प्रथम-अनुक्रम प्रेरक शिक्षार्थी: Difference between revisions
m (Abhishek moved page प्रथम-क्रम प्रेरक शिक्षार्थी to प्रथम-अनुक्रम प्रेरक शिक्षार्थी without leaving a redirect) |
No edit summary |
||
Line 1: | Line 1: | ||
[[ यंत्र अधिगम |यंत्र अधिगम]] में, प्रथम-क्रम प्रेरक शिक्षार्थी ( | [[ यंत्र अधिगम |यंत्र अधिगम]] में, प्रथम-क्रम प्रेरक शिक्षार्थी (एफ.ओ.आई.एल) एक नियम-आधारित अधिगम कलन विधि है। | ||
==पृष्ठभूमि== | ==पृष्ठभूमि== | ||
1990 में [[रॉस क्विनलान]] द्वारा विकसित,<ref name=Quinlan1990>J.R. Quinlan. Learning Logical Definitions from Relations. Machine Learning, Volume 5, Number 3, 1990. [https://doi.org/10.1007%2FBF00117105]</ref> | 1990 में [[रॉस क्विनलान]] द्वारा विकसित,<ref name=Quinlan1990>J.R. Quinlan. Learning Logical Definitions from Relations. Machine Learning, Volume 5, Number 3, 1990. [https://doi.org/10.1007%2FBF00117105]</ref> एफ.ओ.आई.एल फलन-मुक्त [[ हॉर्न उपवाक्य |हॉर्न उपवाक्य]] सीखता है, जो प्रथम-क्रम विधेय कैलकुलस का एक उपसमूह है। कुछ अवधारणाओं के सकारात्मक और नकारात्मक उदाहरणों और पृष्ठभूमि-ज्ञान [[विधेय (गणितीय तर्क)]] के एक समूह को देखते हुए, एफ.ओ.आई.एल अवधारणा के लिए एक तार्किक अवधारणा परिभाषा या नियम उत्पन्न करता है। प्रेरित नियम में कोई भी स्थिरांक सम्मिलित नहीं होना चाहिए (रंग (एक्स, लाल) रंग (एक्स, वाई), लाल (वाई) बन जाता है) या फलन प्रतीक, लेकिन नकारात्मक विधेय की अनुमति दे सकता है; पुनरावर्ती अवधारणाएँ भी सीखने योग्य हैं। | ||
ID3 कलन विधि की तरह, | ID3 कलन विधि की तरह, एफ.ओ.आई.एल डेटा को कवर करने वाले नियम का निर्माण करने के लिए [[सूचना सिद्धांत]] पर आधारित मीट्रिक का उपयोग करके पहाड़ी पर चढ़ता है। हालाँकि, ID3 के विपरीत, एफ.ओ.आई.एल फूट डालो और जीतो कलन विधि के बजाय एक अलग-और-जीत विधि का उपयोग करता है, एक समय में एक नियम बनाने और कलन विधि के अगले पुनरावृत्ति के लिए उजागर उदाहरण एकत्र करने पर ध्यान केंद्रित करता है।{{cn|date=January 2017}} | ||
==कलन विधि== | ==कलन विधि== | ||
एफ.ओ.आई.एल कलन विधि इस प्रकार है: | |||
:निवेश ''उदाहरणों की सूची'' | :निवेश ''उदाहरणों की सूची'' | ||
:निर्गम ''प्रथम-क्रम विधेय तर्क में नियम'' | :निर्गम ''प्रथम-क्रम विधेय तर्क में नियम'' | ||
: | :एफ.ओ.आई.एल(उदाहरण) | ||
::पॉज़ को सकारात्मक उदाहरण बनने दें | ::पॉज़ को सकारात्मक उदाहरण बनने दें | ||
::प्रेड को सीखने के लिए विधेय बनने दें | ::प्रेड को सीखने के लिए विधेय बनने दें | ||
::जब तक पॉज़ खाली न हो जाए: | ::जब तक पॉज़ खाली न हो जाए: | ||
:::नेग को नकारात्मक उदाहरण मानें | :::नेग को नकारात्मक उदाहरण मानें | ||
