाजक का प्रतिनिधित्व करने के लिए चुने गए मेरोमोर्फिक रूप से स्वतंत्र है। यह डालने से होता है प्रमेय में. विशेषकर, जब तक कम से कम डिग्री है , सुधार शब्द 0 है, इसलिए

प्रमेय को अब निम्न जीनस की सतहों के लिए चित्रित किया जाता है। कई अन्य निकट से संबंधित प्रमेय भी हैं: रेखा बंडल का उपयोग करके इस प्रमेय का समतुल्य सूत्रीकरण और बीजगणितीय वक्रों के लिए प्रमेय का सामान्यीकरण है।

उदाहरण

प्रमेय को प्रश्न की सतह पर एक बिंदु चुनकर और संख्याओं के अनुक्रम के संबंध में चित्रित किया जाता है

अर्थात, फलन के समिष्ट का आयाम जो को छोड़कर प्रत्येक समिष्ट होलोमोर्फिक है, जहां फलन को अधिकतम पर ऑर्डर का ध्रुव रखने की अनुमति है। के लिए, फलन का संपूर्ण होना आवश्यक है, अर्थात, संपूर्ण सतह पर होलोमोर्फिक लिउविल के प्रमेय के अनुसार, ऐसा फलन आवश्यक रूप से स्थिर है। इसलिए, सामान्यतः, अनुक्रम बढ़ता हुआ क्रम है।

जीनस शून्य

रीमैन क्षेत्र (जिसे समिष्ट प्रक्षेप्य रेखा भी कहा जाता है) साधारणतः कनेक्टेड है और इसलिए इसकी पहली विलक्षण समरूपता शून्य है। विशेषकर इसका वंश शून्य है। गोले को दो प्रतियों द्वारा आवरण किया जा सकता है , द्वारा संक्रमण मानचित्र दिया जा रहा है

अत: स्वरूप की प्रति पर रीमैन क्षेत्र पर मेरोमोर्फिक रूप तक फैला हुआ है: इसमें अनंत पर दोहरा ध्रुव है


इस प्रकार, इसका विभाजक (जहां अनंत पर बिंदु है)।

इसलिए, प्रमेय कहता है कि अनुक्रम पढ़ता है

1, 2, 3, ... .

इस क्रम को आंशिक भिन्नों के सिद्धांत से भी पढ़ा जा सकता है। इसके विपरीत यदि यह क्रम इसी प्रकार प्रारम्भ होता है तो शून्य होना चाहिए.

जीनस एक

एक टोरस.

अगला स्थिति जीनस की एक रीमैन सतह है, जैसे कि टोरस , जहां एक द्वि-आयामी जालक है (एक समूह आइसोमॉर्फिक है )। इसका जीनस एक है: इसका पहला एकवचन होमोलॉजी समूह दो लूपों द्वारा स्वतंत्र रूप से उत्पन्न होता है, जैसा कि दाईं ओर चित्रण में दिखाया गया है। C पर मानक कॉम्प्लेक्स कोऑर्डिनेट , पर एक-रूप उत्पन्न करता है जो प्रत्येक समिष्ट होलोमोर्फिक है, अर्थात, इसमें कोई ध्रुव नहीं है। इसलिए, का भाजक शून्य है।

इस सतह पर यही क्रम है

1, 1, 2, 3, 4, 5 ... ;

और यह मामले की विशेषता है . वास्तव में, के लिए , , जैसा कि ऊपर बताया गया था। के लिए साथ , की डिग्री सख्ती से ऋणात्मक है, ताकि सुधार शब्द 0 हो। आयामों का अनुक्रम अण्डाकार कार्यों के सिद्धांत से भी प्राप्त किया जा सकता है।

और यह स्थिति की विशेषता बताता है। सामान्यतः, जैसा कि ऊपर उल्लेख किया गया था, के लिए। n>0 के साथ के लिए, की डिग्री सख्ती से ऋणात्मक है, जिससे सुधार शब्द 0 होते है। आयामों का अनुक्रम वृत्ताकार कार्यों के सिद्धांत से भी प्राप्त किया जा सकता है।

जीनस दो और उससे आगे

के लिए , ऊपर उल्लिखित अनुक्रम है

1, 1, ?, 2, 3, ....


