दोहरा (श्रेणी सिद्धांत): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
{{For|गणित में द्वैत की सामान्य धारणाएँ|द्वैत (गणित)}}
{{For|गणित में द्वैत की सामान्य धारणाएँ|द्वैत (गणित)}}


[[श्रेणी सिद्धांत]] में, गणित की शाखा, द्वंद्व श्रेणी ''सी'' के गुणों और [[विपरीत श्रेणी]] ''सी'' के दोहरे गुणों के मध्य पत्राचार है।<sup>सेशन</sup>. श्रेणी सी के संबंध में कथन दिया गया है, फलन के डोमेन और प्रत्येक रूपवाद के [[कोडोमेन]] को आपस में बदलने के साथ-साथ फलन संरचना के क्रम को दो रूपवादों में बदलने से, विपरीत श्रेणी सी के संबंध में संबंधित दोहरा कथन प्राप्त होता है।<sup>सेशन</sup>. द्वंद्व, इस तरह, यह प्रामाणित है कि कथनों पर इस ऑपरेशन के अनुसार सत्य अपरिवर्तनीय है। दूसरे शब्दों में, यदि कोई कथन C के बारे में सत्य है, तब उसका दोहरा कथन C के बारे में सत्य है<sup>सेशन</sup>. साथ ही, यदि कोई कथन C के बारे में गलत है, तब उसका द्वैत C के बारे में गलत होना चाहिए<sup>सेशन</sup>.
[[श्रेणी सिद्धांत]] में, गणित की शाखा, द्वंद्व श्रेणी ''सी'' के गुणों और [[विपरीत श्रेणी]] ''सी'' के दोहरे गुणों के मध्य पत्राचार है।<sup>सेशन</sup>. श्रेणी सी के संबंध में कथन दिया गया है, फलन के डोमेन और प्रत्येक रूपवाद के [[कोडोमेन]] को आपस में बदलने के साथ-साथ फलन संरचना के क्रम को दो रूपवादों में बदलने से, विपरीत श्रेणी सी के संबंध में संबंधित दोहरा कथन प्राप्त होता है।<sup>सेशन</sup>. द्वंद्व, इस तरह, यह प्रामाणित है कि कथनों पर इस ऑपरेशन के अनुसार सत्य अपरिवर्तनीय है। दूसरे शब्दों में, यदि कोई कथन C के बारे में सत्य है, तब उसका दोहरा कथन C के बारे में सत्य है<sup>सेशन</sup>. साथ ही, यदि कोई कथन C के बारे में गलत है, तब उसका द्वैत C के बारे में गलत होना चाहिए<sup>सेशन</sup>.


एक [[ठोस श्रेणी]] सी को देखते हुए, अधिकांशतः यह मामला होता है कि विपरीत श्रेणी सी<sup>op</sup> वास्तव में अमूर्त है। सी<sup>op</sup> को गणितीय अभ्यास से उत्पन्न होने वाली श्रेणी होने की आवश्यकता नहीं है। इस स्थितियों में, अन्य श्रेणी डी को भी सी के साथ द्वंद्व में कहा जाता है यदि डी और सी<sup>op</sup>श्रेणियों की समतुल्यता है।
[[ठोस श्रेणी]] सी को देखते हुए, अधिकांशतः यह मामला होता है कि विपरीत श्रेणी सी<sup>op</sup> वास्तव में अमूर्त है। सी<sup>op</sup> को गणितीय अभ्यास से उत्पन्न होने वाली श्रेणी होने की आवश्यकता नहीं है। इस स्थितियों में, अन्य श्रेणी डी को भी सी के साथ द्वंद्व में कहा जाता है यदि डी और सी<sup>op</sup>श्रेणियों की समतुल्यता है।