:::बॉडी को खाली पर | :::बॉडी को खाली पर समूह करें | ||
:::LearnClauseBody को कॉल करें | :::LearnClauseBody को कॉल करें | ||
:::नियम में प्रीड ← बॉडी जोड़ें | :::नियम में प्रीड ← बॉडी जोड़ें | ||
Line 27: | Line 27: | ||
==उदाहरण== | ==उदाहरण== | ||
मान लीजिए कि | मान लीजिए कि एफ.ओ.आई.एल का कार्य पिता (X, Y) और माता-पिता (X, Y) के संबंधों को देखते हुए दादा (X, Y) की अवधारणा को सीखना है। इसके अलावा, मान लीजिए कि हमारे वर्तमान शरीर में दादा (एक्स, वाई) ← माता-पिता (एक्स, जेड) सम्मिलित हैं। इसे बॉडी को किसी भी शाब्दिक पिता (एक्स, एक्स), पिता (वाई, जेड), माता-पिता (यू, वाई), या कई अन्य के साथ जोड़कर बढ़ाया जा सकता है - इस शाब्दिक को बनाने के लिए, कलन विधि को एक विधेय नाम दोनों का चयन करना होगा और विधेय के लिए चर का एक समूह (जिनमें से कम से कम एक को खंड के अस्वीकृत शाब्दिक में पहले से उपस्थित होना आवश्यक है)। यदि एफ.ओ.आई.एल शाब्दिक माता-पिता (X,Z) को जोड़कर एक खंड दादा (X,Y) ← true का विस्तार करता है, तो यह नए चर Z का परिचय दे रहा है। सकारात्मक उदाहरणों में अब वे मान सम्मिलित हैं <X,Y,Z> जैसे कि दादा( X,Y) सत्य है और मूल(X,Z) सत्य है; नकारात्मक उदाहरण वे हैं जहां दादा (एक्स, वाई) सत्य है लेकिन माता-पिता (एक्स, जेड) गलत है। | ||
पेरेंट (एक्स, जेड) को जोड़ने के बाद एफओआईएल के अगले पुनरावृत्ति पर, कलन विधि विधेय नामों और चर के सभी संयोजनों पर विचार करेगा जैसे कि नए शाब्दिक में कम से कम एक चर | पेरेंट (एक्स, जेड) को जोड़ने के बाद एफओआईएल के अगले पुनरावृत्ति पर, कलन विधि विधेय नामों और चर के सभी संयोजनों पर विचार करेगा जैसे कि नए शाब्दिक में कम से कम एक चर उपस्थिता खंड में उपस्थित है। इसके परिणामस्वरूप बहुत बड़ा खोज स्थान प्राप्त होता है.<ref>Let ''Var'' be the largest number of distinct variables for any clause in rule ''R'', excluding the last conjunct. Let ''MaxP'' be the number of predicates with largest [[arity]] ''MaxA''. Then an approximation of the number of nodes generated to learn ''R'' is: ''NodesSearched ≤ 2 * MaxP * (Var + MaxA – 1)<sup>MaxA</sup>'', as shown in Pazzani and Kibler (1992).</ref> एफओआईएल सिद्धांत के कई विस्तारों से पता चला है कि मूल कलन विधि में परिवर्धन इस खोज स्थान को कम कर सकता है, कभी-कभी काफी हद तक।{{cn|date=January 2017}} | ||
== | ==विस्तारण== | ||
