संपूर्ण फलन: Difference between revisions
m (Abhishek moved page संपूर्ण समारोह to संपूर्ण फलन without leaving a redirect) |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Function that is holomorphic on the whole complex plane}} | {{short description|Function that is holomorphic on the whole complex plane}} | ||
[[जटिल विश्लेषण]] में, संपूर्ण फलन, जिसे [[ अभिन्न |अभिन्न]] फलन भी कहा जाता है, जटिल-मूल्यवान [[फ़ंक्शन (गणित)|फलन (गणित)]] है, जो पूरे [[जटिल विमान|जटिल समतल]] पर [[होलोमोर्फिक फ़ंक्शन|होलोमोर्फिक फलन]] है। संपूर्ण फलनों के विशिष्ट उदाहरण [[बहुपद]] और घातीय फलन हैं, और इनमें से कोई भी परिमित योग, गुणन और रचनाएं, जैसे कि त्रिकोणमितीय फलन [[ उन लोगों के |साइन]] और [[ कोज्या |कोज्या]] और उनके [[अतिशयोक्तिपूर्ण कार्य|अतिशयोक्तिपूर्ण फलन]] [[ अतिपरवलयिक ज्या |अतिपरवलयिक ज्या]] और [[ अतिशयोक्तिपूर्ण कोज्या |अतिशयोक्तिपूर्ण कोज्या]] , साथ ही [[त्रुटि फ़ंक्शन|त्रुटि फलन]]जैसे संपूर्ण फलन के [[ यौगिक | | [[जटिल विश्लेषण]] में, संपूर्ण फलन, जिसे [[ अभिन्न |अभिन्न]] फलन भी कहा जाता है, जटिल-मूल्यवान [[फ़ंक्शन (गणित)|फलन (गणित)]] है, जो पूरे [[जटिल विमान|जटिल समतल]] पर [[होलोमोर्फिक फ़ंक्शन|होलोमोर्फिक फलन]] है। संपूर्ण फलनों के विशिष्ट उदाहरण [[बहुपद]] और घातीय फलन हैं, और इनमें से कोई भी परिमित योग, गुणन और रचनाएं, जैसे कि त्रिकोणमितीय फलन [[ उन लोगों के |साइन]] और [[ कोज्या |कोज्या]] और उनके [[अतिशयोक्तिपूर्ण कार्य|अतिशयोक्तिपूर्ण फलन]] [[ अतिपरवलयिक ज्या |अतिपरवलयिक ज्या]] और [[ अतिशयोक्तिपूर्ण कोज्या |अतिशयोक्तिपूर्ण कोज्या]], साथ ही [[त्रुटि फ़ंक्शन|त्रुटि फलन]]जैसे संपूर्ण फलन के [[ यौगिक |व्युत्पन्न]] और अभिन्न। यदि संपूर्ण फलन <math>f(z)</math> [[किसी फ़ंक्शन का मूल|किसी फलन <math>w</math> का मूल]] है, तब <math>f(z)/(z-w)</math>, सीमा का मान <math>w</math> ले रहा है, संपूर्ण फलन है। दूसरी ओर, [[प्राकृतिक]] लघुगणक, व्युत्क्रम फलन और [[वर्गमूल]] सभी संपूर्ण फलन नहीं हैं, न ही वे किसी संपूर्ण फलन की [[विश्लेषणात्मक निरंतरता]] हो सकते हैं। | ||
[[पारलौकिक कार्य|पारलौकिक फलन]] संपूर्ण फलन एक संपूर्ण फलन है, जो बहुपद नहीं है। | [[पारलौकिक कार्य|पारलौकिक फलन]] संपूर्ण फलन एक संपूर्ण फलन है, जो बहुपद नहीं है। | ||
Line 16: | Line 16: | ||
इस मानदंड को पूरा करने वाली कोई भी शक्ति श्रृंखला संपूर्ण फलन का प्रतिनिधित्व करेगी। | इस मानदंड को पूरा करने वाली कोई भी शक्ति श्रृंखला संपूर्ण फलन का प्रतिनिधित्व करेगी। | ||
यदि (और केवल यदि) शक्ति श्रृंखला के सभी गुणांक वास्तविक हैं, तो फलन स्पष्ट रूप से वास्तविक तर्कों के लिए वास्तविक मान लेता है, और जटिल संयुग्म पर फलन का मान लेता है, <math>\ z\ </math> पर मान का जटिल संयुग्म <math>\ z ~</math>होगा। ऐसे फलनों को कभी-कभी स्व-संयुग्मित (संयुग्मित फलन, <math>\ F^*(z)\ ,</math> {{nowrap|<math>\ \bar F(\bar z)\ </math>) | यदि (और केवल यदि) शक्ति श्रृंखला के सभी गुणांक वास्तविक हैं, तो फलन स्पष्ट रूप से वास्तविक तर्कों के लिए वास्तविक मान लेता है, और जटिल संयुग्म पर फलन का मान लेता है, <math>\ z\ </math> पर मान का जटिल संयुग्म <math>\ z ~</math>होगा। ऐसे फलनों को कभी-कभी स्व-संयुग्मित (संयुग्मित फलन, <math>\ F^*(z)\ ,</math> {{nowrap|<math>\ \bar F(\bar z)\ </math>)}} द्वारा दिया जा रहा है। {{sfn|Boas|1954|p=1}} | ||