इससे पता चलता है कि ? बिंदु के आधार पर डिग्री 2 का पद या तो 1 या 2 होता है। यह सिद्ध किया जा सकता है कि किसी भी जीनस 2 वक्र में ठीक छह बिंदु होते हैं जिनका क्रम 1, 1, 2, 2, ... होता है और बाकी बिंदुओं का सामान्य अनुक्रम 1, 1, 1, 2, होता है ... विशेष रूप से, एक जीनस 2 वक्र एक हाइपरलिप्टिक वक्र होता है। के लिए यह सदैव सही है कि अधिकांश बिंदुओं पर अनुक्रम से प्रारंभ होता है और अन्य अनुक्रमों के साथ सीमित रूप से कई बिंदु होते हैं (वीयरस्ट्रैस बिंदु देखें)।

रीमैन-रेखा बंडलों के लिए रोच

रीमैन सतह पर विभाजकों और होलोमोर्फिक रेखा बंडल के बीच घनिष्ठ पत्राचार का उपयोग करते हुए, प्रमेय को अलग, फिर भी समकक्ष विधि से कहा जा सकता है: मान लीजिए कि L, X पर होलोमोर्फिक रेखा बंडल है। L के होलोमोर्फिक अनुभागों के समिष्ट को निरूपित करें। यह समिष्ट परिमित-आयामी होगा; इसका आयाम दर्शाया गया है . मान लीजिए कि K, X पर विहित बंडल को निरूपित करता है। फिर, रीमैन-रोच प्रमेय कहता है कि

पिछले अनुभाग का प्रमेय विशेष स्थिति है जब L बिंदु बंडल है।

प्रमेय को यह दिखाने के लिए प्रयुक्त किया जा सकता है कि K के g रैखिक रूप से स्वतंत्र होलोमोर्फिक खंड हैं, या X पर एक-रूप निम्नानुसार हैं। L को सामान्य बंडल मानते हुए, चूँकि X पर एकमात्र होलोमोर्फिक फलन स्थिरांक हैं। L की डिग्री शून्य है, और सामान्य बंडल है. इस प्रकार,

इसलिए, , यह सिद्ध करते हुए कि G होलोमोर्फिक एक-रूप हैं।

विहित बंडल की डिग्री

चूँकि विहित बंडल में है, रीमैन-रोच को पर प्रयुक्त करने से प्राप्त होता है

जिसे पुनः इस प्रकार लिखा जा सकता है

इसलिए विहित बंडल की डिग्री है .

बीजगणितीय वक्रों के लिए रीमैन-रोच प्रमेय

रीमैन सतहों पर विभाजकों के लिए रीमैन-रोच प्रमेय के उपरोक्त सूत्रीकरण में प्रत्येक आइटम का बीजगणितीय ज्यामिति में एनालॉग है। रीमैन सतह का एनालॉग बीजगणितीय विविधता का विलक्षण बिंदु है | क्षेत्र k पर गैर-एकवचन बीजगणितीय वक्र C शब्दावली में अंतर (वक्र बनाम सतह) इसलिए है क्योंकि वास्तविक मैनिफोल्ड के रूप में रीमैन सतह का आयाम दो है, किन्तु समिष्ट मैनिफोल्ड के रूप में है। रीमैन सतह की सघनता इस नियम के समानांतर है कि बीजगणितीय वक्र पूर्ण विविधता है, जो प्रक्षेप्य विविधता के समान है। सामान्य क्षेत्र k में, एकवचन (सह) समरूपता की कोई अच्छी धारणा नहीं है। तथाकथित ज्यामितीय जीनस को इस प्रकार परिभाषित किया गया है

अर्थात, विश्व स्तर पर परिभाषित (बीजगणितीय) एक-रूपों के समिष्ट के आयाम के रूप में (काहलर अंतर देखें)। अंत में, रीमैन सतह पर मेरोमोर्फिक कार्यों को स्थानीय रूप से होलोमोर्फिक कार्यों के अंशों के रूप में दर्शाया जाता है। इसलिए उन्हें तर्कसंगत कार्य द्वारा प्रतिस्थापित किया जाता है जो स्थानीय रूप से नियमित कार्य के अंश होते हैं। इस प्रकार, लेखन वक्र पर तर्कसंगत कार्यों के समिष्ट के आयाम (k से अधिक) के लिए, जिसके प्रत्येक बिंदु पर ध्रुव D में संबंधित गुणांक से उत्तम नहीं हैं, ऊपर जैसा ही सूत्र है:

जहां C बीजगणितीय रूप से संवृत क्षेत्र k पर प्रक्षेप्य गैर-एकवचन बीजगणितीय वक्र है। वास्तव में, ही सूत्र किसी भी क्षेत्र पर प्रक्षेप्य वक्रों के लिए प्रयुक्त होता है, सिवाय इसके कि विभाजक की डिग्री को आधार क्षेत्र के संभावित विस्तार और विभाजक का समर्थन करने वाले बिंदुओं के अवशेष क्षेत्र से आने वाली बहुलता (गणित) को ध्यान में रखना होता है।[4] अंत में, एक आर्टिनियन वलय पर उचित वक्र के लिए, विभाजक से जुड़ी रेखा बंडल की यूलर विशेषता विभाजक की डिग्री (उचित रूप से परिभाषित) और संरचनात्मक शीफ की यूलर विशेषता द्वारा दी जाती है। .[5]

प्रमेय में सहजता की धारणा को भी शिथिल किया जा सकता है: बीजगणितीय रूप से संवृत क्षेत्र पर (प्रक्षेपी) वक्र के लिए, जिसके सभी स्थानीय वलय गोरेन्स्टीन वलय हैं, ऊपर जैसा ही कथन मान्य है, परंतु कि ऊपर परिभाषित ज्यामितीय जीनस है अंकगणित जीनस ga द्वारा प्रतिस्थापित, के रूप में परिभाषित है

[6]

(स्मूथ वक्रों के लिए, ज्यामितीय जीनस अंकगणित से सहमत होता है।) प्रमेय को सामान्य एकवचन वक्रों (और उच्च-आयामी विविधताएँ) तक भी बढ़ाया गया है।[7]


अनुप्रयोग

हिल्बर्ट बहुपद

रीमैन-रोच के महत्वपूर्ण परिणामों में से एक यह है कि यह एक वक्र पर रेखा बंडलों के हिल्बर्ट बहुपद की गणना के लिए एक सूत्र देता है। यदि एक रेखा बंडल पर्याप्त है, तो हिल्बर्ट बहुपद पहली डिग्री देगा, जो प्रोजेक्टिव स्पेस में एम्बेडिंग देगा। उदाहरण के लिए, कैनोनिकल शीफ़ में डिग्री होती है, जो जीनस के लिए पर्याप्त रेखा बंडल देती है।[8] यदि हम सेट करते हैं तो रीमैन-रोच सूत्र पढ़ता है


की डिग्री हिल्बर्ट बहुपद देता है

क्योंकि त्रि-विहित पूला वक्र को एम्बेड करने के लिए हिल्बर्ट बहुपद का उपयोग किया जाता है

सामान्यतः हिल्बर्ट योजना (और बीजीय वक्रों के मापांक) का निर्माण करते समय इस पर विचार किया जाता है। यह बहुपद है

और इसे जीनस G वक्र का हिल्बर्ट बहुपद कहा जाता है।

प्लुरिकैनोनिकल एम्बेडिंग

इस समीकरण का आगे विश्लेषण करते हुए, यूलर विशेषता इस प्रकार पढ़ी जाती है

तब से


के लिए, चूँकि इसकी डिग्री सभी के लिए ऋणात्मक है, जिसका अर्थ है कि इसमें कोई वैश्विक अनुभाग नहीं है, के वैश्विक अनुभागों से कुछ प्रक्षेप्य समिष्ट में एम्बेडिंग है। विशेष रूप से, में एक एम्बेडिंग देता है जहां से होता है। यह बीजीय वक्रों के मॉड्यूलि स्पेस के निर्माण में उपयोगी है क्योंकि इसका उपयोग हिल्बर्ट बहुपद के साथ हिल्बर्ट योजना के निर्माण के लिए प्रक्षेप्य समिष्ट के रूप में किया जा सकता है।[9]