एफ.ओ.सी.एल कलन विधि<ref name="Pazzani">Michael Pazzani and Dennis Kibler. The Utility of Knowledge in Inductive Learning. Machine Learning, Volume 9, Number 1, 1992. [https://doi.org/10.1023%2FA%3A1022628829777]</ref> (प्रथम क्रम संयुक्त शिक्षार्थी) एफ.ओ.आई.एल को विभिन्न तरीकों से विस्तारित करता है, जो प्रभावित करता है कि एफ.ओ.सी.एल निर्माणाधीन खंड का विस्तार करते समय परीक्षण के लिए शाब्दिक चयन कैसे करता है। खोज स्थान पर बाधाओं की अनुमति है, जैसे कि विधेय हैं जो उदाहरणों के समूह के बजाय एक नियम पर परिभाषित होते हैं (जिन्हें आंतरिक विधेय कहा जाता है); सबसे महत्वपूर्ण बात यह है कि एक संभावित गलत परिकल्पना को सीखे जाने वाले विधेय के प्रारंभिक अनुमान के रूप में अनुमति दी जाती है। एफ.ओ.सी.एल का मुख्य लक्ष्य एफ.ओ.आई.एल के अनुभवजन्य तरीकों में [[स्पष्टीकरण-आधारित शिक्षा]] (ईबीएल) के तरीकों को सम्मिलित करना है। | |||
यहां तक कि जब एफओआईएल पर एफओसीएल को कोई अतिरिक्त ज्ञान प्रदान नहीं किया जाता है, तब भी, यह पुनरावृत्त गहनता गहराई- | यहां तक कि जब एफओआईएल पर एफओसीएल को कोई अतिरिक्त ज्ञान प्रदान नहीं किया जाता है, तब भी, यह पुनरावृत्त गहनता डेप्थ (गहराई)-प्रथम खोज के समान एक पुनरावृत्तीय चौड़ीकरण खोज रणनीति का उपयोग करता है: पहला एफ.ओ.सी.एल कोई मुक्त चर प्रस्तुत करके एक खंड को सीखने का प्रयास करता है। यदि यह विफल हो जाता है (कोई सकारात्मक लाभ नहीं), तो प्रति विफलता एक अतिरिक्त मुक्त चर की अनुमति दी जाती है जब तक कि मुक्त चर की संख्या किसी भी विधेय के लिए उपयोग की गई अधिकतम से अधिक न हो जाए। | ||
===बाधाएँ=== | ===बाधाएँ=== | ||
एफ.ओ.आई.एल के विपरीत, जो अपने वेरिएबल्स पर टाइपिंग की बाधा नहीं डालता है, एफ.ओ.सी.एल पृष्ठभूमि ज्ञान के एक सरल रूप को सम्मिलित करने के एक सस्ते तरीके के रूप में टाइपिंग का उपयोग करता है। उदाहरण के लिए, एक विधेय जीवनएट(एक्स,वाई) में जीवनएट(व्यक्ति, स्थान) प्रकार हो सकते हैं। हालाँकि, अतिरिक्त विधेय प्रस्तुत करने की आवश्यकता हो सकती है - बिना प्रकार के, नेक्स्टडोर (एक्स, वाई) यह निर्धारित कर सकता है कि क्या व्यक्ति एक्स और व्यक्ति वाई एक-दूसरे के बगल में रहते हैं, या क्या दो स्थान एक-दूसरे के बगल में हैं। प्रकारों के साथ, इस कार्यक्षमता को बनाए रखने के लिए दो अलग-अलग विधेय नेक्स्टडोर (व्यक्ति, व्यक्ति) और नेक्स्ट डोर (स्थान, स्थान) की आवश्यकता होगी। हालाँकि, यह टाइपिंग तंत्र isPerson(X) या isLocation(Y) जैसे विधेय की आवश्यकता को समाप्त कर देता है, और जब A और B को व्यक्ति चर के रूप में परिभाषित किया जाता है, तो खोज स्थान को कम करते हुए, lifeAt(A,B) पर विचार करने की आवश्यकता नहीं होती है। इसके अतिरिक्त, टाइपिंग जीवनएट(ए,बी) जैसे असंभव शाब्दिकों को हटाकर परिणामी नियम की सटीकता में सुधार कर सकती है, जो फिर भी उच्च [[सूचना लाभ]] के लिए प्रतीत हो सकता है। | |||
