एप्सिलॉन गणना: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 43: Line 43:
* {{cite SEP |url-id=epsilon-calculus |title=The epsilon calculus |last=Avigad |first=Jeremy |author-link=Jeremy Avigad |last2=Zach |first2=Richard |author-link2=Richard Zach |date=November 27, 2013}}
* {{cite SEP |url-id=epsilon-calculus |title=The epsilon calculus |last=Avigad |first=Jeremy |author-link=Jeremy Avigad |last2=Zach |first2=Richard |author-link2=Richard Zach |date=November 27, 2013}}
*{{cite book | last = Bourbaki | first = N. | title = Theory of Sets | location = Berlin | publisher = Springer-Verlag | isbn = 3-540-22525-0}}
*{{cite book | last = Bourbaki | first = N. | title = Theory of Sets | location = Berlin | publisher = Springer-Verlag | isbn = 3-540-22525-0}}
[[Category: औपचारिक तर्क की प्रणाली]] [[Category: प्रमाण सिद्धांत]]


 
[[Category:Articles with Internet Encyclopedia of Philosophy links]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 08/07/2023]]
[[Category:Created On 08/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:औपचारिक तर्क की प्रणाली]]
[[Category:प्रमाण सिद्धांत]]

Latest revision as of 10:14, 28 July 2023

तर्क में, डेविड हिल्बर्ट का एप्सिलॉन कैलकुलस एप्सिलॉन संचालक द्वारा औपचारिक भाषा का विस्तार है, इस प्रकार जहां एप्सिलॉन संचालक विस्तारित औपचारिक भाषा के लिए स्थिरता प्रमाण के लिए अग्रणी विधि के रूप में उस भाषा में परिमाणीकरण (तर्क) को प्रतिस्थापित करता है। एप्सिलॉन संचालक और एप्सिलॉन प्रतिस्थापन विधि को सामान्यतः प्रथम-क्रम तर्क विधेय कलन पर प्रयुक्त किया जाता है, इस प्रकार जिसके बाद स्थिरता का प्रदर्शन किया जाता है। एप्सिलॉन-विस्तारित कैलकुलस को उन गणितीय वस्तुओं, वर्गों और श्रेणियों को आवरण करने के लिए आगे बढ़ाया और सामान्यीकृत किया गया है, जिनके लिए पहले के स्तरों पर पहले से दिखाई गई स्थिरता के आधार पर स्थिरता दिखाने की इच्छा है।[1]

एप्सिलॉन संचालक

हिल्बर्ट संकेतन

किसी भी औपचारिक भाषा L के लिए, मात्रा निर्धारण को फिर से परिभाषित करने के लिए एप्सिलॉन संचालक को जोड़कर L का विस्तार करें:

ϵx A की इच्छित व्याख्या कुछ x है जो A को संतुष्ट करती है, यदि वह उपस्थित है। दूसरे शब्दों में, ϵx A कुछ शब्द (तर्क) t लौटाता है जैसे कि A(t) सत्य है, अन्यथा यह कुछ डिफ़ॉल्ट या इच्छानुसार शब्द देता है। यदि से अधिक पद A को संतुष्ट कर सकते हैं, तो इनमें से कोई भी पद (जो A को सत्य बनाता है) गैर-नियतात्मक रूप से सिद्धांत हो सकता है। L के अनुसार समानता को परिभाषित करना आवश्यक है, और इस प्रकार ईपीएसलॉन संचालक द्वारा विस्तारित L के लिए आवश्यक एकमात्र नियम मोडस पोनेन्स और किसी भी शब्द T के लिए a (x) को प्रतिस्थापित करने के लिए a (T) का प्रतिस्थापन है।[2]

बोरबाकी संकेतन

निकोलस बॉर्बकी एन से ताऊ-स्क्वायर नोटेशन में बॉर्बकी के समुच्चय सिद्धांत के अनुसार, परिमाणकों को इस प्रकार परिभाषित किया गया है:

जहां A, L में संबंध है, x चर है, और तुलना करता है इस प्रकार a A के सामने, x के सभी उदाहरणों को प्रतिस्थापित करता है , और उन्हें वापस लिंक करता है . फिर Y को असेंबली (Y|x)A होने दें, , A में सभी वेरिएबल x को Y के साथ बदलने को दर्शाता है।

यह नोटेशन हिल्बर्ट नोटेशन के समतुल्य है और उसी तरह पढ़ा जाता है। इस प्रकार इसका उपयोग बॉर्बकी द्वारा कार्डिनल असाइनमेंट को परिभाषित करने के लिए किया जाता है क्योंकि वे प्रतिस्थापन के सिद्धांत का उपयोग नहीं करते हैं।

इस तरह से परिमाणकों को परिभाषित करने से बड़ी अक्षमताएँ उत्पन्न होती हैं। उदाहरण के लिए, इस संकेतन का उपयोग करते हुए नंबर की बॉर्बकी की मूल परिभाषा के विस्तार की लंबाई लगभग 4.5 × 1012 है, और इस प्रकार बॉर्बकी के बाद के संस्करण के लिए जिसने इस संकेतन को क्रमित जोड़े की कुराटोस्की परिभाषा के साथ जोड़ा, यह संख्या लगभग 2.4 × 1054 हो गई थी.[3]

आधुनिक दृष्टिकोण

गणित के लिए हिल्बर्ट का प्रोग्राम उन औपचारिक प्रणालियों को रचनात्मक या अर्ध-रचनात्मक प्रणालियों के संबंध में सुसंगत रोकना था। इस प्रकार जबकि अपूर्णता पर गोडेल के परिणामों ने अधिक सीमा तक हिल्बर्ट के प्रोग्राम पर विचार किया था, आधुनिक शोधकर्ताओं ने एप्सिलॉन प्रतिस्थापन विधि में वर्णित प्रणालीगत स्थिरता के साक्ष्य के लिए विकल्प प्रदान करने के लिए एप्सिलॉन कैलकुलस पाया गया था।

एप्सिलॉन प्रतिस्थापन विधि

स्थिरता के लिए जांचे जाने वाले सिद्धांत को पहले उपयुक्त एप्सिलॉन कैलकुलस में एम्बेड किया जाता है। इस प्रकार दूसरा, एप्सिलॉन प्रतिस्थापन विधि के माध्यम से एप्सिलॉन संचालन के संदर्भ में व्यक्त किए जाने वाले परिमाणित प्रमेयों को फिर से लिखने के लिए प्रक्रिया विकसित की गई है। इस प्रकार अंत में, पुनर्लेखन प्रक्रिया को सामान्य बनाने के लिए प्रक्रिया को दिखाया जाना चाहिए, जिससे पुनः लिखे गए प्रमेय सिद्धांत के सिद्धांतों को संतुष्ट करें।[4]

टिप्पणियाँ

  1. Stanford, overview section
  2. Stanford, the epsilon calculus section
  3. Mathias, A. R. D. (2002), "A term of length 4 523 659 424 929" (PDF), Synthese, 133 (1–2): 75–86, doi:10.1023/A:1020827725055, MR 1950044.
  4. Stanford, more recent developments section


संदर्भ