विलक्षणताओं के साथ समतल वक्रों की जाति

डिग्री d के अपरिवर्तनीय समतल बीजगणितीय वक्र में (d − 1)(d − 2)/2 − g विलक्षणताएं होती हैं, जब ठीक से गणना की जाती है। इसका तात्पर्य यह है कि, यदि किसी वक्र में (d − 1)(d − 2)/2 अलग-अलग विलक्षणताएं हैं, तो यह तर्कसंगत वक्र है और इस प्रकार, तर्कसंगत मानकीकरण को स्वीकार करता है।

रीमैन-हर्विट्ज़ सूत्र

रीमैन सतहों या बीजगणितीय वक्रों के बीच (विस्तारित) मानचित्रों से संबंधित रीमैन-हर्विट्ज़ सूत्र रीमैन-रोच प्रमेय का परिणाम है।

विशेष भाजक पर क्लिफोर्ड का प्रमेय

विशेष भाजक पर क्लिफोर्ड का प्रमेय भी रीमैन-रोच प्रमेय का परिणाम है। इसमें कहा गया है कि विशेष भाजक के लिए (अर्थात्, ऐसा कि ) संतुष्टि देने वाला निम्नलिखित असमानता स्थिर है:[10]


प्रमाण

बीजगणितीय वक्रों के लिए प्रमाण

बीजगणितीय वक्रों के कथन को सेरे द्वैत का उपयोग करके सिद्ध किया जा सकता है। पूर्णांक (cf. कार्टियर विभाजक) से संबद्ध लाइन बंडल के वैश्विक अनुभागों के समिष्ट का आयाम है। शीफ़ कोहोमोलोजी के संदर्भ में, हमारे पास , और इसी तरह भी है। किन्तु वक्र के विशेष स्थिति में गैर-एकवचन प्रक्षेप्य विविधताएँ के लिए सेरे द्वैत बताता है कि दोहरे के लिए समरूपी है। इस प्रकार बायां हाथ विभाजक डी की यूलर विशेषता के समान होता है। जब d = 0, हम पाते हैं कि संरचना शीफ के लिए यूलर विशेषता परिभाषा के अनुसार 1-g है। सामान्य विभाजक के लिए प्रमेय को सिद्ध करने के लिए, विभाजक में एक करके अंक जोड़कर आगे बढ़ सकते हैं और यह सुनिश्चित कर सकते हैं कि यूलर विशेषता दाहिने हाथ की ओर तदनुसार बदल जाती है।

कॉम्पैक्ट रीमैन सतहों के लिए प्रमाण

कॉम्पैक्ट रीमैन सतहों के लिए प्रमेय को बीजगणितीय ज्यामिति और विश्लेषणात्मक ज्यामिति का उपयोग करके बीजगणितीय संस्करण से निकाला जा सकता है Chow.27s प्रमेय या चाउ के प्रमेय और गागा सिद्धांत: वास्तव में, प्रत्येक कॉम्पैक्ट रीमैन सतह को कुछ समिष्ट प्रक्षेप्य समिष्ट में बीजगणितीय समीकरणों द्वारा परिभाषित किया जाता है। (चाउ का प्रमेय कहता है कि प्रक्षेप्य समिष्ट की किसी भी संवृत विश्लेषणात्मक उप-विविधता को बीजगणितीय समीकरणों द्वारा परिभाषित किया गया है, और जीएजीए सिद्धांत कहता है कि बीजगणितीय विविधता की शीफ कोहोलॉजी समान समीकरणों द्वारा परिभाषित विश्लेषणात्मक विविधता की शीफ कोहोलॉजी के समान है)।

कोई व्यक्ति बीजगणितीय वक्रों के स्थिति में प्रमाण के समान तर्क देकर चाउ के प्रमेय के उपयोग से बच सकता है, किन्तु को मेरोमोर्फिक फलन के शीफ़ के साथ प्रतिस्थापित कर सकता है जिससे विभाजक के सभी गुणांक गैर-ऋणात्मक होंते है। यहां तथ्य यह है कि जब कोई विभाजक में एक बिंदु जोड़ता है तो यूलर विशेषता वांछित रूप में बदल जाती है, जिसे छोटे स्पष्ट अनुक्रम से प्रेरित लंबे स्पष्ट अनुक्रम से पढ़ा जा सकता है।

जहाँ पी पर गगनचुंबी इमारत का ढेर है, और नक्शा है को लौटाता है वें लॉरेंट गुणांक, कहां .[11]

