गुणा और पुनरावृत्त जोड़: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Debate on mathematics education}} गणित शिक्षा में इस मुद्दे पर बहस चल रही थी कि...")
 
No edit summary
 
(14 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Debate on mathematics education}}
{{short description|Debate on mathematics education}}
[[गणित शिक्षा]] में इस मुद्दे पर बहस चल रही थी कि क्या गुणन की संक्रिया को बार-बार जोड़ने के रूप में पढ़ाया जाना चाहिए। बहस में भाग लेने वालों ने कई दृष्टिकोण सामने रखे, जिनमें अंकगणित, शिक्षाशास्त्र, सीखने और निर्देशात्मक डिजाइन, गणित का इतिहास, गणित का दर्शन और कंप्यूटर-आधारित गणित के सिद्धांत शामिल थे।
[[गणित शिक्षा|गणितीय शिक्षा]] में इस विषय पर चर्चा चल रही थी कि क्या '''गुणन संक्रिया को पुनरावृत्त जोड़''' के रूप में पढ़ाया जाना चाहिए। चर्चा में भाग लेने वालों ने कई दृष्टिकोण सामने रखे, जिनमें अंकगणित, शिक्षाशास्त्र, अधिगम और निर्देशात्मक प्रारूप, गणितीय इतिहास, गणितीय दर्शन तथा कंप्यूटर-आधारित गणित के सिद्धांत सम्मिलित थे।


==बहस की पृष्ठभूमि==
==चर्चा की पृष्ठभूमि==
1990 के दशक की शुरुआत में लेस्ली स्टेफ़ ने गिनती योजना का प्रस्ताव रखा जिसका उपयोग बच्चे अपने गणितीय ज्ञान में गुणन को आत्मसात करने के लिए करते हैं। जेरे कन्फ्रे ने गणना योजना की तुलना विभाजन अनुमान से की। कन्फ्रे ने सुझाव दिया कि गिनती और विभाजन दो अलग, स्वतंत्र संज्ञानात्मक आदिम हैं। इसने सम्मेलन प्रस्तुतियों, लेखों और पुस्तक अध्यायों के रूप में अकादमिक चर्चाओं को जन्म दिया।<ref>{{Cite journal |last=Confrey |first=Jere |last2=Maloney |first2=Alan |date=2015-10-01 |title=समविभाजन पर सीखने के प्रक्षेप पथ के लिए पाठ्यक्रम और नैदानिक ​​मूल्यांकन प्रणाली का एक डिजाइन अनुसंधान अध्ययन|url=https://doi.org/10.1007/s11858-015-0699-y |journal=ZDM |language=en |volume=47 |issue=6 |pages=919–932 |doi=10.1007/s11858-015-0699-y |issn=1863-9704}}</ref>
1990 के दशक के प्रारंभ में लेस्ली स्टेफ़ ने गणना प्रारूप का प्रस्ताव रखा जिसका उपयोग बच्चे अपने गणितीय ज्ञान में गुणन को आत्मसात करने के लिए करते हैं। जेरे कन्फ्रे ने गणना प्रारूप की तुलना विभाजन अनुमान से की। कन्फ्रे ने सुझाव दिया कि गणना और विभाजन, दो भिन्न, स्वतंत्र संज्ञानात्मक आधार हैं। इसने सम्मेलन प्रस्तुतियों, लेखों और पुस्तक अध्यायों के रूप में अकादमिक चर्चाओं को जन्म दिया।<ref>{{Cite journal |last=Confrey |first=Jere |last2=Maloney |first2=Alan |date=2015-10-01 |title=समविभाजन पर सीखने के प्रक्षेप पथ के लिए पाठ्यक्रम और नैदानिक ​​मूल्यांकन प्रणाली का एक डिजाइन अनुसंधान अध्ययन|url=https://doi.org/10.1007/s11858-015-0699-y |journal=ZDM |language=en |volume=47 |issue=6 |pages=919–932 |doi=10.1007/s11858-015-0699-y |issn=1863-9704}}</ref>
यह बहस पाठ्यक्रम के व्यापक प्रसार के साथ शुरू हुई, जिसमें प्रारंभिक वर्षों में गणितीय कार्यों को स्केलिंग, ज़ूमिंग, फोल्डिंग और मापने पर जोर दिया गया था। ऐसे कार्यों के लिए गुणन के मॉडल की आवश्यकता होती है और उनका समर्थन भी किया जाता है जो गिनती या बार-बार जोड़ने पर आधारित नहीं होते हैं। इस प्रश्न के इर्द-गिर्द बहस होती है कि क्या गुणन वास्तव में बार-बार जोड़ा जाता है? 1990 के दशक के मध्य में माता-पिता और शिक्षक चर्चा मंचों पर दिखाई दिए। {{Citation needed|date=March 2012}}
 