उस स्थिति में जब C और उसके विपरीत C<sup>op</sup>समतुल्य हैं, ऐसी श्रेणी स्व-द्वैत है।<ref name="AdamekRosicky1994">{{cite book|author1=Jiří Adámek|author2=J. Rosicky|title=स्थानीय रूप से प्रस्तुत करने योग्य और सुलभ श्रेणियाँ|url=https://books.google.com/books?id=iXh6rOd7of0C&pg=PA62|year=1994|publisher=Cambridge University Press|isbn=978-0-521-42261-1|page=62}}</ref>
उस स्थिति में जब C और उसके विपरीत C<sup>op</sup>समतुल्य हैं, ऐसी श्रेणी स्व-द्वैत है।<ref name="AdamekRosicky1994">{{cite book|author1=Jiří Adámek|author2=J. Rosicky|title=स्थानीय रूप से प्रस्तुत करने योग्य और सुलभ श्रेणियाँ|url=https://books.google.com/books?id=iXh6rOd7of0C&pg=PA62|year=1994|publisher=Cambridge University Press|isbn=978-0-521-42261-1|page=62}}</ref>
Line 20: Line 20:
==उदाहरण==
==उदाहरण==


* एक रूपवाद <math>f\colon A \to B</math> यदि [[एकरूपता]] है <math>f \circ g = f \circ h</math> तात्पर्य <math>g=h</math>. दोहरा ऑपरेशन करने पर हमें यह कथन मिलता है कि <math>g \circ f = h \circ f</math> तात्पर्य <math>g=h.</math> रूपवाद के लिए <math>f\colon B \to A</math>, एफ के लिए [[एपिमोर्फिज्म]] होने का ठीक यही कारण है। संक्षेप में, एकरूपता होने की संपत्ति एपिमोर्फिज्म होने की संपत्ति से दोहरी है।
* रूपवाद <math>f\colon A \to B</math> यदि [[एकरूपता]] है <math>f \circ g = f \circ h</math> तात्पर्य <math>g=h</math>. दोहरा ऑपरेशन करने पर हमें यह कथन मिलता है कि <math>g \circ f = h \circ f</math> तात्पर्य <math>g=h.</math> रूपवाद के लिए <math>f\colon B \to A</math>, एफ के लिए [[एपिमोर्फिज्म]] होने का ठीक यही कारण है। संक्षेप में, एकरूपता होने की संपत्ति एपिमोर्फिज्म होने की संपत्ति से दोहरी है।


द्वंद्व को क्रियान्वित करने पर, इसका कारण यह है कि कुछ श्रेणी सी में रूपवाद मोनोमोर्फिज्म है यदि और केवल यदि विपरीत श्रेणी सी में विपरीत रूपवाद है<sup>op</sup> प्रतीकवाद है।
द्वंद्व को क्रियान्वित करने पर, इसका कारण यह है कि कुछ श्रेणी सी में रूपवाद मोनोमोर्फिज्म है यदि और केवल यदि विपरीत श्रेणी सी में विपरीत रूपवाद है<sup>op</sup> प्रतीकवाद है।

Revision as of 20:41, 20 July 2023

श्रेणी सिद्धांत में, गणित की शाखा, द्वंद्व श्रेणी सी के गुणों और विपरीत श्रेणी सी के दोहरे गुणों के मध्य पत्राचार है।सेशन. श्रेणी सी के संबंध में कथन दिया गया है, फलन के डोमेन और प्रत्येक रूपवाद के कोडोमेन को आपस में बदलने के साथ-साथ फलन संरचना के क्रम को दो रूपवादों में बदलने से, विपरीत श्रेणी सी के संबंध में संबंधित दोहरा कथन प्राप्त होता है।सेशन. द्वंद्व, इस तरह, यह प्रामाणित है कि कथनों पर इस ऑपरेशन के अनुसार सत्य अपरिवर्तनीय है। दूसरे शब्दों में, यदि कोई कथन C के बारे में सत्य है, तब उसका दोहरा कथन C के बारे में सत्य हैसेशन. साथ ही, यदि कोई कथन C के बारे में गलत है, तब उसका द्वैत C के बारे में गलत होना चाहिएसेशन.