जहां P पर स्काइस्क्रैपर शीफ है, और मानचित्र लॉरेंट गुणांक लौटाता है, जहां है [12]


अंकगणित रीमैन-रोच प्रमेय

अंकगणित रीमैन-रोच प्रमेय के संस्करण में कहा गया है कि यदि k वैश्विक क्षेत्र है, और f, k के एडेल वलय का उपयुक्त स्वीकार्य कार्य है, तो प्रत्येक आदर्श a के लिए, पॉइसन योग सूत्र होता है:

विशेष स्थिति में जब k परिमित क्षेत्र पर बीजगणितीय वक्र का कार्य क्षेत्र है और f कोई ऐसा वर्ण है जो k पर सामान्य है, तो यह ज्यामितीय रीमैन-रोच प्रमेय को पुनः प्राप्त करता है।[13]

अंकगणित रीमैन-रोच प्रमेय के अन्य संस्करण पारंपरिक रीमैन-रोच प्रमेय से अधिक स्पष्ट रूप से मिलते-जुलते होने के लिए अरकेलोव सिद्धांत का उपयोग करते हैं।

रीमैन-रोच प्रमेय का सामान्यीकरण

वक्रों के लिए रीमैन-रोच प्रमेय को 1850 के दशक में रीमैन और रोच द्वारा रीमैन सतहों के लिए और 1931 में फ्रेडरिक कार्ल श्मिट द्वारा बीजगणितीय वक्रों के लिए सिद्ध किया गया था क्योंकि वह विशेषता (बीजगणित) के सही क्षेत्रों पर कार्य कर रहे थे। जैसा कि पीटर रॉकेट ने कहा है,[14]

एफ.के. श्मिट की पहली मुख्य उपलब्धि यह खोज है कि कॉम्पैक्ट रीमैन सतहों पर रीमैन-रोच के मौलिक प्रमेय को परिमित आधार क्षेत्र के साथ फलन क्षेत्र में स्थानांतरित किया जा सकता है। सामान्यतः, रीमैन-रोच प्रमेय का उनका प्रमाण इच्छानुसार से पूर्ण आधार क्षेत्रों के लिए कार्य करता है, आवश्यक नहीं कि यह सीमित होटी है।

यह इस अर्थ में मूलभूत है कि वक्रों के लिए पश्चात् का सिद्धांत उससे प्राप्त जानकारी को परिष्कृत करने का प्रयास करता है (उदाहरण के लिए ब्रिल-नोएदर सिद्धांत में)।

उच्च आयामों में संस्करण हैं (भाजक (बीजगणितीय ज्यामिति), या रेखा बंडल की उचित धारणा के लिए)। उनका सामान्य सूत्रीकरण प्रमेय को दो भागों में विभाजित करने पर निर्भर करता है। एक, जिसे अब सेरे द्वैत कहा जाता है, इस प्रकार व्याख्या करता है प्रथम शीफ़ कोहोमोलॉजी समूह के आयाम के रूप में शब्द एक साथ ज़ीरोथ कोहोमोलॉजी समूह का आयाम, या अनुभागों का समिष्ट, प्रमेय का बायाँ भाग यूलर विशेषता बन जाता है, और दाएँ हाथ की ओर रीमैन सतह की टोपोलॉजी के अनुसार सही की गई डिग्री के रूप में इसकी गणना होती है।

आयाम दो की बीजगणितीय ज्यामिति में ऐसा सूत्र बीजगणितीय ज्यामिति के इतालवी स्कूल द्वारा पाया गया था; सतहों के लिए रीमैन-रोच प्रमेय सिद्ध हुआ (इसके कई संस्करण हैं, पहला संभवतः मैक्स नोएदर के कारण है)।

एक एन-आयामी सामान्यीकरण, हिरज़ेब्रुच-रीमैन-रोच प्रमेय, फ्रेडरिक हिरज़ेब्रुच द्वारा बीजगणितीय टोपोलॉजी में विशेषता वर्ग के अनुप्रयोग के रूप में पाया और सिद्ध किया गया था; वह कुनिहिको कोदैरा के कार्य से बहुत प्रभावित थे। लगभग उसी समय जीन पियरे सेरे , सेरे द्वैत का सामान्य रूप दे रहे थे, जैसा कि अब हम जानते हैं।

