भू-स्थानिक टोपोलॉजी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(5 intermediate revisions by 3 users not shown)
Line 3: Line 3:
[[File:TopologicSpatialRelarions2.png|thumb|400px|टोपोलॉजिकल स्थानिक संबंधों के उदाहरण.]]
[[File:TopologicSpatialRelarions2.png|thumb|400px|टोपोलॉजिकल स्थानिक संबंधों के उदाहरण.]]


 
'''भू-स्थानिक टोपोलॉजी''' [[भौगोलिक विशेषता|भौगोलिक विशेषताओ]] के मध्य, या भौगोलिक जानकारी में ऐसी विशेषताओं के प्रतिनिधित्व के मध्य, जैसे [[भौगोलिक सूचना प्रणाली]] (जीआईएस) में गुणात्मक [[स्थानिक संबंध|स्थानिक संबंधों]] का अध्ययन और अनुप्रयोग होता है | <ref>{{Cite web|title=Topology - GIS Wiki {{!}} The GIS Encyclopedia|url=http://wiki.gis.com/wiki/index.php/Topology#cite_note-3|access-date=2021-02-02|website=wiki.gis.com}}</ref> उदाहरण के लिए, यह तथ्य कि दो क्षेत्र ओवरलैप होते हैं | इस प्रकार उनमें से दूसरा सम्मिलित होता है, और इनको टोपोलॉजिकल संबंधों के उदाहरण होते हैं। इस प्रकार यह जीआईएस के लिए [[टोपोलॉजी]] के गणित का अनुप्रयोग होता है | और यह भौगोलिक जानकारी के अनेक तथ्यों से अलग होता है, किन्तु पूरक वह है जो समन्वय ज्यामिति के माध्यम से मात्रात्मक स्थानिक माप पर आधारित होता हैं। इस प्रकार टोपोलॉजी [[भौगोलिक सूचना विज्ञान]] और जीआईएस अभ्यास के अनेक तथ्यों में दिखाई देती है, जिसमें स्थानिक क्वेरी, [[वेक्टर ओवरले|सदिश ओवरले]] और [[मानचित्र बीजगणित]] के माध्यम से यह अंतर्निहित संबंधों की खोज में सम्मिलित होते है| इस प्रकार भू-स्थानिक डेटा में संग्रहीत सत्यापन नियमों के रूप में अपेक्षित संबंधों को क्रियान्वित करना होता हैं| और यह [[परिवहन नेटवर्क विश्लेषण]] जैसे अनुप्रयोगों में संग्रहीत टोपोलॉजिकल संबंधों का उपयोग करता हैं ।<ref>[[Environmental Systems Research Institute|ESRI]] White Paper ''[[GIS]] Topology'' {{cite web| last = | first = | author-link = | title = GIS Topology| publisher = ESRI| year = 2005| url = http://www.ocw.titech.ac.jp/index.php?module=General&action=DownLoad&file=20142224611080-2-0-1.pdf&type=cal&JWC=20142224611080| format = | doi = | access-date = 2011-11-25}}</ref> <ref>''[https://docs.qgis.org/1.8/en/docs/gentle_gis_introduction/06_topology.html Gentle GIS introduction]'' {{Cite web|title=7. Topology — QGIS Documentation documentation|url=https://docs.qgis.org/3.16/en/docs/gentle_gis_introduction/topology.html|access-date=2021-02-02|website=docs.qgis.org}}</ref> <ref>{{cite book |last1=Ubeda |first1=Thierry |last2=Egenhofer |first2=Max J. |title=स्थानिक डेटाबेस में प्रगति|chapter=Topological error correcting in GIS |series=Lecture Notes in Computer Science |pages=281–297 |year=1997 |volume=1262 |doi=10.1007/3-540-63238-7_35 |isbn=978-3-540-63238-2 }}</ref> इस प्रकार स्थानिक टोपोलॉजी गैर-भौगोलिक डोमेन, जैसे, [[सीएडी सॉफ्टवेयर]] के लिए भू-स्थानिक टोपोलॉजी का सामान्यीकरण होता है।
'''भू-स्थानिक टोपोलॉजी''' [[भौगोलिक विशेषता|भौगोलिक विशेषताओ]] के मध्य, या भौगोलिक जानकारी में ऐसी विशेषताओं के प्रतिनिधित्व के मध्य, जैसे [[भौगोलिक सूचना प्रणाली]] (जीआईएस) में गुणात्मक [[स्थानिक संबंध|स्थानिक संबंधों]] का अध्ययन और अनुप्रयोग होता है | <ref>{{Cite web|title=Topology - GIS Wiki {{!}} The GIS Encyclopedia|url=http://wiki.gis.com/wiki/index.php/Topology#cite_note-3|access-date=2021-02-02|website=wiki.gis.com}}</ref> उदाहरण के लिए, यह तथ्य कि दो क्षेत्र ओवरलैप होते हैं | इस प्रकार उनमें से दूसरा सम्मिलित होता है, और इनको टोपोलॉजिकल संबंधों के उदाहरण होते हैं। इस प्रकार यह जीआईएस के लिए [[टोपोलॉजी]] के गणित का अनुप्रयोग होता है | और यह भौगोलिक जानकारी के अनेक पहलुओं से अलग होता है, किन्तु पूरक वह है जो समन्वय ज्यामिति के माध्यम से मात्रात्मक स्थानिक माप पर आधारित होता हैं। इस प्रकार टोपोलॉजी [[भौगोलिक सूचना विज्ञान]] और जीआईएस अभ्यास के अनेक पहलुओं में दिखाई देती है, जिसमें स्थानिक क्वेरी, [[वेक्टर ओवरले|सदिश ओवरले]] और [[मानचित्र बीजगणित]] के माध्यम से यह अंतर्निहित संबंधों की खोज में सम्मिलित होते है| इस प्रकार भू-स्थानिक डेटा में संग्रहीत सत्यापन नियमों के रूप में अपेक्षित संबंधों को क्रियान्वित करना होता हैं| और यह [[परिवहन नेटवर्क विश्लेषण]] जैसे अनुप्रयोगों में संग्रहीत टोपोलॉजिकल संबंधों का उपयोग करता हैं ।<ref>[[Environmental Systems Research Institute|ESRI]] White Paper ''[[GIS]] Topology'' {{cite web| last = | first = | author-link = | title = GIS Topology| publisher = ESRI| year = 2005| url = http://www.ocw.titech.ac.jp/index.php?module=General&action=DownLoad&file=20142224611080-2-0-1.pdf&type=cal&JWC=20142224611080| format = | doi = | access-date = 2011-11-25}}</ref> <ref>''[https://docs.qgis.org/1.8/en/docs/gentle_gis_introduction/06_topology.html Gentle GIS introduction]'' {{Cite web|title=7. Topology — QGIS Documentation documentation|url=https://docs.qgis.org/3.16/en/docs/gentle_gis_introduction/topology.html|access-date=2021-02-02|website=docs.qgis.org}}</ref> <ref>{{cite book |last1=Ubeda |first1=Thierry |last2=Egenhofer |first2=Max J. |title=स्थानिक डेटाबेस में प्रगति|chapter=Topological error correcting in GIS |series=Lecture Notes in Computer Science |pages=281–297 |year=1997 |volume=1262 |doi=10.1007/3-540-63238-7_35 |isbn=978-3-540-63238-2 }}</ref> इस प्रकार स्थानिक टोपोलॉजी गैर-भौगोलिक डोमेन, जैसे, [[सीएडी सॉफ्टवेयर]] के लिए भू-स्थानिक टोपोलॉजी का सामान्यीकरण होता है।
==सामयिक संबंध                                                                     ==
==सामयिक संबंध==
{{main |डीई-9आईएम}}
{{main | DE-9IM}}
{{see also |स्थानिक संबंध}}
{{see also |स्थानिक संबंध}}