यदि किसी बिंदु के पड़ोस में किसी संपूर्ण फलन का वास्तविक भाग ज्ञात होता है, तो संपूर्ण जटिल तल के लिए, काल्पनिक स्थिरांक [[तक]], वास्तविक और काल्पनिक दोनों भाग ज्ञात होते हैं। उदाहरण के लिए, यदि वास्तविक भाग शून्य के पड़ोस में ज्ञात है, तो हम इसके लिए गुणांक <math>n>0</math> पा सकते हैं, वास्तविक चर <math>\ r\ </math> के संबंध में निम्नलिखित व्युत्पन्नों से: | यदि किसी बिंदु के पड़ोस में किसी संपूर्ण फलन का वास्तविक भाग ज्ञात होता है, तो संपूर्ण जटिल तल के लिए, काल्पनिक स्थिरांक [[तक]], वास्तविक और काल्पनिक दोनों भाग ज्ञात होते हैं। उदाहरण के लिए, यदि वास्तविक भाग शून्य के पड़ोस में ज्ञात है, तो हम इसके लिए गुणांक <math>n>0</math> पा सकते हैं, वास्तविक चर <math>\ r\ </math> के संबंध में निम्नलिखित व्युत्पन्नों से: | ||
Line 23: | Line 23: | ||
\operatorname\mathcal{R_e} \left\{\ a_n\ \right\} &= \frac{1}{n!} \frac{d^n}{dr^n}\ \operatorname\mathcal{R_e} \left\{\ f(r)\ \right\} && \quad \mathrm{ at } \quad r = 0 \\ | \operatorname\mathcal{R_e} \left\{\ a_n\ \right\} &= \frac{1}{n!} \frac{d^n}{dr^n}\ \operatorname\mathcal{R_e} \left\{\ f(r)\ \right\} && \quad \mathrm{ at } \quad r = 0 \\ | ||
\operatorname\mathcal{I_m}\left\{\ a_n\ \right\} &= \frac{1}{n!} \frac{d^n}{dr^n}\ \operatorname\mathcal{R_e} \left\{\ f\left( r\ e^{-\frac{i\pi}{2n}} \right)\ \right\} && \quad \mathrm{ at } \quad r = 0 | \operatorname\mathcal{I_m}\left\{\ a_n\ \right\} &= \frac{1}{n!} \frac{d^n}{dr^n}\ \operatorname\mathcal{R_e} \left\{\ f\left( r\ e^{-\frac{i\pi}{2n}} \right)\ \right\} && \quad \mathrm{ at } \quad r = 0 | ||
\end{align}</math>(इसी तरह, यदि काल्पनिक भाग किसी [[पड़ोस (गणित)]] में ज्ञात है | \end{align}</math>(इसी तरह, यदि काल्पनिक भाग किसी [[पड़ोस (गणित)]] में ज्ञात है, तो फलन वास्तविक स्थिरांक तक निर्धारित होता है।) वास्तव में, यदि वास्तविक भाग किसी वृत्त के चाप पर ही ज्ञात होता है, तो फलन काल्पनिक स्थिरांक के लिए निर्धारित होता है।{{efn| | ||
For instance, if the real part is known on part of the unit circle, then it is known on the whole unit circle by [[analytic extension]], and then the coefficients of the infinite series are determined from the coefficients of the [[Fourier series]] for the real part on the unit circle. | For instance, if the real part is known on part of the unit circle, then it is known on the whole unit circle by [[analytic extension]], and then the coefficients of the infinite series are determined from the coefficients of the [[Fourier series]] for the real part on the unit circle. | ||
}} | }} | ||
Line 55: | Line 55: | ||
संपूर्ण फलन किसी भी बढ़ते फलन जितनी तीव्रता से बढ़ सकते हैं: किसी भी बढ़ते फलन के लिए <math>g:[0,\infty)\to[0,\infty)</math> जहाँ संपूर्ण फलन <math>f</math> उपस्थित है, ऐसा है कि | संपूर्ण फलन किसी भी बढ़ते फलन जितनी तीव्रता से बढ़ सकते हैं: किसी भी बढ़ते फलन के लिए <math>g:[0,\infty)\to[0,\infty)</math> जहाँ संपूर्ण फलन <math>f</math> उपस्थित है, ऐसा है कि | ||