अलेक्जेंडर ग्रोथेंडिक ने 1957 में दूरगामी सामान्यीकरण सिद्ध किया था, जिसे अब ग्रोथेंडिक-रीमैन-रोच प्रमेय के रूप में जाना जाता है। उनका कार्य रीमैन-रोच को विविधता के बारे में प्रमेय के रूप में नहीं, किन्तु दो विविधताएँ के बीच रूपवाद के रूप में पुनर्व्याख्या करता है। इस प्रकार प्रमाणों का विवरण 1958 में आर्मंड बोरेल और जीन-पियरे सेरे द्वारा प्रकाशित किया गया था।[15] पश्चात् में, ग्रोथेंडिक और उनके सहयोगियों ने प्रमाण को सरल और सामान्यीकृत किया था।[16]

अंततः बीजगणितीय टोपोलॉजी में भी सामान्य संस्करण पाया गया था। ये सभी विकास मूलतः 1950 और 1960 के बीच किए गए थे। उसके पश्चात् अतियाह-सिंगर सूचकांक प्रमेय ने सामान्यीकरण का और मार्ग खोल दिया था। परिणाम स्वरुप, सुसंगत शीफ की यूलर विशेषता उचित रूप से गणना योग्य है। वैकल्पिक योग के अन्दर केवल सारांश के लिए, लुप्त प्रमेय (बहुविकल्पी) जैसे अतिरिक्त तर्कों का उपयोग किया जाना चाहिए।

यह भी देखें

  • अरकेलोव सिद्धांत
  • ग्रोथेंडिक-रीमैन-रोच प्रमेय
  • हिर्ज़ेब्रुच-रीमैन-रोच प्रमेय
  • कावासाकी का रीमैन-रोच सूत्र
  • हिल्बर्ट बहुपद
  • बीजगणितीय वक्रों का मापांक

टिप्पणियाँ

  1. Griffith, Harris, p. 116, 117
  2. Stichtenoth p.22
  3. Mukai pp.295–297
  4. Liu, Qing (2002), Algebraic Geometry and Arithmetic Curves, Oxford University Press, ISBN 978-0-19-850284-5, Section 7.3
  5. * Altman, Allen; Kleiman, Steven (1970), Introduction to Grothendieck duality theory, Lecture Notes in Mathematics, Vol. 146, Berlin, New York: Springer-Verlag, Theorem VIII.1.4., p. 164
  6. Hartshorne, Robin (1986), "Generalized divisors on Gorenstein curves and a theorem of Noether", Journal of Mathematics of Kyoto University, 26 (3): 375–386, doi:10.1215/kjm/1250520873, ISSN 0023-608X
  7. Baum, Paul; Fulton, William; MacPherson, Robert (1975), "Riemann–Roch for singular varieties", Publications Mathématiques de l'IHÉS, 45 (45): 101–145, doi:10.1007/BF02684299, ISSN 1618-1913, S2CID 83458307
  8. Note the moduli of elliptic curves can be constructed independently, see https://arxiv.org/abs/0812.1803, and there is only one smooth curve of genus 0, , which can be found using deformation theory. See https://arxiv.org/abs/math/0507286
  9. Deligne, P.; Mumford, D. (1969). "दिए गए जीनस के वक्रों के स्थान की अपरिवर्तनीयता". IHES. 36: 75–110. CiteSeerX 10.1.1.589.288. doi:10.1007/BF02684599. S2CID 16482150.
  10. Fulton, William (1989), Algebraic curves (PDF), Advanced Book Classics, Addison-Wesley, ISBN 978-0-201-51010-2, p. 109
  11. Forster, Otto (1981), Lectures on Riemann Surfaces, Springer Nature, ISBN 978-1-4612-5963-3, Section 16
  12. Forster, Otto (1981), Lectures on Riemann Surfaces, Springer Nature, ISBN 978-1-4612-5963-3, Section 16
  13. Ramakrishnan, Dinakar; Valenza, Robert (1999), Fourier analysis on number fields, Springer-Verlag, Chapter 7.
  14. "Manuscripts".
  15. A. Borel and J.-P. Serre. Bull. Soc. Math. France 86 (1958), 97-136.
  16. SGA 6, Springer-Verlag (1971).


संदर्भ