यह चर्चा पाठ्यक्रम के व्यापक प्रसार के साथ प्रारंभ हुई, जिसके प्रारंभिक वर्षों में गणितीय कार्यों के प्रवर्द्धन, आकारण, वलय तथा मापन पर जोर दिया गया था। ऐसे कार्यों के लिए गुणन प्रारूप तथा उनके समर्थन की आवश्यकता होती है जो गणना या पुनरावृत्त जोड़ पर आधारित नहीं होते हैं। इस प्रश्न के आस-पास चर्चा होती है कि क्या गुणन वास्तव में पुनरावृत्त जोड़ होता है? 1990 के दशक के मध्य में कई माता-पिता और शिक्षक इस विषय को लेकर चर्चा मंचों पर दिखाई दिए।
 
[[कीथ डेवलिन]] ने "मैथमेटिकल एसोसिएशन ऑफ अमेरिका" खंड लिखा, जिसका शीर्षक था, "इट इज़ नॉट नो रिपीटेड एडिशन" जो शिक्षकों के साथ उनके ईमेल विनिमय पर आधारित था, जिसका संक्षिप्त उल्लेख उन्होंने पहले के एक लेख में किया था।<ref>{{cite web|last=Devlin|first=Keith|title=यह कोई बार-बार जोड़ा जाने वाला जोड़ नहीं है|url=http://www.maa.org/external_archive/devlin/devlin_06_08.html|publisher=Mathematical Association of America|access-date=30 March 2012|date=June 2008}}</ref> इस खंड ने अकादमिक चर्चाओं को व्यावसायिक चर्चाओं से जोड़ा। इसने अनुसंधान और व्यवसायी ब्लॉगों और मंचों पर कई चर्चाओं को जन्म दिया। कीथ डेवलिन ने इस विषय पर लिखना अभी भी जारी रखा है।<ref>{{cite web|last=Devlin|first=Keith|title=इसे अभी भी दोहराया नहीं गया है|url=http://www.maa.org/external_archive/devlin/devlin_0708_08.html|publisher=Mathematical Association of America|access-date=2 April 2012|date=July–August 2008}}</ref><ref>{{cite web|last=Devlin|first=Keith|title=गुणन और वो अजीब ब्रिटिश वर्तनी|url=http://www.maa.org/external_archive/devlin/devlin_09_08.html|publisher=Mathematical Association of America|access-date=2 April 2012|date=September 2008}}</ref><ref>{{cite web|last=Devlin|first=Keith|title=What Exactly is Multiplication?|url=http://www.maa.org/external_archive/devlin/devlin_01_11.html|publisher=Mathematical Association of America|access-date=2 April 2012|date=January 2011}}</ref>


[[कीथ डेवलिन]] ने एक गणितीय एसोसिएशन ऑफ अमेरिका कॉलम लिखा, जिसका शीर्षक था, इट इज़ नॉट नो रिपीटेड एडिशन, जो शिक्षकों के साथ उनके ईमेल एक्सचेंजों पर आधारित था, जब उन्होंने पहले के एक लेख में इस विषय का संक्षेप में उल्लेख किया था।<ref>{{cite web|last=Devlin|first=Keith|title=यह कोई बार-बार जोड़ा जाने वाला जोड़ नहीं है|url=http://www.maa.org/external_archive/devlin/devlin_06_08.html|publisher=Mathematical Association of America|access-date=30 March 2012|date=June 2008}}</ref> कॉलम ने अकादमिक बहसों को प्रैक्टिशनर बहसों से जोड़ा। इसने अनुसंधान और व्यवसायी ब्लॉगों और मंचों पर कई चर्चाओं को जन्म दिया। कीथ डेवलिन ने इस विषय पर लिखना जारी रखा है।<ref>{{cite web|last=Devlin|first=Keith|title=इसे अभी भी दोहराया नहीं गया है|url=http://www.maa.org/external_archive/devlin/devlin_0708_08.html|publisher=Mathematical Association of America|access-date=2 April 2012|date=July–August 2008}}</ref><ref>{{cite web|last=Devlin|first=Keith|title=गुणन और वो अजीब ब्रिटिश वर्तनी|url=http://www.maa.org/external_archive/devlin/devlin_09_08.html|publisher=Mathematical Association of America|access-date=2 April 2012|date=September 2008}}</ref><ref>{{cite web|last=Devlin|first=Keith|title=What Exactly is Multiplication?|url=http://www.maa.org/external_archive/devlin/devlin_01_11.html|publisher=Mathematical Association of America|access-date=2 April 2012|date=January 2011}}</ref>




Line 12: Line 14:


===गिनती से गुणा तक===
===गिनती से गुणा तक===
विशिष्ट गणित पाठ्यक्रम और मानकों में, जैसे कि [[सामान्य कोर राज्य मानक पहल]], वास्तविक संख्याओं के उत्पाद का अर्थ धारणाओं की एक श्रृंखला के माध्यम से होता है जो आम तौर पर बार-बार जोड़ने से शुरू होता है और अंततः स्केलिंग में रहता है।
विशिष्ट गणित पाठ्यक्रम और मानकों, जैसे कि [[सामान्य कोर राज्य मानक पहल]] में, वास्तविक संख्याओं के उत्पाद का अर्थ धारणाओं की एक श्रृंखला के माध्यम से होता है जो सामान्यतः पुनरावृत्त जोड़ से प्रारंभ होता है और अंततः प्रवर्द्धन में निवास करता है।