<math>f(x)>g(|x|)</math> सभी वास्तविक <math>x</math> के लिए। ऐसा फलन <math>f</math> फॉर्म | <math>f(x)>g(|x|)</math> सभी वास्तविक <math>x</math> के लिए। ऐसा फलन <math>f</math> फॉर्म सरलता से मिल सकता है:<math display="block">f(z)=c+\sum_{k=1}^{\infty}\left(\frac{z}{k}\right)^{n_k}</math> | ||
स्थिरांक <math>c</math> के लिए और धनात्मक पूर्णांकों का कड़ाई से बढ़ता क्रम <math>n_k</math> । ऐसा कोई भी क्रम संपूर्ण फलन <math>f(z)</math> को परिभाषित करता है, और यदि शक्तियां उचित रूप से चुनी जाती हैं तो हम असमानता <math>f(x)>g(|x|)</math> को सभी वास्तविक <math>x</math> के लिए संतुष्ट कर सकते हैं। (उदाहरण के लिए, यदि कोई <math>c:=g(2)</math> चुनता है तो यह निश्चित रूप से मान्य है और, किसी भी पूर्णांक <math>k \ge 1</math> के लिए कोई सम घातांक <math> n_k </math> चुनता है; जैसे कि <math>\left(\frac{k+1}{k}\right)^{n_k} \ge g(k+2)</math>है)। | स्थिरांक <math>c</math> के लिए और धनात्मक पूर्णांकों का कड़ाई से बढ़ता क्रम <math>n_k</math> है । ऐसा कोई भी क्रम संपूर्ण फलन <math>f(z)</math> को परिभाषित करता है, और यदि शक्तियां उचित रूप से चुनी जाती हैं तो हम असमानता <math>f(x)>g(|x|)</math> को सभी वास्तविक <math>x</math> के लिए संतुष्ट कर सकते हैं। (उदाहरण के लिए, यदि कोई <math>c:=g(2)</math> चुनता है तो यह निश्चित रूप से मान्य है और, किसी भी पूर्णांक <math>k \ge 1</math> के लिए कोई सम घातांक <math> n_k </math> चुनता है; जैसे कि <math>\left(\frac{k+1}{k}\right)^{n_k} \ge g(k+2)</math>है)। | ||
==ऑर्डर करें और टाइप करें == | ==ऑर्डर करें और टाइप करें == | ||
Line 62: | Line 62: | ||
<math display="block">\rho = \limsup_{r\to\infty}\frac{\ln \left (\ln\| f \|_{\infty, B_r} \right ) }{\ln r},</math> | <math display="block">\rho = \limsup_{r\to\infty}\frac{\ln \left (\ln\| f \|_{\infty, B_r} \right ) }{\ln r},</math> | ||
जहाँ <math>B_r</math> त्रिज्या की डिस्क <math>r</math> है और <math>\|f \|_{\infty, B_r}</math> के सर्वोच्च मानदंड को <math>f(z)</math> पर <math>B_r</math> दर्शाता है। क्रम गैर- | जहाँ <math>B_r</math> त्रिज्या की डिस्क <math>r</math> है और <math>\|f \|_{\infty, B_r}</math> के सर्वोच्च मानदंड को <math>f(z)</math> पर <math>B_r</math> दर्शाता है। क्रम गैर-ऋणात्मक वास्तविक संख्या या अनंत है (कब को छोड़कर)। सभी <math>z</math> के लिए <math>f(z) = 0</math>। दूसरे शब्दों में, <math>f(z)</math> का क्रम सभी में अल्पतम <math>m</math> है. ऐसा है कि: | ||
<math display="block">f(z) = O \left (\exp \left (|z|^m \right ) \right ), \quad \text{as } z \to \infty.</math> | <math display="block">f(z) = O \left (\exp \left (|z|^m \right ) \right ), \quad \text{as } z \to \infty.</math> | ||
Line 77: | Line 77: | ||
(e\rho\sigma)^{\frac{1}{\rho}} &= \limsup_{n\to\infty} n^{\frac{1}{\rho}} |a_n|^{\frac{1}{n}} | (e\rho\sigma)^{\frac{1}{\rho}} &= \limsup_{n\to\infty} n^{\frac{1}{\rho}} |a_n|^{\frac{1}{n}} | ||
\end{align}</math> | \end{align}</math> | ||