ठोस श्रेणी सी को देखते हुए, अधिकांशतः यह मामला होता है कि विपरीत श्रेणी सीop वास्तव में अमूर्त है। सीop को गणितीय अभ्यास से उत्पन्न होने वाली श्रेणी होने की आवश्यकता नहीं है। इस स्थितियों में, अन्य श्रेणी डी को भी सी के साथ द्वंद्व में कहा जाता है यदि डी और सीopश्रेणियों की समतुल्यता है।

उस स्थिति में जब C और उसके विपरीत Copसमतुल्य हैं, ऐसी श्रेणी स्व-द्वैत है।[1]

औपचारिक परिभाषा

हम श्रेणी सिद्धांत की प्रारंभिक भाषा को वस्तुओं और रूपवादों के साथ दो-क्रमबद्ध प्रथम क्रम की भाषा के रूप में परिभाषित करते हैं, साथ ही वस्तु के संबंध रूपवाद का स्रोत या लक्ष्य और दो रूपवादों की रचना के लिए प्रतीक के रूप में परिभाषित करते हैं।

मान लीजिए σ इस भाषा में कोई कथन है। हम दोहरी σ बनाते हैंop इस प्रकार है:

  1. σ में स्रोत की प्रत्येक घटना को लक्ष्य के साथ बदलें।
  2. आकृतियों की रचना के क्रम को बदलें। अर्थात्, प्रत्येक घटना को प्रतिस्थापित करें साथ

अनौपचारिक रूप से, यह स्थितियाँ बताती हैं कि किसी कथन का द्वैत रूपवाद और कार्य संरचना को उलट कर बनता है।

द्वंद्व यह अवलोकन है कि σ कुछ श्रेणी सी के लिए सत्य है यदि और केवल यदि σop C के लिए सत्य हैऊपर.[2][3]

उदाहरण

  • रूपवाद यदि एकरूपता है तात्पर्य . दोहरा ऑपरेशन करने पर हमें यह कथन मिलता है कि तात्पर्य रूपवाद के लिए , एफ के लिए एपिमोर्फिज्म होने का ठीक यही कारण है। संक्षेप में, एकरूपता होने की संपत्ति एपिमोर्फिज्म होने की संपत्ति से दोहरी है।

द्वंद्व को क्रियान्वित करने पर, इसका कारण यह है कि कुछ श्रेणी सी में रूपवाद मोनोमोर्फिज्म है यदि और केवल यदि विपरीत श्रेणी सी में विपरीत रूपवाद हैop प्रतीकवाद है।

  • असमानताओं की दिशा को आंशिक क्रम में उलटने से उदाहरण मिलता है। इसलिए यदि X समुच्चय (गणित) है और ≤ आंशिक क्रम संबंध है, तब हम नया आंशिक क्रम संबंध परिभाषित कर सकते हैं ≤new द्वारा
x ≤new y यदि और केवल यदि y ≤ x.

ऑर्डर पर यह उदाहरण विशेष मामला है, क्योंकि आंशिक ऑर्डर निश्चित प्रकार की श्रेणी से मेल खाते हैं जिसमें होम (ए, बी) में अधिकतम तत्व हो सकता है। तर्क के अनुप्रयोगों में, यह निषेध का बहुत ही सामान्य विवरण जैसा दिखता है (अर्थात, प्रमाण विपरीत दिशा में चलते हैं)। उदाहरण के लिए, यदि हम जाली सिद्धांत के विपरीत लेते हैं, तब हम पाएंगे कि मिलने और जुड़ने की भूमिकाएं आपस में बदल जाती हैं। यह डी मॉर्गन के नियमों या जालकों पर क्रियान्वित द्वैत (आदेश सिद्धांत) का अमूर्त रूप है।

यह भी देखें

संदर्भ

  1. Jiří Adámek; J. Rosicky (1994). स्थानीय रूप से प्रस्तुत करने योग्य और सुलभ श्रेणियाँ. Cambridge University Press. p. 62. ISBN 978-0-521-42261-1.
  2. Mac Lane 1978, p. 33.
  3. Awodey 2010, p. 53-55.