एक बार जब प्राकृतिक (या पूर्ण) संख्याओं को परिभाषित किया जाता है और गिनने के साधन के रूप में समझा जाता है, तो एक बच्चे को इस क्रम में अंकगणित के बुनियादी संचालन से परिचित कराया जाता है: जोड़, घटाव, गुणा और भाग। ये ऑपरेशन, हालांकि बच्चे की गणित शिक्षा के बहुत प्रारंभिक चरण में शुरू किए गए थे, उन्नत संख्यात्मक क्षमताओं के रूप में छात्रों में संख्या बोध के विकास पर स्थायी प्रभाव डालते हैं।
एक बार जब प्राकृतिक (या पूर्ण) संख्याओं को परिभाषित किया जाता है और गिनने के साधन के रूप में स्थापित किया जाता है, तो एक बच्चे को इस क्रम में अंकगणित के आधारभूत संचालन से परिचित कराया जाता है: जोड़, घटाव, गुणा और भाग। ये संक्रिया, यद्यपि बच्चे के गणित शिक्षा के प्रारंभिक चरण में प्रारंभ किए जाते है, उन्नत संख्यात्मक क्षमताओं के रूप में छात्रों में संख्या बोध के विकास पर स्थायी प्रभाव डालते हैं।


इन पाठ्यक्रमों में, बार-बार जोड़ने से संबंधित प्रश्न पूछने के तुरंत बाद गुणन शुरू किया जाता है, जैसे: प्रत्येक 8 सेब के 3 बैग हैं। कुल कितने सेब हैं? एक छात्र यह कर सकता है:
इन पाठ्यक्रमों में, पुनरावृत्त जोड़ से संबंधित प्रश्न पूछने के तुरंत बाद गुणन प्रारंभ किया जाता है, जैसे: प्रत्येक 8 सेब के 3 बैग हैं तो कुल कितने सेब हैं? एक छात्र यह कर सकता है:


: <math>8 + 8 + 8 = 24,</math>
: <math>8 + 8 + 8 = 24,</math>
या विकल्प चुनें
या


: <math>3 \times 8 = 24.</math>
: <math>3 \times 8 = 24.</math>
यह दृष्टिकोण कई वर्षों के शिक्षण और सीखने के लिए समर्थित है, और यह धारणा स्थापित करता है कि गुणा जोड़ने का एक अधिक कुशल तरीका है। एक बार 0 लाने पर, इसका कोई महत्वपूर्ण परिवर्तन प्रभावित नहीं होता क्योंकि
यह दृष्टिकोण कई वर्षों के शिक्षण और सीखने का समर्थन करता है, और यह धारणा स्थापित करता है कि गुणा जोड़ की एक अधिक कुशल विधि है। एक बार 0 लाने पर, इसका कोई महत्वपूर्ण परिवर्तन प्रभावित नहीं होता क्योंकि
   
   
: <math>3 \times 0 = 0 + 0 + 0,</math>
: <math>3 \times 0 = 0 + 0 + 0,</math>
जो 0 है, और क्रमविनिमेय गुण हमें परिभाषित करने के लिए भी प्रेरित करेगा
जो 0 है, और क्रमविनिमेय गुणन हमें परिभाषित करने के लिए भी प्रेरित करेगा


: <math>0 \times 3 = 0.</math>
: <math>0 \times 3 = 0.</math>
इस प्रकार, दोहराया गया जोड़ पूर्ण संख्याओं (0, 1, 2, 3, 4, ...) तक विस्तारित होता है। इस धारणा के लिए पहली चुनौती कि गुणन बार-बार जोड़ा जाना है, तब प्रकट होती है जब छात्र भिन्नों के साथ काम करना शुरू करते हैं। गणितीय दृष्टिकोण से, गुणा को बार-बार जोड़ने के रूप में भिन्नों में बढ़ाया जा सकता है। उदाहरण के लिए,
इस प्रकार, पुनरावृत्त जोड़ पूर्ण संख्याओं (0, 1, 2, 3, 4, ...) तक विस्तारित होता है। इस धारणा के लिए पहली चुनौती कि गुणन पुनरावृत्त जोड़ जाना है, तब प्रकट होती है जब छात्र भिन्नों के साथ कार्य करना प्रारंभ करते हैं। गणितीय दृष्टिकोण से, गुणा को पुनरावृत्त जोड़ के रूप में भिन्नों में प्रवर्धित किया जा सकता है। उदाहरण के लिए,