 
टोपोलॉजी की परिभाषा को ध्यान में रखते हुए, दो भौगोलिक घटनाओं के मध्य टोपोलॉजिकल संबंध कोई भी स्थानिक संबंध होता है | जिसमे यह सम्मिस्ट के मापन योग्य तथ्यों के प्रति संवेदनशील नहीं होते है | और जिसमें सम्मिस्ट के परिवर्तन (जैसे [[मानचित्र प्रक्षेपण]]) सम्मिलित होते हैं। इस प्रकार, इसमें अधिकांश गुणात्मक स्थानिक संबंध सम्मिलित होते हैं | जैसे कि दो विशेषताएं "आसन्न", "अतिव्यापी", "असंगत" या दूसरे के "अंदर" होती हैं | और इसके विपरीत, सुविधा का दूसरे से "5 किमी दूर होना", या सुविधा का दूसरे के "उत्तर में होना" मीट्रिक संबंध होता हैं। इस प्रकार 1990 के दशक के प्रारम्भ में [[भौगोलिक सूचना विज्ञान]] के पहले विकासों में से मैक्स एगेनहोफर, एलिसेओ क्लेमेंटिनी, पीटर डि फेलिस और अन्य का काम था, जिसमें ऐसे संबंधों का संक्षिप्त सिद्धांत विकसित किया गया था, जिसे सामान्यतः[[DE-9IM|डीई-9आईएम]]9-इंटरसेक्शन मॉडल कहा जाता है, जो कि सीमा की विशेषता को बताता है। इस प्रकार आंतरिक,और बाहरी विशेषताओं की सीमाओं के मध्य संबंधों पर आधारित टोपोलॉजिकल संबंधों की सीमा को चित्रित करता हैं।<ref>{{cite journal | first1 = M.J. | last1 = Egenhofer | first2 = R.D.| last2 = Franzosa | year = 1991 | title = बिंदु-सेट टोपोलॉजिकल स्थानिक संबंध| doi = 10.1080/02693799108927841 | journal = Int. J. GIS | volume = 5 | issue = 2 | pages = 161–174 | doi-access = free }}</ref> <ref name="sdh1990">{{cite journal|first1=M.J. |last1=Egenhofer |first2=J.R. |last2=Herring |year=1990 |title=टोपोलॉजिकल संबंधों की परिभाषा के लिए एक गणितीय ढांचा|url=http://www.spatial.maine.edu/~max/MJEJRH-SDH1990.pdf |url-status=dead |archive-url=https://web.archive.org/web/20100614161335/http://www.spatial.maine.edu/~max/MJEJRH-SDH1990.pdf |archive-date=2010-06-14 }}</ref> <ref>
टोपोलॉजी की परिभाषा को ध्यान में रखते हुए, दो भौगोलिक घटनाओं के मध्य टोपोलॉजिकल संबंध कोई भी स्थानिक संबंध होता है | जिसमे यह सम्मिस्ट के मापन योग्य पहलुओं के प्रति संवेदनशील नहीं होते है | और जिसमें सम्मिस्ट के परिवर्तन (जैसे [[मानचित्र प्रक्षेपण]]) सम्मिलित होते हैं। इस प्रकार, इसमें अधिकांश गुणात्मक स्थानिक संबंध सम्मिलित होते हैं | जैसे कि दो विशेषताएं "आसन्न", "अतिव्यापी", "असंगत" या दूसरे के "अंदर" होती हैं | और इसके विपरीत, सुविधा का दूसरे से "5 किमी दूर होना", या सुविधा का दूसरे के "उत्तर में होना" मीट्रिक संबंध होता हैं। इस प्रकार 1990 के दशक के प्रारम्भ में [[भौगोलिक सूचना विज्ञान]] के पहले विकासों में से मैक्स एगेनहोफर, एलिसेओ क्लेमेंटिनी, पीटर डि फेलिस और अन्य का काम था, जिसमें ऐसे संबंधों का संक्षिप्त सिद्धांत विकसित किया गया था, जिसे सामान्यतः[[DE-9IM]]9-इंटरसेक्शन मॉडल कहा जाता है, जो कि सीमा की विशेषता को बताता है। इस प्रकार आंतरिक,और बाहरी विशेषताओं की सीमाओं के मध्य संबंधों पर आधारित टोपोलॉजिकल संबंधों की सीमा को चित्रित करता हैं।<ref>{{cite journal | first1 = M.J. | last1 = Egenhofer | first2 = R.D.| last2 = Franzosa | year = 1991 | title = बिंदु-सेट टोपोलॉजिकल स्थानिक संबंध| doi = 10.1080/02693799108927841 | journal = Int. J. GIS | volume = 5 | issue = 2 | pages = 161–174 | doi-access = free }}</ref> <ref name="sdh1990">{{cite journal|first1=M.J. |last1=Egenhofer |first2=J.R. |last2=Herring |year=1990 |title=टोपोलॉजिकल संबंधों की परिभाषा के लिए एक गणितीय ढांचा|url=http://www.spatial.maine.edu/~max/MJEJRH-SDH1990.pdf |url-status=dead |archive-url=https://web.archive.org/web/20100614161335/http://www.spatial.maine.edu/~max/MJEJRH-SDH1990.pdf |archive-date=2010-06-14 }}</ref> <ref>
{{cite book |last1=Clementini |first1=Eliseo |first2 = Paolino | last2 = Di Felice | first3 = Peter | last3 = van Oosterom |editor1-first=David |editor1-last=Abel |editor2-last=Ooi |editor2-first=Beng Chin |chapter=A small set of formal topological relationships suitable for end-user interaction |title=Advances in Spatial Databases: Third International Symposium, SSD '93 Singapore, June 23–25, 1993 Proceedings |series=Lecture Notes in Computer Science |volume=692/1993 |year=1993 |publisher=Springer |doi=10.1007/3-540-56869-7_16 |pages=277–295|isbn=978-3-540-56869-8 |url=http://resolver.tudelft.nl/uuid:a2db9ae8-f768-4bff-ada3-966a6c8e9db6 }}</ref> <ref>{{cite journal |last1=Clementini |first1=Eliseo |last2=Sharma |first2=Jayant |last3=Egenhofer |first3=Max J. |year=1994 |title=Modelling topological spatial relations: Strategies for query processing |journal=Computers & Graphics |volume=18 |issue=6 |pages=815–822 |doi=10.1016/0097-8493(94)90007-8 }}</ref>
{{cite book |last1=Clementini |first1=Eliseo |first2 = Paolino | last2 = Di Felice | first3 = Peter | last3 = van Oosterom |editor1-first=David |editor1-last=Abel |editor2-last=Ooi |editor2-first=Beng Chin |chapter=A small set of formal topological relationships suitable for end-user interaction |title=Advances in Spatial Databases: Third International Symposium, SSD '93 Singapore, June 23–25, 1993 Proceedings |series=Lecture Notes in Computer Science |volume=692/1993 |year=1993 |publisher=Springer |doi=10.1007/3-540-56869-7_16 |pages=277–295|isbn=978-3-540-56869-8 |url=http://resolver.tudelft.nl/uuid:a2db9ae8-f768-4bff-ada3-966a6c8e9db6 }}</ref> <ref>{{cite journal |last1=Clementini |first1=Eliseo |last2=Sharma |first2=Jayant |last3=Egenhofer |first3=Max J. |year=1994 |title=Modelling topological spatial relations: Strategies for query processing |journal=Computers & Graphics |volume=18 |issue=6 |pages=815–822 |doi=10.1016/0097-8493(94)90007-8 }}</ref>