समान(एक्स, एक्स) या बीच (एक्स, एक्स, वाई) जैसे साधारण विधेय को कार्यान्वयनअ करने के बदले, एफ.ओ.सी.एल चर पर अंतर्निहित बाधाओं का परिचय देता है, जिससे खोज स्थान और कम हो जाता है। कुछ विधेय में सभी चर अद्वितीय होने चाहिए, अन्य में क्रमविनिमेयता होनी चाहिए (आसन्न (एक्स, वाई) आसन्न (वाई, एक्स) के बराबर है), फिर भी दूसरों को यह आवश्यक हो सकता है कि एक विशेष चर वर्तमान खंड में उपस्थित हो, और कई अन्य संभावित बाधाएँ हों। | |||
===परिचालन नियम=== | ===परिचालन नियम=== | ||
परिचालन नियम वे नियम हैं जिन्हें विस्तार से परिभाषित किया गया है, या टुपल्स की एक सूची के रूप में परिभाषित किया गया है जिसके लिए एक विधेय सत्य है। | परिचालन नियम वे नियम हैं जिन्हें विस्तार से परिभाषित किया गया है, या टुपल्स की एक सूची के रूप में परिभाषित किया गया है जिसके लिए एक विधेय सत्य है। एफ.ओ.आई.एल केवल परिचालन नियमों की अनुमति देता है; एफओसीएल गैर-परिचालन नियमों के साथ-साथ मजबूती के लिए आंशिक रूप से परिभाषित या गलत नियमों के संयोजन की अनुमति देने के लिए अपने ज्ञान आधार का विस्तार करता है। आंशिक परिभाषाओं की अनुमति देने से आवश्यक कार्य की मात्रा कम हो जाती है क्योंकि कलन विधि को अपने लिए इन आंशिक परिभाषाओं को उत्पन्न करने की आवश्यकता नहीं होती है, और गलत नियम आवश्यक कार्य में महत्वपूर्ण योगदान नहीं देते हैं क्योंकि यदि उन्हें सकारात्मक जानकारी लाभ प्रदान करने के लिए नहीं आंका जाता है तो उन्हें छोड़ दिया जाता है। गैर-परिचालन नियम फायदेमंद होते हैं क्योंकि जिन व्यक्तिगत नियमों को वे जोड़ते हैं वे अपने आप में जानकारी हासिल नहीं कर सकते हैं, लेकिन संयोजन में लेने पर उपयोगी होते हैं। यदि एफओसीएल की पुनरावृत्ति में सबसे अधिक जानकारी प्राप्त करने वाला शाब्दिक गैर-परिचालन है, तो इसे चालू कर दिया जाता है और इसकी परिभाषा निर्माणाधीन खंड में जोड़ दी जाती है। | ||
:'निवेश्स' शाब्दिक रूप से क्रियान्वित किया जाना है, सकारात्मक उदाहरणों की सूची, नकारात्मक उदाहरणों की सूची | :'निवेश्स' शाब्दिक रूप से क्रियान्वित किया जाना है, सकारात्मक उदाहरणों की सूची, नकारात्मक उदाहरणों की सूची | ||
Line 49: | Line 49: | ||
::यदि 'लिटरल' क्रियाशील है | ::यदि 'लिटरल' क्रियाशील है | ||
:::वापसी 'शाब्दिक' | :::वापसी 'शाब्दिक' | ||
::खाली | ::खाली समूह पर 'ऑपरेशनल लिटरल्स' प्रारंभ करें | ||
::'शाब्दिक' की परिभाषा में प्रत्येक खंड के लिए | ::'शाब्दिक' की परिभाषा में प्रत्येक खंड के लिए | ||
:::सकारात्मक उदाहरणों और नकारात्मक उदाहरणों पर खंड की जानकारी लाभ की गणना करें | :::सकारात्मक उदाहरणों और नकारात्मक उदाहरणों पर खंड की जानकारी लाभ की गणना करें | ||
Line 59: | Line 59: | ||
===प्रारंभिक नियम=== | ===प्रारंभिक नियम=== | ||