: <math> 7/4 \times 5/6 </math>
: <math> 7/4 \times 5/6 </math>
इसका शाब्दिक अर्थ है "पाँच-छठे का एक और तीन-चौथाई।" यह बाद में महत्वपूर्ण है क्योंकि छात्रों को सिखाया जाता है कि, शब्द समस्याओं में, "का" शब्द आमतौर पर गुणन को इंगित करता है। हालाँकि, यह विस्तार कई छात्रों के लिए समस्याग्रस्त है, जो भिन्न पेश किए जाने पर गणित से जूझना शुरू कर देते हैं।{{citation needed|date=March 2012}} इसके अलावा, जब [[अपरिमेय संख्या]]ओं को चलन में लाया जाता है तो बार-बार जोड़े जाने वाले मॉडल को काफी हद तक संशोधित किया जाना चाहिए।
इसका शाब्दिक अर्थ है "पाँच-छठे का एक और तीन-चौथाई।" यह महत्वपूर्ण है क्योंकि छात्रों को सिखाया जाता है कि, शब्द समस्याओं में, "का" शब्द सामान्यतः गुणन को इंगित करता है। यद्यपि, यह विस्तार कई छात्रों के लिए समस्याग्रस्त है, जो भिन्न प्रस्तुत किए जाने पर गणित से जूझना प्रारंभ कर देते हैं। इसके अतिरिक्त, जब [[अपरिमेय संख्या]]ओं को चलन में लाया जाता है तो पुनरावृत्त जोड़ वाले प्रारूप को अत्यधिक सीमा तक संशोधित किया जाना चाहिए।


इन मुद्दों के संबंध में, गणित के शिक्षकों ने इस बात पर बहस की है कि क्या भिन्नों और अपरिमेय संख्याओं के साथ छात्रों की कठिनाइयां इन संख्याओं को पेश करने से पहले लंबे समय तक गुणन को बार-बार जोड़ने के रूप में देखने से बढ़ जाती हैं, और संबंधित रूप से क्या प्रारंभिक शिक्षा के लिए कठोर गणित को महत्वपूर्ण रूप से संशोधित करना स्वीकार्य है, जिससे अग्रणी बच्चे उन कथनों पर विश्वास करें जो बाद में गलत साबित होते हैं।
इन विषयों के संबंध में, गणित के शिक्षकों ने इस बात पर चर्चा की है कि क्या भिन्नों और अपरिमेय संख्याओं के साथ छात्रों की कठिनाइयां इन संख्याओं को प्रस्तुत करने से पूर्व लंबे समय तक गुणन को पुनरावृत्त जोड़ के रूप में देखने से बढ़ जाती हैं, और संबंधित रूप से क्या प्रारंभिक शिक्षा के लिए कठोर गणित को महत्वपूर्ण रूप से संशोधित करना स्वीकार्य है, जिससे अग्रणी बच्चे उन कथनों पर विश्वास करें जो बाद में गलत साबित होते हैं।


===स्केलिंग से गुणा तक===
===प्रवर्द्धन से गुणा तक===
[[File:Multiplication as scaling integers.gif|thumb|right|गुणन को स्केलिंग के रूप में भी सोचा जा सकता है। उपरोक्त एनीमेशन में, हम देखते हैं कि 3 को 2 से गुणा किया जाता है, जिसके परिणामस्वरूप 6 प्राप्त होता है।]]सीखने के गुणन का एक सिद्धांत [[वायगोत्स्की सर्कल]] में रूसी गणित शिक्षकों के काम से निकला है जो विश्व युद्धों के बीच [[सोवियत संघ]] में सक्रिय थे। उनके योगदान को विभाजन अनुमान के रूप में जाना जाता है।
[[File:Multiplication as scaling integers.gif|thumb|right|गुणन को प्रवर्द्धन के रूप में भी सोचा जा सकता है। उपरोक्त एनीमेशन में, हम देखते हैं कि 3 को 2 से गुणा किया जाता है, जिसके परिणामस्वरूप 6 प्राप्त होता है।]]गुणन सीखने का एक सिद्धांत [[वायगोत्स्की सर्कल]] में रूसी गणित शिक्षकों के कार्य से उत्पन्न हुआ है जो विश्व युद्धों के बीच [[सोवियत संघ]] में सक्रिय थे। उनके योगदान को विभाजन अनुमान के रूप में जाना जाता है।


गुणन सीखने का एक अन्य सिद्धांत सन्निहित अनुभूति का अध्ययन करने वालों से लिया गया है, जिन्होंने गुणन के लिए अंतर्निहित रूपकों की जांच की।
गुणन सीखने का एक अन्य सिद्धांत सन्निहित अनुभूति का अध्ययन करने वालों से लिया गया है, जिन्होंने गुणन के लिए अंतर्निहित रूपकों की जांच की।


इन जांचों ने मिलकर छोटे बच्चों के लिए स्वाभाविक रूप से गुणात्मक कार्यों वाले पाठ्यक्रम को प्रेरित किया है।{{citation needed|date=March 2012}} इन कार्यों के उदाहरणों में शामिल हैं: इलास्टिक स्ट्रेचिंग, ज़ूम, फोल्डिंग, छाया प्रक्षेपित करना, या छाया गिराना। ये कार्य गिनती पर निर्भर नहीं हैं, और इन्हें बार-बार जोड़ने के संदर्भ में आसानी से संकल्पित नहीं किया जा सकता है।
इन जांचों ने मिलकर छोटे बच्चों के लिए स्वाभाविक रूप से गुणात्मक कार्यों वाले पाठ्यक्रम को प्रेरित किया है। इन कार्यों के उदाहरणों में तन्य खिंचाव, आकारण, वलय, छाया प्रक्षेपित करना आदि सम्मिलित हैं। ये कार्य गिनती पर निर्भर नहीं हैं, और इन्हें पुनरावृत्त जोड़ के संदर्भ में सरलता से संकल्पित नहीं किया जा सकता है।