इन संबंधों को शब्दार्थ की दृष्टि से भी वर्गीकृत किया जा सकता है:
इन संबंधों को शब्दार्थ की दृष्टि से भी वर्गीकृत किया जा सकता है:
* अंतर्निहित सम्बन्ध वे होते हैं जो संबंधित घटनाओं में से या दोनों के अस्तित्व या पहचान के लिए महत्वपूर्ण होता हैं, जैसे कि यह सीमा परिभाषा में व्यक्त किया गया है और यह मात्र विज्ञान की अभिव्यक्ति भी होते है। उदाहरण के लिए, [[नेब्रास्का]] [[संयुक्त राज्य अमेरिका]] के अंतर्गत आता है चूँकि नेब्रास्का संयुक्त राज्य अमेरिका के क्षेत्र के विभाजन के रूप में बनाया गया था। और [[मिसौरी नदी]] नेब्रास्का राज्य के निकट है चूँकि राज्य की सीमा की परिभाषा ऐसा कहती है। इस प्रकार इन रिश्तबं को अक्सर टोपोलॉजिकली-सेवी डेटा में संग्रहीत और क्रियान्वित किया जाता है।
* अंतर्निहित सम्बन्ध वे होते हैं जो संबंधित घटनाओं में से या दोनों के अस्तित्व या पहचान के लिए महत्वपूर्ण होता हैं, जैसे कि यह सीमा परिभाषा में व्यक्त किया गया है और यह मात्र विज्ञान की अभिव्यक्ति भी होते है। उदाहरण के लिए, [[नेब्रास्का]] [[संयुक्त राज्य अमेरिका]] के अंतर्गत आता है चूँकि नेब्रास्का संयुक्त राज्य अमेरिका के क्षेत्र के विभाजन के रूप में बनाया गया था। और [[मिसौरी नदी]] नेब्रास्का राज्य के निकट है चूँकि राज्य की सीमा की परिभाषा ऐसा कहती है। इस प्रकार इन रिश्तबं को अधिकांशतः टोपोलॉजिकली-सेवी डेटा में संग्रहीत और क्रियान्वित किया जाता है।
* संयोगपूर्ण सम्बन्ध वे होते हैं जो किसी के भी अस्तित्व के लिए निर्णायक नहीं होते हैं | चूंकि वे बहुत महत्वपूर्ण हो सकते हैं। उदाहरण के लिए, यह तथ्य कि [[प्लैट नदी]] नेब्रास्का से होकर गुजरती है | और यह संयोग है चूँकि यदि संबंध अस्तित्व में नहीं होता तब भी दोनों समस्या रहित रूप से उपस्थित होते हैं। इस प्रकार संभवतः ही कभी इस तरह से इनको संग्रहीत किया जाता है | किन्तु सामान्यतः यह स्थानिक विश्लेषण विधियों द्वारा खोजा और प्रलेखित किया जाता है।
* संयोगपूर्ण सम्बन्ध वे होते हैं जो किसी के भी अस्तित्व के लिए निर्णायक नहीं होते हैं | चूंकि वे बहुत महत्वपूर्ण हो सकते हैं। उदाहरण के लिए, यह तथ्य कि [[प्लैट नदी]] नेब्रास्का से होकर निकलती है | और यह संयोग है चूँकि यदि संबंध अस्तित्व में नहीं होता तब भी दोनों समस्या रहित रूप से उपस्थित होते हैं। इस प्रकार संभवतः ही कभी इस तरह से इनको संग्रहीत किया जाता है | किन्तु सामान्यतः यह स्थानिक विश्लेषण विधियों द्वारा खोजा और प्रलेखित किया जाता है।