ज्ञान आधार में गैर-परिचालन नियमों को जोड़ने से उस स्थान का आकार बढ़ जाता है जिसे | ज्ञान आधार में गैर-परिचालन नियमों को जोड़ने से उस स्थान का आकार बढ़ जाता है जिसे एफ.ओ.सी.एल को खोजना चाहिए। कलन विधि को केवल एक लक्ष्य अवधारणा (उदाहरण के लिए दादाजी (एक्स, वाई)) प्रदान करने के बजाय, कलन विधि निवेश के रूप में गैर-परिचालन नियमों का एक समूह लेता है जिसे वह शुद्धता के लिए परीक्षण करता है और अपनी सीखी हुई अवधारणा के लिए कार्यान्वित करता है। एक सही लक्ष्य अवधारणा स्पष्ट रूप से कम्प्यूटेशनल समय और सटीकता में सुधार करेगी, लेकिन एक गलत अवधारणा भी कलन विधि को एक आधार देगी जिससे काम किया जा सके और सटीकता और समय में सुधार किया जा सके।<ref name="Pazzani"/> | ||
==संदर्भ== | ==संदर्भ== | ||
*http://www.csc.liv.ac.uk/~frans/KDD/Software/FOIL_PRM_CPAR/foil.html | *[http://www.csc.liv.ac.uk/~frans/KDD/Software/FOIL_PRM_CPAR/foil.html http://www.csc.liv.ac.uk/~frans/KDD/Software/एफ.ओ.आई.एल_PRM_CPAR/एफ.ओ.आई.एल.html] | ||
<references/> | <references/> | ||
[[Category: आगमनात्मक तर्क प्रोग्रामिंग]] | [[Category: आगमनात्मक तर्क प्रोग्रामिंग]] |
Revision as of 20:46, 19 July 2023
यंत्र अधिगम में, प्रथम-क्रम प्रेरक शिक्षार्थी (एफ.ओ.आई.एल) एक नियम-आधारित अधिगम कलन विधि है।
पृष्ठभूमि
1990 में रॉस क्विनलान द्वारा विकसित,[1] एफ.ओ.आई.एल फलन-मुक्त हॉर्न उपवाक्य सीखता है, जो प्रथम-क्रम विधेय कैलकुलस का एक उपसमूह है। कुछ अवधारणाओं के सकारात्मक और नकारात्मक उदाहरणों और पृष्ठभूमि-ज्ञान विधेय (गणितीय तर्क) के एक समूह को देखते हुए, एफ.ओ.आई.एल अवधारणा के लिए एक तार्किक अवधारणा परिभाषा या नियम उत्पन्न करता है। प्रेरित नियम में कोई भी स्थिरांक सम्मिलित नहीं होना चाहिए (रंग (एक्स, लाल) रंग (एक्स, वाई), लाल (वाई) बन जाता है) या फलन प्रतीक, लेकिन नकारात्मक विधेय की अनुमति दे सकता है; पुनरावर्ती अवधारणाएँ भी सीखने योग्य हैं।
ID3 कलन विधि की तरह, एफ.ओ.आई.एल डेटा को कवर करने वाले नियम का निर्माण करने के लिए सूचना सिद्धांत पर आधारित मीट्रिक का उपयोग करके पहाड़ी पर चढ़ता है। हालाँकि, ID3 के विपरीत, एफ.ओ.आई.एल फूट डालो और जीतो कलन विधि के बजाय एक अलग-और-जीत विधि का उपयोग करता है, एक समय में एक नियम बनाने और कलन विधि के अगले पुनरावृत्ति के लिए उजागर उदाहरण एकत्र करने पर ध्यान केंद्रित करता है।[citation needed]
कलन विधि
एफ.ओ.आई.एल कलन विधि इस प्रकार है:
- निवेश उदाहरणों की सूची
- निर्गम प्रथम-क्रम विधेय तर्क में नियम
- एफ.ओ.आई.एल(उदाहरण)
- पॉज़ को सकारात्मक उदाहरण बनने दें
- प्रेड को सीखने के लिए विधेय बनने दें
- जब तक पॉज़ खाली न हो जाए:
- नेग को नकारात्मक उदाहरण मानें
- बॉडी को खाली पर समूह करें
- LearnClauseBody को कॉल करें