इन पाठ्यक्रमों से संबंधित बहस के मुद्दों में शामिल हैं:{{bulleted list |
whether these tasks are accessible to all young children, or only to the best students; |
whether children can achieve computational fluency if they see multiplication as scaling rather than repeated addition; |
whether children may become confused by the two separate approaches to multiplication introduced closely together; and |
whether scaling and repeated addition should be introduced separately, and if so, when and in what order?}}


{{Unreferenced section|date=June 2017}}


===क्या गुणा किया जा सकता है?===
इन पाठ्यक्रमों से संबंधित चर्चा के विषयों में सम्मिलित हैं:{{bulleted list |ये कार्य सभी छोटे बच्चों के लिए सुलभ हैं या केवल उत्कृष्ट छात्रों के लिए ही सुलभ है। |यदि बच्चे गुणन को संकलन के अतिरिक्त मापन के रूप में देखें, तो क्या वे संगणकीय दक्षता को प्राप्त कर सकते हैं?|क्या गुणन के दो भिन्न-भिन्न दृष्टिकोणों को एक साथ निकटता से प्रस्तुत करने पर बच्चे भ्रमित हो सकते हैं; तथा|क्या प्रवर्द्धन और पुनरावर्ती जोड़ को अलग से प्रारंभ किया जाना चाहिए, और यदि हां, तो कब और किस क्रम में?}}
गुणन को अक्सर [[प्राकृतिक संख्या]]ओं के लिए परिभाषित किया जाता है, फिर पूर्ण संख्याओं, भिन्नों और अपरिमेय संख्याओं तक बढ़ाया जाता है। हालाँकि, [[अमूर्त बीजगणित]] में कुछ वस्तुओं पर बाइनरी ऑपरेशन के रूप में गुणन की अधिक सामान्य परिभाषा है जो संख्याएँ हो भी सकती हैं और नहीं भी। विशेष रूप से, कोई जटिल संख्याओं, निर्देशांक सदिशों, [[मैट्रिक्स (गणित)]], और चतुर्भुजों को गुणा कर सकता है। कुछ शिक्षक {{citation needed|date=March 2012}} का मानना ​​है कि प्राथमिक शिक्षा के दौरान गुणन को विशेष रूप से बार-बार जोड़े जाने के रूप में देखने से बाद में गुणन के इन पहलुओं को समझने में बाधा आ सकती है।


==मॉडल और रूपक जो गुणन को आधार बनाते हैं==
===किसे गुणा किया जा सकता है?===
गणित शिक्षा के संदर्भ में, मॉडल अमूर्त गणितीय विचारों का ठोस प्रतिनिधित्व हैं जो विचार के कुछ, या सभी, आवश्यक गुणों को दर्शाते हैं। मॉडल अक्सर गणित और उनके साथ आने वाली पाठ्यचर्या सामग्री के लिए भौतिक या आभासी जोड़-तोड़ के रूप में विकसित किए जाते हैं।
गुणन को प्रायः [[प्राकृतिक संख्या]]ओं के लिए परिभाषित किया जाता है, फिर इसे पूर्ण संख्याओं, भिन्नों और अपरिमेय संख्याओं तक प्रवर्धित जाता है। यद्यपि, [[अमूर्त बीजगणित]] में कुछ वस्तुओं पर द्विआधारी संक्रिया के रूप में गुणन की अधिक सामान्य परिभाषा है जो संख्याएँ हो भी सकती हैं और नहीं भी। विशेष रूप से, जटिल संख्याओं, निर्देशांक सदिशों, [[मैट्रिक्स (गणित)|आव्यूहों]], और चतुर्भुजों को गुणा किया जा सकता है। कुछ शिक्षकों का मानना ​​है कि प्राथमिक शिक्षा के समय गुणन को विशेष रूप से पुनरावृत्त जोड़ के रूप में देखने से बाद में गुणन के इन पहलुओं को समझने में बाधा आ सकती है।


गुणा और बार-बार जोड़ने के बारे में बहस का एक हिस्सा विभिन्न मॉडलों और उनकी पाठ्यचर्या संबंधी सामग्रियों की तुलना है। विभिन्न मॉडल विभिन्न प्रकार की संख्याओं के गुणन का समर्थन कर भी सकते हैं और नहीं भी; उदाहरण के लिए सेट मॉडल<ref>{{cite book|last1=Lakoff|first1=George|last2=Nunez|first2=Rafael|title=Where mathematics comes from: How the embodied mind brings mathematics into being|url=https://archive.org/details/wheremathematics00lako|url-access=registration|year=2000|publisher=Basic Books|isbn=0-465-03771-2}}</ref> जिसमें संख्याओं को वस्तुओं के संग्रह के रूप में प्रस्तुत किया जाता है, और गुणन को प्रत्येक में समान संख्या में वस्तुओं के साथ कई सेटों के संघ के रूप में प्रस्तुत किया जाता है, जिसे भिन्नात्मक या वास्तविक संख्याओं के गुणन तक नहीं बढ़ाया जा सकता है।
==गुणन पर आधारित प्रारूप और उपमान==
गणित शिक्षा के संदर्भ में, प्रारूप, अमूर्त गणितीय विचारों का ठोस प्रतिनिधित्व हैं जो विचार के कुछ, या सभी, आवश्यक गुणों को दर्शाते हैं। प्रारूप प्रायः गणित और उनके साथ आने वाली पाठ्यचर्या सामग्री के लिए भौतिक या आभासी प्रकलन के रूप में विकसित किए जाते हैं।