==टोपोलॉजिकल डेटा संरचनाएं और सत्यापन==
==टोपोलॉजिकल डेटा संरचनाएं और सत्यापन==
{{see also|डेटा मॉडल (जीआईएस)}}
{{see also|डेटा मॉडल (जीआईएस)}}
[[File:ArcINFO Coverage.svg|thumb|250px|<nowiki>एआरसी/इन्फो कवरेज डेटा संरचना (1981), पॉलीवर्ट पर आधारित टोपोलॉजिकल डेटा मॉडल हैं |</nowiki>]]जीआईएस के लिए टोपोलॉजी बहुत ही प्रारंभिक चिंता थी। यह [[कनाडाई भौगोलिक सूचना प्रणाली]] होती हैं | जैसे प्रारम्भ में सदिश सिस्टम, टोपोलॉजिकल संबंधों का प्रबंधन नहीं करते थे, और यह स्लिवर बहुभुज जैसी समस्याएं विस्तारित हो गईं थी | अधिकांश सदिश ओवरले जैसे संचालन की <ref name="goodchild1977">{{cite book |last1=Goodchild |first1=Michael F. |editor1-last=Dutton |editor1-first=Geoffrey |title=Harvard Papers in Geographic Information Systems: First International Symposium on Data Structures for Geographic Information Systems |date=1977 |publisher=Harvard University |chapter=Statistical Aspects of the Polygon Overlay Problem|volume=6: Spatial algorithms}}</ref> प्रतिक्रिया में, टोपोलॉजिकल सदिश [[डेटा मॉडल (जीआईएस)]] विकसित किए गए थे | जैसे जीबीएफ/डीआईएमई (अमेरिकी जनगणना ब्यूरो, 1967) और पॉलीवीआरटी (हार्वर्ड विश्वविद्यालय, 1976) में हुआ था। <ref name="Cooke1998">{{cite book |last1=Cooke |first1=Donald F. |editor1-last=Foresman |editor1-first=Timothy W. |title=The History of Geographic Information Systems: Perspectives from the Pioneers |date=1998 |publisher=Prentice Hall |pages=47–57 |chapter=Topology and TIGER: The Census Bureau's Contribution}}</ref> यह टोपोलॉजिकल डेटा मॉडल की रणनीति सुविधाओं के मध्य टोपोलॉजिकल संबंधों (मुख्य रूप से आसन्नता) को संग्रहीत करना था | और इस प्रकार अधिक जटिल सुविधाओं के निर्माण के लिए उस जानकारी का उपयोग करना होता है। इसमें वहाँ नोड्स (बिंदु) बनाए जाते हैं जहां रेखाएं प्रतिच्छेद करती हैं और इस प्रकार उन्हें कनेक्टिंग लाइनों की सूची के साथ जोड़ा जाता है। इस प्रकार बहुभुजों का निर्माण रेखाओं के किसी भी क्रम से किया जाता है | जो बंद लूप को बनाता है। और इस प्रकार गैर-टोपोलॉजिकल सदिश डेटा को (अक्सर "स्पेगेटी डेटा" कहा जाता है) और इन संरचनाओं के तीन लाभ होते थे | सबसे पहले, वे कुशल थे (1970 के दशक की संग्रहण और प्रसंस्करण क्षमताओं को देखते हुए यह महत्वपूर्ण कारक होता हैं ), चूँकि दो आसन्न बहुभुजों के मध्य साझा सीमा केवल अनेक बार संग्रहीत होती हैं| और दूसरा, उन्होंने टोपोलॉजिकल त्रुटियों को रोकने या उजागर करके डेटा अखंडता को क्रियान्वित करने की सुविधा प्रदान की जाती हैं | जैसे कि प्रशिक्षण पॉलीगॉन, लटकते हुए नोड्स (एक लाइन जो अन्य लाइनों से ठीक से जुड़ी नहीं होती है), और स्लिवर पॉलीगॉन (छोटे नकली पॉलीगॉन बनाए गए जहां दो लाइनो को मेल खाना चाहिए किन्तु यह मेल नहीं खातीं हैं |) और तीसरा लाभ यह हैं कि, उन्होंने सदिश ओवरले जैसे संचालन के लिए एल्गोरिदम को सरल बना दिया था।<ref name="peucker1975">{{cite journal |last1=Peucker |first1=Thomas K. |last2=Chrisman |first2=Nicholas |title=कार्टोग्राफ़िक डेटा संरचनाएँ|journal=The American Cartographer |date=1975 |volume=2 |issue=1 |pages=55–69 |doi=10.1559/152304075784447289}}</ref> इस प्रकार उनकी प्राथमिक हानि उनकी जटिलता थी | इस प्रकार अनेक उपयोगकर्ताओं के लिए इसको समझना कठिन था | और इस प्रकार इसमें डेटा प्रविष्टि के समय अतिरिक्त देखभाल की आवश्यकता होती थी। जिससे यह 1980 के दशक का प्रमुख सदिश डेटा मॉडल बन गया था।  
[[File:ArcINFO Coverage.svg|thumb|250px|<nowiki>एआरसी/इन्फो कवरेज डेटा संरचना (1981), पॉलीवर्ट पर आधारित टोपोलॉजिकल डेटा मॉडल हैं |</nowiki>]]जीआईएस के लिए टोपोलॉजी बहुत ही प्रारंभिक चिंता थी। यह [[कनाडाई भौगोलिक सूचना प्रणाली]] होती हैं | जैसे प्रारम्भ में सदिश सिस्टम, टोपोलॉजिकल संबंधों का प्रबंधन नहीं करते थे, और यह स्लिवर बहुभुज जैसी समस्याएं विस्तारित हो गईं थी | अधिकांश सदिश ओवरले जैसे संचालन की <ref name="goodchild1977">{{cite book |last1=Goodchild |first1=Michael F. |editor1-last=Dutton |editor1-first=Geoffrey |title=Harvard Papers in Geographic Information Systems: First International Symposium on Data Structures for Geographic Information Systems |date=1977 |publisher=Harvard University |chapter=Statistical Aspects of the Polygon Overlay Problem|volume=6: Spatial algorithms}}</ref> प्रतिक्रिया में, टोपोलॉजिकल सदिश [[डेटा मॉडल (जीआईएस)]] विकसित किए गए थे | जैसे जीबीएफ/डीआईएमई (अमेरिकी जनगणना ब्यूरो, 1967) और पॉलीवीआरटी (हार्वर्ड विश्वविद्यालय, 1976) में हुआ था। <ref name="Cooke1998">{{cite book |last1=Cooke |first1=Donald F. |editor1-last=Foresman |editor1-first=Timothy W. |title=The History of Geographic Information Systems: Perspectives from the Pioneers |date=1998 |publisher=Prentice Hall |pages=47–57 |chapter=Topology and TIGER: The Census Bureau's Contribution}}</ref> यह टोपोलॉजिकल डेटा मॉडल की रणनीति सुविधाओं के मध्य टोपोलॉजिकल संबंधों (मुख्य रूप से आसन्नता) को संग्रहीत करना था | और इस प्रकार अधिक जटिल सुविधाओं के निर्माण के लिए उस जानकारी का उपयोग करना होता है। इसमें वहाँ नोड्स (बिंदु) बनाए जाते हैं जहां रेखाएं प्रतिच्छेद करती हैं और इस प्रकार उन्हें कनेक्टिंग लाइनों की सूची के साथ जोड़ा जाता है। इस प्रकार बहुभुजों का निर्माण रेखाओं के किसी भी क्रम से किया जाता है | जो बंद लूप को बनाता है। और इस प्रकार गैर-टोपोलॉजिकल सदिश डेटा को (अधिकांशतः "स्पेगेटी डेटा" कहा जाता है) और इन संरचनाओं के तीन लाभ होते थे | सबसे पहले, वे कुशल थे (1970 के दशक की संग्रहण और प्रसंस्करण क्षमताओं को देखते हुए यह महत्वपूर्ण कारक होता हैं ), चूँकि दो आसन्न बहुभुजों के मध्य साझा सीमा केवल अनेक बार संग्रहीत होती हैं | और दूसरा, उन्होंने टोपोलॉजिकल त्रुटियों को रोकने या उजागर करके डेटा अखंडता को क्रियान्वित करने की सुविधा प्रदान की जाती हैं | जैसे कि प्रशिक्षण पॉलीगॉन, लटकते हुए नोड्स (एक लाइन जो अन्य लाइनों से ठीक से जुड़ी नहीं होती है), और स्लिवर पॉलीगॉन (छोटे नकली पॉलीगॉन बनाए गए जहां दो लाइनो को मेल खाना चाहिए किन्तु यह मेल नहीं खातीं हैं |) और तीसरा लाभ यह हैं कि, उन्होंने सदिश ओवरले जैसे संचालन के लिए एल्गोरिदम को सरल बना दिया था।<ref name="peucker1975">{{cite journal |last1=Peucker |first1=Thomas K. |last2=Chrisman |first2=Nicholas |title=कार्टोग्राफ़िक डेटा संरचनाएँ|journal=The American Cartographer |date=1975 |volume=2 |issue=1 |pages=55–69 |doi=10.1559/152304075784447289}}</ref> इस प्रकार उनकी प्राथमिक हानि उनकी जटिलता थी | इस प्रकार अनेक उपयोगकर्ताओं के लिए इसको समझना कठिन था | और इस प्रकार इसमें डेटा प्रविष्टि के समय अतिरिक्त देखभाल की आवश्यकता होती थी। जिससे यह 1980 के दशक का प्रमुख सदिश डेटा मॉडल बन गया था।  
   