मान लीजिये <math>f^{(n)}</math> <math>n</math>-वें का व्युत्पन्न <math>f</math> निरूपित करें, तो हम इन सूत्रों को किसी भी इच्छानुसार बिंदु पर | मान लीजिये <math>f^{(n)}</math> <math>n</math>-वें का व्युत्पन्न <math>f</math> निरूपित करें, तो हम इन सूत्रों को किसी भी इच्छानुसार बिंदु पर व्युत्पन्न <math>z_0</math> के संदर्भ में पुन: स्थापित कर सकते हैं: | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
Line 91: | Line 91: | ||
====क्रम ρ==== | ====क्रम ρ==== | ||
इच्छानुसार | इच्छानुसार धनात्मक संख्याओं के लिए <math>\rho</math> और <math>\sigma</math> कोई ऑर्डर के संपूर्ण फलन का उदाहरण बना सकता है; <math>\rho</math> और <math>\sigma</math> टाइप का उपयोग करना: | ||
<math display="block">f(z)=\sum_{n=1}^\infty \left (\frac{e\rho\sigma}{n} \right )^{\frac{n}{\rho}} z^n</math> | <math display="block">f(z)=\sum_{n=1}^\infty \left (\frac{e\rho\sigma}{n} \right )^{\frac{n}{\rho}} z^n</math> | ||
Line 139: | Line 139: | ||
<math display="block">f(z)=z^me^{P(z)}\prod_{n=1}^\infty\left(1-\frac{z}{z_n}\right)\exp\left(\frac{z}{z_n}+\cdots+\frac{1}{p} \left(\frac{z}{z_n}\right)^p\right),</math> | <math display="block">f(z)=z^me^{P(z)}\prod_{n=1}^\infty\left(1-\frac{z}{z_n}\right)\exp\left(\frac{z}{z_n}+\cdots+\frac{1}{p} \left(\frac{z}{z_n}\right)^p\right),</math> | ||
जहाँ <math>z_k</math> के फलन के वे शून्य हैं <math>f</math> वह शून्य नहीं हैं (<math>z_k \neq 0</math>), <math>m</math> के शून्य का क्रम है; <math>f</math> पर <math>z = 0</math> (स्थिति <math>m = 0</math> अर्थ निकाला जा रहा है <math>f(0) \neq 0</math>), <math>P</math> बहुपद (जिसकी डिग्री हम कहेंगे <math>q</math>), और <math>p</math> श्रृंखला का सबसे छोटा गैर- | जहाँ <math>z_k</math> के फलन के वे शून्य हैं <math>f</math> वह शून्य नहीं हैं (<math>z_k \neq 0</math>), <math>m</math> के शून्य का क्रम है; <math>f</math> पर <math>z = 0</math> (स्थिति <math>m = 0</math> अर्थ निकाला जा रहा है <math>f(0) \neq 0</math>), <math>P</math> बहुपद (जिसकी डिग्री हम कहेंगे <math>q</math>), और <math>p</math> श्रृंखला का सबसे छोटा गैर-ऋणात्मक पूर्णांक है | ||
<math display="block">\sum_{n=1}^\infty\frac{1}{|z_n|^{p+1}}</math> | <math display="block">\sum_{n=1}^\infty\frac{1}{|z_n|^{p+1}}</math> | ||
गैर- | गैर-ऋणात्मक पूर्णांक <math>g=\max\{p,q\}</math> संपूर्ण फलन का जीनस <math>f</math> कहा जाता है। | ||
यदि क्रम <math>\rho</math> है तो फिर, <math>g = [ \rho ]</math> पूर्णांक नहीं है, <math>\rho</math> का पूर्णांक भाग है। यदि क्रम धनात्मक पूर्णांक है, तो दो संभावनाएँ हैं: <math>g = \rho-1</math> या <math>g = \rho </math>. | यदि क्रम <math>\rho</math> है तो फिर, <math>g = [ \rho ]</math> पूर्णांक नहीं है, <math>\rho</math> का पूर्णांक भाग है। यदि क्रम धनात्मक पूर्णांक है, तो दो संभावनाएँ हैं: <math>g = \rho-1</math> या <math>g = \rho </math>. | ||
Line 149: | Line 149: | ||
==अन्य उदाहरण== | ==अन्य उदाहरण== | ||