विभिन्न मॉडल अंकगणित के विशिष्ट अनुप्रयोगों के लिए भी प्रासंगिक हो सकते हैं; उदाहरण के लिए, संभाव्यता और जीव विज्ञान में संयोजन मॉडल सामने आते हैं।
गुणा और पुनरावृत्त जोड़ के बारे में चर्चा का एक भाग विभिन्न प्रारूपों और उनकी पाठ्यचर्या संबंधी सामग्रियों की तुलना है। विभिन्न प्रारूप विभिन्न प्रकार की संख्याओं के गुणन का समर्थन कर भी सकते हैं और नहीं भी; उदाहरण के लिए समुच्चय प्रारूप<ref>{{cite book|last1=Lakoff|first1=George|last2=Nunez|first2=Rafael|title=Where mathematics comes from: How the embodied mind brings mathematics into being|url=https://archive.org/details/wheremathematics00lako|url-access=registration|year=2000|publisher=Basic Books|isbn=0-465-03771-2}}</ref> जिसमें संख्याओं को वस्तुओं के संग्रह के रूप में प्रस्तुत किया जाता है, और गुणन को प्रत्येक में समान संख्या में वस्तुओं के साथ कई समुच्चयों के संघ के रूप में प्रस्तुत किया जाता है, जिसे भिन्नात्मक या वास्तविक संख्याओं के गुणन तक नहीं बढ़ाया जा सकता है।
 
विभिन्न प्रारूप, अंकगणित के विशिष्ट अनुप्रयोगों; उदाहरण के लिए, संभाव्यता और जीव विज्ञान में संयोजन प्रारूप के लिए भी प्रासंगिक हो सकते हैं।


== संदर्भ ==
== संदर्भ ==
{{Reflist}}
{{Reflist}}
[[Category: गणित की शिक्षा]]


[[Category: Machine Translated Page]]
[[Category:CS1 English-language sources (en)]]
[[Category:CS1 errors]]
[[Category:Created On 30/06/2023]]
[[Category:Created On 30/06/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:गणित की शिक्षा]]

Latest revision as of 11:02, 27 July 2023

गणितीय शिक्षा में इस विषय पर चर्चा चल रही थी कि क्या गुणन संक्रिया को पुनरावृत्त जोड़ के रूप में पढ़ाया जाना चाहिए। चर्चा में भाग लेने वालों ने कई दृष्टिकोण सामने रखे, जिनमें अंकगणित, शिक्षाशास्त्र, अधिगम और निर्देशात्मक प्रारूप, गणितीय इतिहास, गणितीय दर्शन तथा कंप्यूटर-आधारित गणित के सिद्धांत सम्मिलित थे।

चर्चा की पृष्ठभूमि

1990 के दशक के प्रारंभ में लेस्ली स्टेफ़ ने गणना प्रारूप का प्रस्ताव रखा जिसका उपयोग बच्चे अपने गणितीय ज्ञान में गुणन को आत्मसात करने के लिए करते हैं। जेरे कन्फ्रे ने गणना प्रारूप की तुलना विभाजन अनुमान से की। कन्फ्रे ने सुझाव दिया कि गणना और विभाजन, दो भिन्न, स्वतंत्र संज्ञानात्मक आधार हैं। इसने सम्मेलन प्रस्तुतियों, लेखों और पुस्तक अध्यायों के रूप में अकादमिक चर्चाओं को जन्म दिया।[1]

यह चर्चा पाठ्यक्रम के व्यापक प्रसार के साथ प्रारंभ हुई, जिसके प्रारंभिक वर्षों में गणितीय कार्यों के प्रवर्द्धन, आकारण, वलय तथा मापन पर जोर दिया गया था। ऐसे कार्यों के लिए गुणन प्रारूप तथा उनके समर्थन की आवश्यकता होती है जो गणना या पुनरावृत्त जोड़ पर आधारित नहीं होते हैं। इस प्रश्न के आस-पास चर्चा होती है कि क्या गुणन वास्तव में पुनरावृत्त जोड़ होता है? 1990 के दशक के मध्य में कई माता-पिता और शिक्षक इस विषय को लेकर चर्चा मंचों पर दिखाई दिए।

कीथ डेवलिन ने "मैथमेटिकल एसोसिएशन ऑफ अमेरिका" खंड लिखा, जिसका शीर्षक था, "इट इज़ नॉट नो रिपीटेड एडिशन" जो शिक्षकों के साथ उनके ईमेल विनिमय पर आधारित था, जिसका संक्षिप्त उल्लेख उन्होंने पहले के एक लेख में किया था।[2] इस खंड ने अकादमिक चर्चाओं को व्यावसायिक चर्चाओं से जोड़ा। इसने अनुसंधान और व्यवसायी ब्लॉगों और मंचों पर कई चर्चाओं को जन्म दिया। कीथ डेवलिन ने इस विषय पर लिखना अभी भी जारी रखा है।[3][4][5]