   
1990 के दशक तक, सस्ते संग्रहण और नए उपयोगकर्ताओं का संयोजन जो टोपोलॉजी से चिंतित नहीं थे, उनका स्पेगेटी डेटा संरचनाओं जैसे कि [[ शेपफ़ाइल |शेपफ़ाइल]] में पुनरुत्थान हुआ था। चूँकि, संग्रहीत टोपोलॉजिकल संबंधों और अखंडता प्रवर्तन की आवश्यकता अभी भी उपस्थित होती है। इस प्रकार वर्तमान डेटा में सामान्य दृष्टिकोण डेटा के शीर्ष पर विस्तारित परत के रूप में संग्रहीत करना होता है जो स्वाभाविक रूप से टोपोलॉजिकल नहीं होती है। उदाहरण के लिए, ईएसआरआई [[जियोडेटाबेस]] सदिश डेटा (फीचर क्लास) को स्पेगेटी डेटा के रूप में संग्रहीत करता है, किन्तु लाइन फीचर क्लास के शीर्ष पर कनेक्शन की नेटवर्क डेटासेट संरचना बना सकता है। इस प्रकार जियोडेटाबेस टोपोलॉजिकल नियमों की सूची भी संग्रहीत कर सकता है, परन्तु इसके अंदर और मध्य में टोपोलॉजिकल संबंधों पर बाधाएं (उदाहरण के लिए, काउंटियों में अंतराल नहीं हो सकता है | स्थान की सीमाएं काउंटी सीमाओं के साथ मेल खाना चाहिए| इस प्रकार काउंटियों को सामूहिक रूप से स्थानों को कवर करना होता हैं |) जिन्हें मान्य और सही किया जा सकता है।<ref>{{cite web |title=जियोडेटाबेस टोपोलॉजी|url=https://pro.arcgis.com/en/pro-app/latest/help/editing/geodatabase-topology.htm |website=ArcGIS Pro Documentation |access-date=6 January 2022}}</ref> और अन्य प्रणालियाँ, जैसे कि [[PostGIS|पोस्ट जीआईएस]], समान दृष्टिकोण होता हैं। और यह बहुत ही अलग दृष्टिकोण होता है कि डेटा में टोपोलॉजिकल जानकारी को पूर्ण रूप भी संग्रहीत न किया जाए, किन्तु संभावित त्रुटियों को प्रदर्शित करने और सही करने के लिए किया जाता हैं | सामान्यतः संपादन प्रक्रिया के दौरान इसे गतिशील रूप से निर्मित किया जाता हैं | और यह आर्कजीआईएस प्रो और [[क्यूजीआईएस]] जैसे [[जीआईएस सॉफ्टवेयर]] की विशेषता होती है।<ref>{{cite web |title=टोपोलॉजी जाँच|url=https://docs.qgis.org/3.16/en/docs/user_manual/working_with_vector/vector_properties.html#topology-checks |website=QGIS 3.16 documentation |publisher=OSGEO |access-date=6 January 2022}}</ref>
1990 के दशक तक, सस्ते संग्रहण और नए उपयोगकर्ताओं का संयोजन जो टोपोलॉजी से चिंतित नहीं थे, उनका स्पेगेटी डेटा संरचनाओं जैसे कि [[ शेपफ़ाइल |शेपफ़ाइल]] में पुनरुत्थान हुआ था। चूँकि, संग्रहीत टोपोलॉजिकल संबंधों और अखंडता प्रवर्तन की आवश्यकता अभी भी उपस्थित होती है। इस प्रकार वर्तमान डेटा में सामान्य दृष्टिकोण डेटा के शीर्ष पर विस्तारित परत के रूप में संग्रहीत करना होता है जो स्वाभाविक रूप से टोपोलॉजिकल नहीं होती है। उदाहरण के लिए, ईएसआरआई [[जियोडेटाबेस]] सदिश डेटा (फीचर क्लास) को स्पेगेटी डेटा के रूप में संग्रहीत करता है, किन्तु लाइन फीचर क्लास के शीर्ष पर कनेक्शन की नेटवर्क डेटासेट संरचना बना सकता है। इस प्रकार जियोडेटाबेस टोपोलॉजिकल नियमों की सूची भी संग्रहीत कर सकता है, परन्तु इसके अंदर और मध्य में टोपोलॉजिकल संबंधों पर बाधाएं (उदाहरण के लिए, काउंटियों में अंतराल नहीं हो सकता है | स्थान की सीमाएं काउंटी सीमाओं के साथ मेल खाना चाहिए| इस प्रकार काउंटियों को सामूहिक रूप से स्थानों को कवर करना होता हैं |) जिन्हें मान्य और सही किया जा सकता है।<ref>{{cite web |title=जियोडेटाबेस टोपोलॉजी|url=https://pro.arcgis.com/en/pro-app/latest/help/editing/geodatabase-topology.htm |website=ArcGIS Pro Documentation |access-date=6 January 2022}}</ref> और अन्य प्रणालियाँ, जैसे कि [[PostGIS|पोस्ट जीआईएस]], समान दृष्टिकोण होता हैं। और यह बहुत ही अलग दृष्टिकोण होता है कि डेटा में टोपोलॉजिकल जानकारी को पूर्ण रूप भी संग्रहीत न किया जाए, किन्तु संभावित त्रुटियों को प्रदर्शित करने और सही करने के लिए किया जाता हैं | सामान्यतः संपादन प्रक्रिया के समय इसे गतिशील रूप से निर्मित किया जाता हैं | और यह आर्कजीआईएस प्रो और [[क्यूजीआईएस]] जैसे [[जीआईएस सॉफ्टवेयर]] की विशेषता होती है।<ref>{{cite web |title=टोपोलॉजी जाँच|url=https://docs.qgis.org/3.16/en/docs/user_manual/working_with_vector/vector_properties.html#topology-checks |website=QGIS 3.16 documentation |publisher=OSGEO |access-date=6 January 2022}}</ref>