जे. ई. लिटिलवुड के अनुसार, [[वीयरस्ट्रैस सिग्मा फ़ंक्शन|वीयरस्ट्रैस सिग्मा फलन]] 'विशिष्ट' संपूर्ण फलन है। इस कथन को यादृच्छिक संपूर्ण फलनों के सिद्धांत में स्पष्ट बनाया जा सकता है: लगभग सभी संपूर्ण फलनों का स्पर्शोन्मुख व्यवहार सिग्मा फलन के समान है। अन्य उदाहरणों में [[फ़्रेज़नेल इंटीग्रल]], [[जैकोबी थीटा फ़ंक्शन|जैकोबी थीटा फलन]] और पारस्परिक गामा फलन सम्मिलित हैं। घातीय फलन और त्रुटि फलन [[मिट्टाग-लेफ़लर फ़ंक्शन|मिट्टाग-लेफ़लर फलन]] की विशेष स्थिति हैं। मौलिक पैली-वीनर प्रमेय के अनुसार, बंधे हुए समर्थन के साथ फलनों (या वितरण) के [[फूरियर रूपांतरण]] क्रम के संपूर्ण फलन और परिमित प्रकार <math>1</math> हैं। | जे. ई. लिटिलवुड के अनुसार, [[वीयरस्ट्रैस सिग्मा फ़ंक्शन|वीयरस्ट्रैस सिग्मा फलन]] 'विशिष्ट' संपूर्ण फलन है। इस कथन को यादृच्छिक संपूर्ण फलनों के सिद्धांत में स्पष्ट बनाया जा सकता है: लगभग सभी संपूर्ण फलनों का स्पर्शोन्मुख व्यवहार सिग्मा फलन के समान है। अन्य उदाहरणों में [[फ़्रेज़नेल इंटीग्रल|फ़्रेज़नेल अभिन्न]], [[जैकोबी थीटा फ़ंक्शन|जैकोबी थीटा फलन]] और पारस्परिक गामा फलन सम्मिलित हैं। घातीय फलन और त्रुटि फलन [[मिट्टाग-लेफ़लर फ़ंक्शन|मिट्टाग-लेफ़लर फलन]] की विशेष स्थिति हैं। मौलिक पैली-वीनर प्रमेय के अनुसार, बंधे हुए समर्थन के साथ फलनों (या वितरण) के [[फूरियर रूपांतरण]] क्रम के संपूर्ण फलन और परिमित प्रकार <math>1</math> हैं। | ||
अन्य उदाहरण बहुपद गुणांक वाले रैखिक अवकल समीकरणों के समाधान हैं। यदि उच्चतम अवकलज पर गुणांक स्थिर है, तो ऐसे समीकरणों के सभी समाधान संपूर्ण फलन हैं। उदाहरण के लिए, घातीय फलन, ज्या, कोज्या, वायु फलन और परवलयिक सिलिंडर फलन इस प्रकार उत्पन्न होते हैं। संपूर्ण फलनों का वर्ग रचनाओं के संबंध में | अन्य उदाहरण बहुपद गुणांक वाले रैखिक अवकल समीकरणों के समाधान हैं। यदि उच्चतम अवकलज पर गुणांक स्थिर है, तो ऐसे समीकरणों के सभी समाधान संपूर्ण फलन हैं। उदाहरण के लिए, घातीय फलन, ज्या, कोज्या, वायु फलन और परवलयिक सिलिंडर फलन इस प्रकार उत्पन्न होते हैं। संपूर्ण फलनों का वर्ग रचनाओं के संबंध में विवृत है। इससे होलोमोर्फिक गतिशीलता का अध्ययन करना संभव हो जाता है। | ||
उदाहरण के लिए, किसी सम्मिश्र संख्या के वर्गमूल का संपूर्ण फलन संपूर्ण होता है यदि मूल फलन सम फलन <math>\cos(\sqrt{z})</math> हो। | उदाहरण के लिए, किसी सम्मिश्र संख्या के वर्गमूल का संपूर्ण फलन संपूर्ण होता है यदि मूल फलन सम फलन <math>\cos(\sqrt{z})</math> हो। | ||
यदि बहुपदों का क्रम जिसकी सभी जड़ें वास्तविक हैं, मूल बिंदु के पड़ोस में सीमा तक परिवर्तित हो जाती है जो शून्य के बराबर नहीं है, तो यह सीमा संपूर्ण फलन है। इस तरह के संपूर्ण फलन लैगुएरे-पोल्या वर्ग का निर्माण करते हैं, जिसे हैडामर्ड गुणन के संदर्भ में भी चित्रित किया जा सकता है, अर्थात्, <math>f</math> इस वर्ग से संबंधित है यदि और केवल यदि हैडामर्ड प्रतिनिधित्व में सभी <math>z_n</math> असली हैं, <math>\rho\leq 1</math>, और | यदि बहुपदों का क्रम जिसकी सभी जड़ें वास्तविक हैं, मूल बिंदु के पड़ोस में सीमा तक परिवर्तित हो जाती है जो शून्य के बराबर नहीं है, तो यह सीमा संपूर्ण फलन है। इस तरह के संपूर्ण फलन लैगुएरे-पोल्या वर्ग का निर्माण करते हैं, जिसे हैडामर्ड गुणन के संदर्भ में भी चित्रित किया जा सकता है, अर्थात्, <math>f</math> इस वर्ग से संबंधित है यदि और केवल यदि हैडामर्ड प्रतिनिधित्व में सभी <math>z_n</math> असली हैं, <math>\rho\leq 1</math>, और <math>c\leq 0</math><math>P(z)=a+bz+cz^2</math>, जहाँ <math>b</math> और <math>c</math> वास्तविक हैं, उदाहरण के लिए, बहुपदों का क्रम<math display="block">\left (1-\frac{(z-d)^2}{n} \right )^n</math> अभिसरण, जैसे <math>n</math> बढ़ता है, <math>\exp(-(z-d)^2)</math> को बहुपद | ||