शैक्षणिक दृष्टिकोण

गिनती से गुणा तक

विशिष्ट गणित पाठ्यक्रम और मानकों, जैसे कि सामान्य कोर राज्य मानक पहल में, वास्तविक संख्याओं के उत्पाद का अर्थ धारणाओं की एक श्रृंखला के माध्यम से होता है जो सामान्यतः पुनरावृत्त जोड़ से प्रारंभ होता है और अंततः प्रवर्द्धन में निवास करता है।

एक बार जब प्राकृतिक (या पूर्ण) संख्याओं को परिभाषित किया जाता है और गिनने के साधन के रूप में स्थापित किया जाता है, तो एक बच्चे को इस क्रम में अंकगणित के आधारभूत संचालन से परिचित कराया जाता है: जोड़, घटाव, गुणा और भाग। ये संक्रिया, यद्यपि बच्चे के गणित शिक्षा के प्रारंभिक चरण में प्रारंभ किए जाते है, उन्नत संख्यात्मक क्षमताओं के रूप में छात्रों में संख्या बोध के विकास पर स्थायी प्रभाव डालते हैं।

इन पाठ्यक्रमों में, पुनरावृत्त जोड़ से संबंधित प्रश्न पूछने के तुरंत बाद गुणन प्रारंभ किया जाता है, जैसे: प्रत्येक 8 सेब के 3 बैग हैं तो कुल कितने सेब हैं? एक छात्र यह कर सकता है:

या

यह दृष्टिकोण कई वर्षों के शिक्षण और सीखने का समर्थन करता है, और यह धारणा स्थापित करता है कि गुणा जोड़ की एक अधिक कुशल विधि है। एक बार 0 लाने पर, इसका कोई महत्वपूर्ण परिवर्तन प्रभावित नहीं होता क्योंकि

जो 0 है, और क्रमविनिमेय गुणन हमें परिभाषित करने के लिए भी प्रेरित करेगा

इस प्रकार, पुनरावृत्त जोड़ पूर्ण संख्याओं (0, 1, 2, 3, 4, ...) तक विस्तारित होता है। इस धारणा के लिए पहली चुनौती कि गुणन पुनरावृत्त जोड़ जाना है, तब प्रकट होती है जब छात्र भिन्नों के साथ कार्य करना प्रारंभ करते हैं। गणितीय दृष्टिकोण से, गुणा को पुनरावृत्त जोड़ के रूप में भिन्नों में प्रवर्धित किया जा सकता है। उदाहरण के लिए,

इसका शाब्दिक अर्थ है "पाँच-छठे का एक और तीन-चौथाई।" यह महत्वपूर्ण है क्योंकि छात्रों को सिखाया जाता है कि, शब्द समस्याओं में, "का" शब्द सामान्यतः गुणन को इंगित करता है। यद्यपि, यह विस्तार कई छात्रों के लिए समस्याग्रस्त है, जो भिन्न प्रस्तुत किए जाने पर गणित से जूझना प्रारंभ कर देते हैं। इसके अतिरिक्त, जब अपरिमेय संख्याओं को चलन में लाया जाता है तो पुनरावृत्त जोड़ वाले प्रारूप को अत्यधिक सीमा तक संशोधित किया जाना चाहिए।

इन विषयों के संबंध में, गणित के शिक्षकों ने इस बात पर चर्चा की है कि क्या भिन्नों और अपरिमेय संख्याओं के साथ छात्रों की कठिनाइयां इन संख्याओं को प्रस्तुत करने से पूर्व लंबे समय तक गुणन को पुनरावृत्त जोड़ के रूप में देखने से बढ़ जाती हैं, और संबंधित रूप से क्या प्रारंभिक शिक्षा के लिए कठोर गणित को महत्वपूर्ण रूप से संशोधित करना स्वीकार्य है, जिससे अग्रणी बच्चे उन कथनों पर विश्वास करें जो बाद में गलत साबित होते हैं।

प्रवर्द्धन से गुणा तक

गुणन को प्रवर्द्धन के रूप में भी सोचा जा सकता है। उपरोक्त एनीमेशन में, हम देखते हैं कि 3 को 2 से गुणा किया जाता है, जिसके परिणामस्वरूप 6 प्राप्त होता है।

गुणन सीखने का एक सिद्धांत वायगोत्स्की सर्कल में रूसी गणित शिक्षकों के कार्य से उत्पन्न हुआ है जो विश्व युद्धों के बीच सोवियत संघ में सक्रिय थे। उनके योगदान को विभाजन अनुमान के रूप में जाना जाता है।

गुणन सीखने का एक अन्य सिद्धांत सन्निहित अनुभूति का अध्ययन करने वालों से लिया गया है, जिन्होंने गुणन के लिए अंतर्निहित रूपकों की जांच की।