==स्थानिक विश्लेषण में टोपोलॉजी==
==स्थानिक विश्लेषण में टोपोलॉजी==
Line 29: Line 27:
*[[स्थानिक जुड़ाव]], जिसमें दो डेटासेट की विशेषता तालिकाओं को संयोजित किया जाता है, जिसमें दो डेटासेट में सुविधाओं के मध्य वांछित टोपोलॉजिकल संबंध के आधार पर पंक्तियों का मिलान किया जाता है, न कि सामान्य तालिका में संग्रहीत कुंजी का उपयोग करने के अतिरिक्त सम्बन्ध डेटाबेस में सम्मिलित होता है। उदाहरण के लिए, प्रत्येक छात्र किस स्कूल की सीमा के अंदर रहता है, उसके आधार पर स्कूल परत की विशेषताओं को छात्रों की तालिका में जोड़ना होता हैं।
*[[स्थानिक जुड़ाव]], जिसमें दो डेटासेट की विशेषता तालिकाओं को संयोजित किया जाता है, जिसमें दो डेटासेट में सुविधाओं के मध्य वांछित टोपोलॉजिकल संबंध के आधार पर पंक्तियों का मिलान किया जाता है, न कि सामान्य तालिका में संग्रहीत कुंजी का उपयोग करने के अतिरिक्त सम्बन्ध डेटाबेस में सम्मिलित होता है। उदाहरण के लिए, प्रत्येक छात्र किस स्कूल की सीमा के अंदर रहता है, उसके आधार पर स्कूल परत की विशेषताओं को छात्रों की तालिका में जोड़ना होता हैं।
* सदिश ओवरले, जिसमें दो परतें (सामान्यतःबहुभुज) विलय हो जाती हैं, जिसमें नई सुविधाएं बनाई जाती हैं | और जहां दो इनपुट डेटासेट की विशेषताएं प्रतिच्छेद करती हैं।
* सदिश ओवरले, जिसमें दो परतें (सामान्यतःबहुभुज) विलय हो जाती हैं, जिसमें नई सुविधाएं बनाई जाती हैं | और जहां दो इनपुट डेटासेट की विशेषताएं प्रतिच्छेद करती हैं।
* परिवहन नेटवर्क विश्लेषण, उपकरणों का बड़ा वर्ग जिसमें [[ग्राफ सिद्धांत]] के गणित का उपयोग करके कनेक्टेड लाइनें (जैसे, सड़कें, उपयोगिता मूलभूत ढांचे, धाराएं) का विश्लेषण किया जाता है। और इस प्रकार इसमें सबसे साधारण उदाहरण सड़क नेटवर्क के माध्यम से दो स्थानों के मध्य [[मार्ग]] का निर्धारण करना होता है, जैसा कि अधिकांश सड़क वेब मानचित्रों में क्रियान्वित किया गया है।
* परिवहन नेटवर्क विश्लेषण, उपकरणों का बड़ा वर्ग जिसमें [[ग्राफ सिद्धांत]] के गणित का उपयोग करके कनेक्टेड लाइनें (जैसे, सड़कें, उपयोगिता मूलभूत रुपरेखा, धाराएं) का विश्लेषण किया जाता है। और इस प्रकार इसमें सबसे साधारण उदाहरण सड़क नेटवर्क के माध्यम से दो स्थानों के मध्य [[मार्ग]] का निर्धारण करना होता है, जैसा कि अधिकांश सड़क वेब मानचित्रों में क्रियान्वित किया गया है।


[[ओरेकल डेटाबेस]] और पोस्टजीआईएस मौलिक टोपोलॉजिकल ऑपरेटर प्रदान करते हैं जो अनुप्रयोगों को ऐसे सम्बन्ध के लिए परीक्षण करने की अनुमति देते हैं जैसे कि सम्मिलित, अंदर, कवर, कवर किया गया, स्पर्श और ओवरलैपिंग सीमाओं के साथ ओवरलैप होता है।<ref>{{cite web| last = Oracle| author-link = | title = टोपोलॉजी डेटा मॉडल अवलोकन| work = Oracle 10g Part No. B10828-01| publisher = Oracle| year = 2003| url = http://docs.oracle.com/html/B10828_01/sdo_topo_concepts.htm#BABDHJAF| format = | doi = | access-date = 2011-11-25}}</ref><ref>{{cite web| last = | first = | author-link = | title = ज्यामिति संबंध कार्य| publisher = Refractions Research Inc| url = http://postgis.refractions.net/documentation/manual-1.3/ch06.html#id2574517| format = | doi = | access-date = 2011-11-25}}</ref> इस प्रकार पोस्टजीआईएस दस्तावेज़ के विपरीत, ओरेकल दस्तावेज़ टोपोलॉजिकल सम्बन्ध के मध्य अंतर दिखाता है| और यह "टोपोलॉजिकल सम्बन्ध जो समन्वय स्थान के विकृत होने पर स्थिर रहता है, जैसे कि घुमा या खींचकर और सम्बन्ध जो टोपोलॉजिकल नहीं होता हैं | और जिसमें इसकी लंबाई, मध्य की दूरी और क्षेत्र सम्मिलित होते हैं । इन ऑपरेटरों को अनुप्रयोगों द्वारा यह सुनिश्चित करने के लिए लाभ उठाया जाता है कि डेटा सेट को टोपोलॉजिकल रूप से सही तरीके से संग्रहीत और संसाधित किया जाता है। चूँकि, टोपोलॉजिकल ऑपरेटर स्वाभाविक रूप से जटिल होते हैं और उनके कार्यान्वयन के लिए प्रयोज्यता और मानकों के अनुरूप देखभाल की आवश्यकता होती है।<ref>{{cite conference |last=Riedemann |first=Catharina |title=जीआईएस यूजर इंटरफेस पर प्रयोग करने योग्य टोपोलॉजिकल ऑपरेटरों की ओर|editor1=Toppen, F. |editor2=P. Prastacos 7th |conference=7th AGILE Conference on Geographic Information Science |location=Heraklion, Greece |pages=669–674 |year=2004 |url=https://agile-online.org/conference_paper/cds/agile_2004/papers/8-1-3_riedemann.pdf |access-date=2017-01-11}}</ref>
[[ओरेकल डेटाबेस]] और पोस्टजीआईएस मौलिक टोपोलॉजिकल संचालन प्रदान करते हैं जो अनुप्रयोगों को ऐसे सम्बन्ध के लिए परीक्षण करने की अनुमति देते हैं जैसे कि सम्मिलित, अंदर, कवर, कवर किया गया, स्पर्श और ओवरलैपिंग सीमाओं के साथ ओवरलैप होता है।<ref>{{cite web| last = Oracle| author-link = | title = टोपोलॉजी डेटा मॉडल अवलोकन| work = Oracle 10g Part No. B10828-01| publisher = Oracle| year = 2003| url = http://docs.oracle.com/html/B10828_01/sdo_topo_concepts.htm#BABDHJAF| format = | doi = | access-date = 2011-11-25}}</ref><ref>{{cite web| last = | first = | author-link = | title = ज्यामिति संबंध कार्य| publisher = Refractions Research Inc| url = http://postgis.refractions.net/documentation/manual-1.3/ch06.html#id2574517| format = | doi = | access-date = 2011-11-25}}</ref> इस प्रकार पोस्टजीआईएस दस्तावेज़ के विपरीत, ओरेकल दस्तावेज़ टोपोलॉजिकल सम्बन्ध के मध्य अंतर दिखाता है और यह "टोपोलॉजिकल सम्बन्ध जो समन्वय स्थान के विकृत होने पर स्थिर रहता है, जैसे कि घुमा या खींचकर और सम्बन्ध जो टोपोलॉजिकल नहीं होता हैं | और जिसमें इसकी लंबाई, मध्य की दूरी और क्षेत्र सम्मिलित होते हैं । इन संचालनों को अनुप्रयोगों द्वारा यह सुनिश्चित करने के लिए लाभ उठाया जाता है कि डेटा सेट को टोपोलॉजिकल रूप से सही विधि से संग्रहीत और संसाधित किया जाता है। चूँकि, टोपोलॉजिकल संचालन स्वाभाविक रूप से जटिल होते हैं और उनके कार्यान्वयन के लिए प्रयोज्यता और मानकों के अनुरूप देखभाल की आवश्यकता होती है।<ref>{{cite conference |last=Riedemann |first=Catharina |title=जीआईएस यूजर इंटरफेस पर प्रयोग करने योग्य टोपोलॉजिकल ऑपरेटरों की ओर|editor1=Toppen, F. |editor2=P. Prastacos 7th |conference=7th AGILE Conference on Geographic Information Science |location=Heraklion, Greece |pages=669–674 |year=2004 |url=https://agile-online.org/conference_paper/cds/agile_2004/papers/8-1-3_riedemann.pdf |access-date=2017-01-11}}</ref>
==यह भी देखें==
==यह भी देखें==
*[[डिजिटल टोपोलॉजी]]
*[[डिजिटल टोपोलॉजी]]
Line 38: Line 36:
==संदर्भ==
==संदर्भ==
{{reflist}}
{{reflist}}
[[Category: भौगोलिक डेटा और जानकारी]] [[Category: नक्शानवीसी]] [[Category: ज्यामितीय टोपोलॉजी]] [[Category: त्रिविमीय विश्लेषण]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:CS1]]
[[Category:CS1 errors]]
[[Category:Created On 10/07/2023]]
[[Category:Created On 10/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:ज्यामितीय टोपोलॉजी]]
[[Category:त्रिविमीय विश्लेषण]]
[[Category:नक्शानवीसी]]
[[Category:भौगोलिक डेटा और जानकारी]]