<math display="block">\left (1-\frac{(z-d)^2}{n} \right )^n</math> अभिसरण, जैसे <math>n</math> बढ़ता है, <math>\exp(-(z-d)^2)</math> को बहुपद | |||
<math display="block"> \frac{1}{2}\left ( \left (1+\frac{iz}{n} \right )^n+ \left (1-\frac{iz}{n} \right )^n \right )</math> सभी वास्तविक बहुपद जुड़े हैं, और <math>\cos(z)</math> एकजुट हैं | <math display="block"> \frac{1}{2}\left ( \left (1+\frac{iz}{n} \right )^n+ \left (1-\frac{iz}{n} \right )^n \right )</math> सभी वास्तविक बहुपद जुड़े हैं, और <math>\cos(z)</math> एकजुट हैं |
Revision as of 18:15, 12 July 2023
जटिल विश्लेषण में, संपूर्ण फलन, जिसे अभिन्न फलन भी कहा जाता है, जटिल-मूल्यवान फलन (गणित) है, जो पूरे जटिल समतल पर होलोमोर्फिक फलन है। संपूर्ण फलनों के विशिष्ट उदाहरण बहुपद और घातीय फलन हैं, और इनमें से कोई भी परिमित योग, गुणन और रचनाएं, जैसे कि त्रिकोणमितीय फलन साइन और कोज्या और उनके अतिशयोक्तिपूर्ण फलन अतिपरवलयिक ज्या और अतिशयोक्तिपूर्ण कोज्या, साथ ही त्रुटि फलनजैसे संपूर्ण फलन के व्युत्पन्न और अभिन्न। यदि संपूर्ण फलन किसी फलन का मूल है, तब , सीमा का मान ले रहा है, संपूर्ण फलन है। दूसरी ओर, प्राकृतिक लघुगणक, व्युत्क्रम फलन और वर्गमूल सभी संपूर्ण फलन नहीं हैं, न ही वे किसी संपूर्ण फलन की विश्लेषणात्मक निरंतरता हो सकते हैं।
पारलौकिक फलन संपूर्ण फलन एक संपूर्ण फलन है, जो बहुपद नहीं है।
जिस प्रकार मेरोमोर्फिक फलनों को तर्कसंगत भिन्नों के सामान्यीकरण के रूप में देखा जा सकता है, उसी प्रकार संपूर्ण फलनों को बहुपदों के सामान्यीकरण के रूप में देखा जा सकता है। विशेष रूप से, यदि मेरोमोर्फिक फलनों के लिए कोई गुणनखंडन को सरल अंशों में सामान्यीकृत कर सकता है (मेरोमोर्फिक फलन के अपघटन पर मिट्टाग-लेफ़लर प्रमेय), तो संपूर्ण फलनों के लिए गुणनखंडन का सामान्यीकरण होता है - संपूर्ण फलनों पर वीयरस्ट्रैस प्रमेय।
गुण
प्रत्येक संपूर्ण फलन एकल शक्ति श्रृंखला के रूप में दर्शाया जा सकता है;
यदि (और केवल यदि) शक्ति श्रृंखला के सभी गुणांक वास्तविक हैं, तो फलन स्पष्ट रूप से वास्तविक तर्कों के लिए वास्तविक मान लेता है, और जटिल संयुग्म पर फलन का मान लेता है, पर मान का जटिल संयुग्म होगा। ऐसे फलनों को कभी-कभी स्व-संयुग्मित (संयुग्मित फलन, ) द्वारा दिया जा रहा है। [1]
यदि किसी बिंदु के पड़ोस में किसी संपूर्ण फलन का वास्तविक भाग ज्ञात होता है, तो संपूर्ण जटिल तल के लिए, काल्पनिक स्थिरांक तक, वास्तविक और काल्पनिक दोनों भाग ज्ञात होते हैं। उदाहरण के लिए, यदि वास्तविक भाग शून्य के पड़ोस में ज्ञात है, तो हम इसके लिए गुणांक पा सकते हैं, वास्तविक चर के संबंध में निम्नलिखित व्युत्पन्नों से:
चूँकि ध्यान दें कि संपूर्ण फलन सभी वक्रों पर उसके वास्तविक भाग द्वारा नहीं निर्धारित होता है। विशेष रूप से, यदि वास्तविक भाग जटिल तल में किसी वक्र पर दिया गया है, जहां किसी अन्य संपूर्ण फलन का वास्तविक भाग शून्य है, तो उस फलन के किसी भी गुणज को उस फलन में जोड़ा जा सकता है, जिसे हम निर्धारित करने का प्रयास कर रहे हैं। उदाहरण के लिए, यदि वक्र जहां वास्तविक भाग ज्ञात है वह वास्तविक रेखा है, तो हम किसी भी स्व-संयुग्मित फलन का समय जोड़ सकते हैं। यदि वक्र लूप बनाता है, तो यह लूप पर फलन के वास्तविक भाग द्वारा निर्धारित किया जाता है क्योंकि केवल वे फलन जिनका वास्तविक भाग वक्र पर शून्य हैं, जो हर जगह कुछ काल्पनिक संख्या के बराबर हैं।