- नियम में प्रीड ← बॉडी जोड़ें
- पॉज़ से उन सभी उदाहरणों को हटा दें जो बॉडी को संतुष्ट करते हैं
- प्रक्रिया लर्नक्लॉजबॉडी
- जब तक नेग खाली न हो जाए:
- एक शाब्दिक एल चुनें
- एल को बॉडी से जोड़ें
- नकारात्मक उदाहरणों से हटाएं जो एल को संतुष्ट नहीं करते हैं
- जब तक नेग खाली न हो जाए:
उदाहरण
मान लीजिए कि एफ.ओ.आई.एल का कार्य पिता (X, Y) और माता-पिता (X, Y) के संबंधों को देखते हुए दादा (X, Y) की अवधारणा को सीखना है। इसके अलावा, मान लीजिए कि हमारे वर्तमान शरीर में दादा (एक्स, वाई) ← माता-पिता (एक्स, जेड) सम्मिलित हैं। इसे बॉडी को किसी भी शाब्दिक पिता (एक्स, एक्स), पिता (वाई, जेड), माता-पिता (यू, वाई), या कई अन्य के साथ जोड़कर बढ़ाया जा सकता है - इस शाब्दिक को बनाने के लिए, कलन विधि को एक विधेय नाम दोनों का चयन करना होगा और विधेय के लिए चर का एक समूह (जिनमें से कम से कम एक को खंड के अस्वीकृत शाब्दिक में पहले से उपस्थित होना आवश्यक है)। यदि एफ.ओ.आई.एल शाब्दिक माता-पिता (X,Z) को जोड़कर एक खंड दादा (X,Y) ← true का विस्तार करता है, तो यह नए चर Z का परिचय दे रहा है। सकारात्मक उदाहरणों में अब वे मान सम्मिलित हैं <X,Y,Z> जैसे कि दादा( X,Y) सत्य है और मूल(X,Z) सत्य है; नकारात्मक उदाहरण वे हैं जहां दादा (एक्स, वाई) सत्य है लेकिन माता-पिता (एक्स, जेड) गलत है।
पेरेंट (एक्स, जेड) को जोड़ने के बाद एफओआईएल के अगले पुनरावृत्ति पर, कलन विधि विधेय नामों और चर के सभी संयोजनों पर विचार करेगा जैसे कि नए शाब्दिक में कम से कम एक चर उपस्थिता खंड में उपस्थित है। इसके परिणामस्वरूप बहुत बड़ा खोज स्थान प्राप्त होता है.[2] एफओआईएल सिद्धांत के कई विस्तारों से पता चला है कि मूल कलन विधि में परिवर्धन इस खोज स्थान को कम कर सकता है, कभी-कभी काफी हद तक।[citation needed]
विस्तारण
एफ.ओ.सी.एल कलन विधि[3] (प्रथम क्रम संयुक्त शिक्षार्थी) एफ.ओ.आई.एल को विभिन्न तरीकों से विस्तारित करता है, जो प्रभावित करता है कि एफ.ओ.सी.एल निर्माणाधीन खंड का विस्तार करते समय परीक्षण के लिए शाब्दिक चयन कैसे करता है। खोज स्थान पर बाधाओं की अनुमति है, जैसे कि विधेय हैं जो उदाहरणों के समूह के बजाय एक नियम पर परिभाषित होते हैं (जिन्हें आंतरिक विधेय कहा जाता है); सबसे महत्वपूर्ण बात यह है कि एक संभावित गलत परिकल्पना को सीखे जाने वाले विधेय के प्रारंभिक अनुमान के रूप में अनुमति दी जाती है। एफ.ओ.सी.एल का मुख्य लक्ष्य एफ.ओ.आई.एल के अनुभवजन्य तरीकों में स्पष्टीकरण-आधारित शिक्षा (ईबीएल) के तरीकों को सम्मिलित करना है।