इन जांचों ने मिलकर छोटे बच्चों के लिए स्वाभाविक रूप से गुणात्मक कार्यों वाले पाठ्यक्रम को प्रेरित किया है। इन कार्यों के उदाहरणों में तन्य खिंचाव, आकारण, वलय, छाया प्रक्षेपित करना आदि सम्मिलित हैं। ये कार्य गिनती पर निर्भर नहीं हैं, और इन्हें पुनरावृत्त जोड़ के संदर्भ में सरलता से संकल्पित नहीं किया जा सकता है।


इन पाठ्यक्रमों से संबंधित चर्चा के विषयों में सम्मिलित हैं:

  • ये कार्य सभी छोटे बच्चों के लिए सुलभ हैं या केवल उत्कृष्ट छात्रों के लिए ही सुलभ है।
  • यदि बच्चे गुणन को संकलन के अतिरिक्त मापन के रूप में देखें, तो क्या वे संगणकीय दक्षता को प्राप्त कर सकते हैं?
  • क्या गुणन के दो भिन्न-भिन्न दृष्टिकोणों को एक साथ निकटता से प्रस्तुत करने पर बच्चे भ्रमित हो सकते हैं; तथा
  • क्या प्रवर्द्धन और पुनरावर्ती जोड़ को अलग से प्रारंभ किया जाना चाहिए, और यदि हां, तो कब और किस क्रम में?

किसे गुणा किया जा सकता है?

गुणन को प्रायः प्राकृतिक संख्याओं के लिए परिभाषित किया जाता है, फिर इसे पूर्ण संख्याओं, भिन्नों और अपरिमेय संख्याओं तक प्रवर्धित जाता है। यद्यपि, अमूर्त बीजगणित में कुछ वस्तुओं पर द्विआधारी संक्रिया के रूप में गुणन की अधिक सामान्य परिभाषा है जो संख्याएँ हो भी सकती हैं और नहीं भी। विशेष रूप से, जटिल संख्याओं, निर्देशांक सदिशों, आव्यूहों, और चतुर्भुजों को गुणा किया जा सकता है। कुछ शिक्षकों का मानना ​​है कि प्राथमिक शिक्षा के समय गुणन को विशेष रूप से पुनरावृत्त जोड़ के रूप में देखने से बाद में गुणन के इन पहलुओं को समझने में बाधा आ सकती है।

गुणन पर आधारित प्रारूप और उपमान

गणित शिक्षा के संदर्भ में, प्रारूप, अमूर्त गणितीय विचारों का ठोस प्रतिनिधित्व हैं जो विचार के कुछ, या सभी, आवश्यक गुणों को दर्शाते हैं। प्रारूप प्रायः गणित और उनके साथ आने वाली पाठ्यचर्या सामग्री के लिए भौतिक या आभासी प्रकलन के रूप में विकसित किए जाते हैं।

गुणा और पुनरावृत्त जोड़ के बारे में चर्चा का एक भाग विभिन्न प्रारूपों और उनकी पाठ्यचर्या संबंधी सामग्रियों की तुलना है। विभिन्न प्रारूप विभिन्न प्रकार की संख्याओं के गुणन का समर्थन कर भी सकते हैं और नहीं भी; उदाहरण के लिए समुच्चय प्रारूप[6] जिसमें संख्याओं को वस्तुओं के संग्रह के रूप में प्रस्तुत किया जाता है, और गुणन को प्रत्येक में समान संख्या में वस्तुओं के साथ कई समुच्चयों के संघ के रूप में प्रस्तुत किया जाता है, जिसे भिन्नात्मक या वास्तविक संख्याओं के गुणन तक नहीं बढ़ाया जा सकता है।

विभिन्न प्रारूप, अंकगणित के विशिष्ट अनुप्रयोगों; उदाहरण के लिए, संभाव्यता और जीव विज्ञान में संयोजन प्रारूप के लिए भी प्रासंगिक हो सकते हैं।

संदर्भ

  1. Confrey, Jere; Maloney, Alan (2015-10-01). "समविभाजन पर सीखने के प्रक्षेप पथ के लिए पाठ्यक्रम और नैदानिक ​​मूल्यांकन प्रणाली का एक डिजाइन अनुसंधान अध्ययन". ZDM (in English). 47 (6): 919–932. doi:10.1007/s11858-015-0699-y. ISSN 1863-9704. {{cite journal}}: zero width space character in |title= at position 62 (help)
  2. Devlin, Keith (June 2008). "यह कोई बार-बार जोड़ा जाने वाला जोड़ नहीं है". Mathematical Association of America. Retrieved 30 March 2012.
  3. Devlin, Keith (July–August 2008). "इसे अभी भी दोहराया नहीं गया है". Mathematical Association of America. Retrieved 2 April 2012.
  4. Devlin, Keith (September 2008). "गुणन और वो अजीब ब्रिटिश वर्तनी". Mathematical Association of America. Retrieved 2 April 2012.
  5. Devlin, Keith (January 2011). "What Exactly is Multiplication?". Mathematical Association of America. Retrieved 2 April 2012.
  6. Lakoff, George; Nunez, Rafael (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. Basic Books. ISBN 0-465-03771-2.