वीयरस्ट्रैस गुणनखंडन प्रमेय का प्रमाण है कि किसी भी संपूर्ण फलन को किसी फलन के शून्य (या जड़ों) वाले गुणन द्वारा दर्शाया जा सकता है।
जटिल तल पर संपूर्ण फलन अभिन्न डोमेन (वास्तव में प्रुफ़र डोमेन) बनाते हैं। वे जटिल संख्याओं पर क्रमविनिमेय इकाई बीजगणित साहचर्य बीजगणित भी बनाते हैं।
लिउविले का प्रमेय (जटिल विश्लेषण)|लिउविले का प्रमेय बताता है कि किसी भी परिबद्ध फलन का पूरा फलन स्थिर होना चाहिए।[lower-alpha 2]
लिउविले के प्रमेय के परिणामस्वरूप, कोई भी फलन जो संपूर्ण रीमैन क्षेत्र पर संपूर्ण स्थिर है।[lower-alpha 3] इस प्रकार किसी भी गैर-स्थिर संपूर्ण फलन में अनंत पर जटिल बिंदु पर गणितीय विलक्षणता होनी चाहिए, या तो बहुपद के लिए ध्रुव (जटिल विश्लेषण) या ट्रान्सेंडैंटल फलन संपूर्ण फलन के लिए आवश्यक विलक्षणता होनी चाहिए। विशेष रूप से, कैसोराती-वीयरस्ट्रैस प्रमेय द्वारा, किसी भी पारलौकिक संपूर्ण फलन के लिए और कोई भी जटिल क्रम है, ऐसा है कि
पिकार्ड का छोटा प्रमेय बहुत कठोर परिणाम है: कोई भी गैर-स्थिर संपूर्ण फलन प्रत्येक जटिल संख्या को मान के रूप में लेता है, संभवतः अपवाद के साथ। जब कोई अपवाद उपस्थित होता है, तो इसे फलन का लैकुनरी मान कहा जाता है। संक्षिप्त मान की संभावना को घातीय फलन द्वारा चित्रित किया गया है, जो कभी भी 0 मान नहीं लेता है। कोई संपूर्ण फलन के लघुगणक की उपयुक्त शाखा ले सकता है जो कभी 0 हिट नहीं होती, जिससे यह भी संपूर्ण फलन हो (वीयरस्ट्रैस फ़ैक्टराइज़ेशन प्रमेय के अनुसार)। लघुगणक संभवतः एक संख्या को छोड़कर प्रत्येक जटिल संख्या को हिट करता है, जिसका अर्थ है कि पहला फलन 0 के अतिरिक्त किसी भी मान को अनंत बार हिट करेगा। इसी तरह, गैर-स्थिर, संपूर्ण फलन जो किसी विशेष मान पर नहीं पड़ता है, वह हर दूसरे मान पर अनंत बार वार करेगा।
लिउविले का प्रमेय निम्नलिखित कथन का विशेष मामला है:
Theorem — Assume are positive constants and is a non-negative integer. An entire function satisfying the inequality for all with is necessarily a polynomial, of degree at most [lower-alpha 4] Similarly, an entire function satisfying the inequality for all with is necessarily a polynomial, of degree at least .
विकास
संपूर्ण फलन किसी भी बढ़ते फलन जितनी तीव्रता से बढ़ सकते हैं: किसी भी बढ़ते फलन के लिए जहाँ संपूर्ण फलन उपस्थित है, ऐसा है कि
सभी वास्तविक के लिए। ऐसा फलन फॉर्म सरलता से मिल सकता है:
ऑर्डर करें और टाइप करें
संपूर्ण फलन का क्रम (अनंत पर)। श्रेष्ठ सीमा का उपयोग करके परिभाषित किया गया है:
यदि कोई प्रकार को भी परिभाषित कर सकता है:
यदि
क्रम और प्रकार का पता लगाने की दूसरी विधि मत्सेव की प्रमेय है।
उदाहरण
यहां विभिन्न क्रमों के फलनों के कुछ उदाहरण दिए गए हैं:
क्रम ρ
इच्छानुसार धनात्मक संख्याओं के लिए और कोई ऑर्डर के संपूर्ण फलन का उदाहरण बना सकता है; और टाइप का उपयोग करना:
क्रम 0
- गैर-शून्य बहुपद
क्रम 1/4
क्रम 1/3
क्रम 1/2
क्रम 1
- साथ ()
- बेसेल फलन
- पारस्परिक गामा फलन ( अनंत है)
क्रम 3/2
क्रम 2
- साथ ()
- बार्न्स जी-फलन ( अनंत है)।
क्रम अनंत
जाति
परिमित क्रम के संपूर्ण फलनों में जैक्स हैडामर्ड का विहित प्रतिनिधित्व (हैडामर्ड गुणनखंडन प्रमेय) है:
यदि क्रम है तो फिर, पूर्णांक नहीं है, का पूर्णांक भाग है। यदि क्रम धनात्मक पूर्णांक है, तो दो संभावनाएँ हैं: या .