यहां तक कि जब एफओआईएल पर एफओसीएल को कोई अतिरिक्त ज्ञान प्रदान नहीं किया जाता है, तब भी, यह पुनरावृत्त गहनता डेप्थ (गहराई)-प्रथम खोज के समान एक पुनरावृत्तीय चौड़ीकरण खोज रणनीति का उपयोग करता है: पहला एफ.ओ.सी.एल कोई मुक्त चर प्रस्तुत करके एक खंड को सीखने का प्रयास करता है। यदि यह विफल हो जाता है (कोई सकारात्मक लाभ नहीं), तो प्रति विफलता एक अतिरिक्त मुक्त चर की अनुमति दी जाती है जब तक कि मुक्त चर की संख्या किसी भी विधेय के लिए उपयोग की गई अधिकतम से अधिक न हो जाए।
बाधाएँ
एफ.ओ.आई.एल के विपरीत, जो अपने वेरिएबल्स पर टाइपिंग की बाधा नहीं डालता है, एफ.ओ.सी.एल पृष्ठभूमि ज्ञान के एक सरल रूप को सम्मिलित करने के एक सस्ते तरीके के रूप में टाइपिंग का उपयोग करता है। उदाहरण के लिए, एक विधेय जीवनएट(एक्स,वाई) में जीवनएट(व्यक्ति, स्थान) प्रकार हो सकते हैं। हालाँकि, अतिरिक्त विधेय प्रस्तुत करने की आवश्यकता हो सकती है - बिना प्रकार के, नेक्स्टडोर (एक्स, वाई) यह निर्धारित कर सकता है कि क्या व्यक्ति एक्स और व्यक्ति वाई एक-दूसरे के बगल में रहते हैं, या क्या दो स्थान एक-दूसरे के बगल में हैं। प्रकारों के साथ, इस कार्यक्षमता को बनाए रखने के लिए दो अलग-अलग विधेय नेक्स्टडोर (व्यक्ति, व्यक्ति) और नेक्स्ट डोर (स्थान, स्थान) की आवश्यकता होगी। हालाँकि, यह टाइपिंग तंत्र isPerson(X) या isLocation(Y) जैसे विधेय की आवश्यकता को समाप्त कर देता है, और जब A और B को व्यक्ति चर के रूप में परिभाषित किया जाता है, तो खोज स्थान को कम करते हुए, lifeAt(A,B) पर विचार करने की आवश्यकता नहीं होती है। इसके अतिरिक्त, टाइपिंग जीवनएट(ए,बी) जैसे असंभव शाब्दिकों को हटाकर परिणामी नियम की सटीकता में सुधार कर सकती है, जो फिर भी उच्च सूचना लाभ के लिए प्रतीत हो सकता है।
समान(एक्स, एक्स) या बीच (एक्स, एक्स, वाई) जैसे साधारण विधेय को कार्यान्वयनअ करने के बदले, एफ.ओ.सी.एल चर पर अंतर्निहित बाधाओं का परिचय देता है, जिससे खोज स्थान और कम हो जाता है। कुछ विधेय में सभी चर अद्वितीय होने चाहिए, अन्य में क्रमविनिमेयता होनी चाहिए (आसन्न (एक्स, वाई) आसन्न (वाई, एक्स) के बराबर है), फिर भी दूसरों को यह आवश्यक हो सकता है कि एक विशेष चर वर्तमान खंड में उपस्थित हो, और कई अन्य संभावित बाधाएँ हों।
परिचालन नियम
परिचालन नियम वे नियम हैं जिन्हें विस्तार से परिभाषित किया गया है, या टुपल्स की एक सूची के रूप में परिभाषित किया गया है जिसके लिए एक विधेय सत्य है। एफ.ओ.आई.एल केवल परिचालन नियमों की अनुमति देता है; एफओसीएल गैर-परिचालन नियमों के साथ-साथ मजबूती के लिए आंशिक रूप से परिभाषित या गलत नियमों के संयोजन की अनुमति देने के लिए अपने ज्ञान आधार का विस्तार करता है। आंशिक परिभाषाओं की अनुमति देने से आवश्यक कार्य की मात्रा कम हो जाती है क्योंकि कलन विधि को अपने लिए इन आंशिक परिभाषाओं को उत्पन्न करने की आवश्यकता नहीं होती है, और गलत नियम आवश्यक कार्य में महत्वपूर्ण योगदान नहीं देते हैं क्योंकि यदि उन्हें सकारात्मक जानकारी लाभ प्रदान करने के लिए नहीं आंका जाता है तो उन्हें छोड़ दिया जाता है। गैर-परिचालन नियम फायदेमंद होते हैं क्योंकि जिन व्यक्तिगत नियमों को वे जोड़ते हैं वे अपने आप में जानकारी हासिल नहीं कर सकते हैं, लेकिन संयोजन में लेने पर उपयोगी होते हैं। यदि एफओसीएल की पुनरावृत्ति में सबसे अधिक जानकारी प्राप्त करने वाला शाब्दिक गैर-परिचालन है, तो इसे चालू कर दिया जाता है और इसकी परिभाषा निर्माणाधीन खंड में जोड़ दी जाती है।
- 'निवेश्स' शाब्दिक रूप से क्रियान्वित किया जाना है, सकारात्मक उदाहरणों की सूची, नकारात्मक उदाहरणों की सूची
- 'निर्गम' क्रियात्मक रूप में शाब्दिक
- परिचालन (शाब्दिक, सकारात्मक उदाहरण, नकारात्मक उदाहरण)
- यदि 'लिटरल' क्रियाशील है
- वापसी 'शाब्दिक'
- खाली समूह पर 'ऑपरेशनल लिटरल्स' प्रारंभ करें
- 'शाब्दिक' की परिभाषा में प्रत्येक खंड के लिए
- सकारात्मक उदाहरणों और नकारात्मक उदाहरणों पर खंड की जानकारी लाभ की गणना करें
- अधिकतम लाभ वाले खंड के लिए
- वाक्य में प्रत्येक शाब्दिक 'एल' के लिए
- 'ऑपरेशनल लिटरल्स' में ऑपरेशनलाइज़ ('एल', सकारात्मक उदाहरण, नकारात्मक उदाहरण) जोड़ें
- वाक्य में प्रत्येक शाब्दिक 'एल' के लिए
- यदि 'लिटरल' क्रियाशील है
एक परिचालन नियम शाब्दिक रूप से कम (X,Y) हो सकता है; एक गैर-परिचालन नियम (X,Y,Z) ← से कम(X,Y), कम से कम(Y,Z) के बीच हो सकता है।
प्रारंभिक नियम
ज्ञान आधार में गैर-परिचालन नियमों को जोड़ने से उस स्थान का आकार बढ़ जाता है जिसे एफ.ओ.सी.एल को खोजना चाहिए। कलन विधि को केवल एक लक्ष्य अवधारणा (उदाहरण के लिए दादाजी (एक्स, वाई)) प्रदान करने के बजाय, कलन विधि निवेश के रूप में गैर-परिचालन नियमों का एक समूह लेता है जिसे वह शुद्धता के लिए परीक्षण करता है और अपनी सीखी हुई अवधारणा के लिए कार्यान्वित करता है। एक सही लक्ष्य अवधारणा स्पष्ट रूप से कम्प्यूटेशनल समय और सटीकता में सुधार करेगी, लेकिन एक गलत अवधारणा भी कलन विधि को एक आधार देगी जिससे काम किया जा सके और सटीकता और समय में सुधार किया जा सके।[3]
संदर्भ
- ↑ J.R. Quinlan. Learning Logical Definitions from Relations. Machine Learning, Volume 5, Number 3, 1990. [1]
- ↑ Let Var be the largest number of distinct variables for any clause in rule R, excluding the last conjunct. Let MaxP be the number of predicates with largest arity MaxA. Then an approximation of the number of nodes generated to learn R is: NodesSearched ≤ 2 * MaxP * (Var + MaxA – 1)MaxA, as shown in Pazzani and Kibler (1992).
- ↑ 3.0 3.1 Michael Pazzani and Dennis Kibler. The Utility of Knowledge in Inductive Learning. Machine Learning, Volume 9, Number 1, 1992. [2]