उदाहरण के लिए, , और जीनस के संपूर्ण फलन हैं।
अन्य उदाहरण
जे. ई. लिटिलवुड के अनुसार, वीयरस्ट्रैस सिग्मा फलन 'विशिष्ट' संपूर्ण फलन है। इस कथन को यादृच्छिक संपूर्ण फलनों के सिद्धांत में स्पष्ट बनाया जा सकता है: लगभग सभी संपूर्ण फलनों का स्पर्शोन्मुख व्यवहार सिग्मा फलन के समान है। अन्य उदाहरणों में फ़्रेज़नेल अभिन्न, जैकोबी थीटा फलन और पारस्परिक गामा फलन सम्मिलित हैं। घातीय फलन और त्रुटि फलन मिट्टाग-लेफ़लर फलन की विशेष स्थिति हैं। मौलिक पैली-वीनर प्रमेय के अनुसार, बंधे हुए समर्थन के साथ फलनों (या वितरण) के फूरियर रूपांतरण क्रम के संपूर्ण फलन और परिमित प्रकार हैं।
अन्य उदाहरण बहुपद गुणांक वाले रैखिक अवकल समीकरणों के समाधान हैं। यदि उच्चतम अवकलज पर गुणांक स्थिर है, तो ऐसे समीकरणों के सभी समाधान संपूर्ण फलन हैं। उदाहरण के लिए, घातीय फलन, ज्या, कोज्या, वायु फलन और परवलयिक सिलिंडर फलन इस प्रकार उत्पन्न होते हैं। संपूर्ण फलनों का वर्ग रचनाओं के संबंध में विवृत है। इससे होलोमोर्फिक गतिशीलता का अध्ययन करना संभव हो जाता है।
उदाहरण के लिए, किसी सम्मिश्र संख्या के वर्गमूल का संपूर्ण फलन संपूर्ण होता है यदि मूल फलन सम फलन हो।
यदि बहुपदों का क्रम जिसकी सभी जड़ें वास्तविक हैं, मूल बिंदु के पड़ोस में सीमा तक परिवर्तित हो जाती है जो शून्य के बराबर नहीं है, तो यह सीमा संपूर्ण फलन है। इस तरह के संपूर्ण फलन लैगुएरे-पोल्या वर्ग का निर्माण करते हैं, जिसे हैडामर्ड गुणन के संदर्भ में भी चित्रित किया जा सकता है, अर्थात्, इस वर्ग से संबंधित है यदि और केवल यदि हैडामर्ड प्रतिनिधित्व में सभी असली हैं, , और , जहाँ और वास्तविक हैं, उदाहरण के लिए, बहुपदों का क्रम
यह भी देखें
- जेन्सेन का सूत्र
- कार्लसन का प्रमेय
- घातीय प्रकार
- पैली-वीनर प्रमेय
- विमन-वेलिरॉन सिद्धांत
टिप्पणियाँ
- ↑ For instance, if the real part is known on part of the unit circle, then it is known on the whole unit circle by analytic extension, and then the coefficients of the infinite series are determined from the coefficients of the Fourier series for the real part on the unit circle.
- ↑ Liouville's theorem may be used to elegantly prove the fundamental theorem of algebra.
- ↑ The Riemann sphere is the whole complex plane augmented with a single point at infinity.
- ↑ The converse is also true as for any polynomial of degree the inequality holds for any
संदर्भ
स्रोत
- Boas, Ralph P. (1954). संपूर्ण कार्य. Academic Press. ISBN 9780080873138. OCLC 847696.
- Levin, B. Ya. (1980) [1964]. संपूर्ण कार्यों के शून्यों का वितरण. American Mathematical Society. ISBN 978-0-8218-4505-9.
- Levin, B. Ya. (1996). संपूर्ण कार्यों पर व्याख्यान. American Mathematical Society. ISBN 978-0-8218-0897-9.
श्रेणी:विश्लेषणात्मक फलन श्रेणी:विशेष फलन