Latest revision as of 14:07, 28 July 2023

टोपोलॉजिकल स्थानिक संबंधों के उदाहरण.

भू-स्थानिक टोपोलॉजी भौगोलिक विशेषताओ के मध्य, या भौगोलिक जानकारी में ऐसी विशेषताओं के प्रतिनिधित्व के मध्य, जैसे भौगोलिक सूचना प्रणाली (जीआईएस) में गुणात्मक स्थानिक संबंधों का अध्ययन और अनुप्रयोग होता है | [1] उदाहरण के लिए, यह तथ्य कि दो क्षेत्र ओवरलैप होते हैं | इस प्रकार उनमें से दूसरा सम्मिलित होता है, और इनको टोपोलॉजिकल संबंधों के उदाहरण होते हैं। इस प्रकार यह जीआईएस के लिए टोपोलॉजी के गणित का अनुप्रयोग होता है | और यह भौगोलिक जानकारी के अनेक तथ्यों से अलग होता है, किन्तु पूरक वह है जो समन्वय ज्यामिति के माध्यम से मात्रात्मक स्थानिक माप पर आधारित होता हैं। इस प्रकार टोपोलॉजी भौगोलिक सूचना विज्ञान और जीआईएस अभ्यास के अनेक तथ्यों में दिखाई देती है, जिसमें स्थानिक क्वेरी, सदिश ओवरले और मानचित्र बीजगणित के माध्यम से यह अंतर्निहित संबंधों की खोज में सम्मिलित होते है| इस प्रकार भू-स्थानिक डेटा में संग्रहीत सत्यापन नियमों के रूप में अपेक्षित संबंधों को क्रियान्वित करना होता हैं| और यह परिवहन नेटवर्क विश्लेषण जैसे अनुप्रयोगों में संग्रहीत टोपोलॉजिकल संबंधों का उपयोग करता हैं ।[2] [3] [4] इस प्रकार स्थानिक टोपोलॉजी गैर-भौगोलिक डोमेन, जैसे, सीएडी सॉफ्टवेयर के लिए भू-स्थानिक टोपोलॉजी का सामान्यीकरण होता है।

सामयिक संबंध

टोपोलॉजी की परिभाषा को ध्यान में रखते हुए, दो भौगोलिक घटनाओं के मध्य टोपोलॉजिकल संबंध कोई भी स्थानिक संबंध होता है | जिसमे यह सम्मिस्ट के मापन योग्य तथ्यों के प्रति संवेदनशील नहीं होते है | और जिसमें सम्मिस्ट के परिवर्तन (जैसे मानचित्र प्रक्षेपण) सम्मिलित होते हैं। इस प्रकार, इसमें अधिकांश गुणात्मक स्थानिक संबंध सम्मिलित होते हैं | जैसे कि दो विशेषताएं "आसन्न", "अतिव्यापी", "असंगत" या दूसरे के "अंदर" होती हैं | और इसके विपरीत, सुविधा का दूसरे से "5 किमी दूर होना", या सुविधा का दूसरे के "उत्तर में होना" मीट्रिक संबंध होता हैं। इस प्रकार 1990 के दशक के प्रारम्भ में भौगोलिक सूचना विज्ञान के पहले विकासों में से मैक्स एगेनहोफर, एलिसेओ क्लेमेंटिनी, पीटर डि फेलिस और अन्य का काम था, जिसमें ऐसे संबंधों का संक्षिप्त सिद्धांत विकसित किया गया था, जिसे सामान्यतःडीई-9आईएम9-इंटरसेक्शन मॉडल कहा जाता है, जो कि सीमा की विशेषता को बताता है। इस प्रकार आंतरिक,और बाहरी विशेषताओं की सीमाओं के मध्य संबंधों पर आधारित टोपोलॉजिकल संबंधों की सीमा को चित्रित करता हैं।[5] [6] [7] [8]

इन संबंधों को शब्दार्थ की दृष्टि से भी वर्गीकृत किया जा सकता है:

  • अंतर्निहित सम्बन्ध वे होते हैं जो संबंधित घटनाओं में से या दोनों के अस्तित्व या पहचान के लिए महत्वपूर्ण होता हैं, जैसे कि यह सीमा परिभाषा में व्यक्त किया गया है और यह मात्र विज्ञान की अभिव्यक्ति भी होते है। उदाहरण के लिए, नेब्रास्का संयुक्त राज्य अमेरिका के अंतर्गत आता है चूँकि नेब्रास्का संयुक्त राज्य अमेरिका के क्षेत्र के विभाजन के रूप में बनाया गया था। और मिसौरी नदी नेब्रास्का राज्य के निकट है चूँकि राज्य की सीमा की परिभाषा ऐसा कहती है। इस प्रकार इन रिश्तबं को अधिकांशतः टोपोलॉजिकली-सेवी डेटा में संग्रहीत और क्रियान्वित किया जाता है।
  • संयोगपूर्ण सम्बन्ध वे होते हैं जो किसी के भी अस्तित्व के लिए निर्णायक नहीं होते हैं | चूंकि वे बहुत महत्वपूर्ण हो सकते हैं। उदाहरण के लिए, यह तथ्य कि प्लैट नदी नेब्रास्का से होकर निकलती है | और यह संयोग है चूँकि यदि संबंध अस्तित्व में नहीं होता तब भी दोनों समस्या रहित रूप से उपस्थित होते हैं। इस प्रकार संभवतः ही कभी इस तरह से इनको संग्रहीत किया जाता है | किन्तु सामान्यतः यह स्थानिक विश्लेषण विधियों द्वारा खोजा और प्रलेखित किया जाता है।

टोपोलॉजिकल डेटा संरचनाएं और सत्यापन

एआरसी/इन्फो कवरेज डेटा संरचना (1981), पॉलीवर्ट पर आधारित टोपोलॉजिकल डेटा मॉडल हैं |

जीआईएस के लिए टोपोलॉजी बहुत ही प्रारंभिक चिंता थी। यह कनाडाई भौगोलिक सूचना प्रणाली होती हैं | जैसे प्रारम्भ में सदिश सिस्टम, टोपोलॉजिकल संबंधों का प्रबंधन नहीं करते थे, और यह स्लिवर बहुभुज जैसी समस्याएं विस्तारित हो गईं थी | अधिकांश सदिश ओवरले जैसे संचालन की [9] प्रतिक्रिया में, टोपोलॉजिकल सदिश डेटा मॉडल (जीआईएस) विकसित किए गए थे | जैसे जीबीएफ/डीआईएमई (अमेरिकी जनगणना ब्यूरो, 1967) और पॉलीवीआरटी (हार्वर्ड विश्वविद्यालय, 1976) में हुआ था। [10] यह टोपोलॉजिकल डेटा मॉडल की रणनीति सुविधाओं के मध्य टोपोलॉजिकल संबंधों (मुख्य रूप से आसन्नता) को संग्रहीत करना था | और इस प्रकार अधिक जटिल सुविधाओं के निर्माण के लिए उस जानकारी का उपयोग करना होता है। इसमें वहाँ नोड्स (बिंदु) बनाए जाते हैं जहां रेखाएं प्रतिच्छेद करती हैं और इस प्रकार उन्हें कनेक्टिंग लाइनों की सूची के साथ जोड़ा जाता है। इस प्रकार बहुभुजों का निर्माण रेखाओं के किसी भी क्रम से किया जाता है | जो बंद लूप को बनाता है। और इस प्रकार गैर-टोपोलॉजिकल सदिश डेटा को (अधिकांशतः "स्पेगेटी डेटा" कहा जाता है) और इन संरचनाओं के तीन लाभ होते थे | सबसे पहले, वे कुशल थे (1970 के दशक की संग्रहण और प्रसंस्करण क्षमताओं को देखते हुए यह महत्वपूर्ण कारक होता हैं ), चूँकि दो आसन्न बहुभुजों के मध्य साझा सीमा केवल अनेक बार संग्रहीत होती हैं | और दूसरा, उन्होंने टोपोलॉजिकल त्रुटियों को रोकने या उजागर करके डेटा अखंडता को क्रियान्वित करने की सुविधा प्रदान की जाती हैं | जैसे कि प्रशिक्षण पॉलीगॉन, लटकते हुए नोड्स (एक लाइन जो अन्य लाइनों से ठीक से जुड़ी नहीं होती है), और स्लिवर पॉलीगॉन (छोटे नकली पॉलीगॉन बनाए गए जहां दो लाइनो को मेल खाना चाहिए किन्तु यह मेल नहीं खातीं हैं |) और तीसरा लाभ यह हैं कि, उन्होंने सदिश ओवरले जैसे संचालन के लिए एल्गोरिदम को सरल बना दिया था।[11] इस प्रकार उनकी प्राथमिक हानि उनकी जटिलता थी | इस प्रकार अनेक उपयोगकर्ताओं के लिए इसको समझना कठिन था | और इस प्रकार इसमें डेटा प्रविष्टि के समय अतिरिक्त देखभाल की आवश्यकता होती थी। जिससे यह 1980 के दशक का प्रमुख सदिश डेटा मॉडल बन गया था।

1990 के दशक तक, सस्ते संग्रहण और नए उपयोगकर्ताओं का संयोजन जो टोपोलॉजी से चिंतित नहीं थे, उनका स्पेगेटी डेटा संरचनाओं जैसे कि शेपफ़ाइल में पुनरुत्थान हुआ था। चूँकि, संग्रहीत टोपोलॉजिकल संबंधों और अखंडता प्रवर्तन की आवश्यकता अभी भी उपस्थित होती है। इस प्रकार वर्तमान डेटा में सामान्य दृष्टिकोण डेटा के शीर्ष पर विस्तारित परत के रूप में संग्रहीत करना होता है जो स्वाभाविक रूप से टोपोलॉजिकल नहीं होती है। उदाहरण के लिए, ईएसआरआई जियोडेटाबेस सदिश डेटा (फीचर क्लास) को स्पेगेटी डेटा के रूप में संग्रहीत करता है, किन्तु लाइन फीचर क्लास के शीर्ष पर कनेक्शन की नेटवर्क डेटासेट संरचना बना सकता है। इस प्रकार जियोडेटाबेस टोपोलॉजिकल नियमों की सूची भी संग्रहीत कर सकता है, परन्तु इसके अंदर और मध्य में टोपोलॉजिकल संबंधों पर बाधाएं (उदाहरण के लिए, काउंटियों में अंतराल नहीं हो सकता है | स्थान की सीमाएं काउंटी सीमाओं के साथ मेल खाना चाहिए| इस प्रकार काउंटियों को सामूहिक रूप से स्थानों को कवर करना होता हैं |) जिन्हें मान्य और सही किया जा सकता है।[12] और अन्य प्रणालियाँ, जैसे कि पोस्ट जीआईएस, समान दृष्टिकोण होता हैं। और यह बहुत ही अलग दृष्टिकोण होता है कि डेटा में टोपोलॉजिकल जानकारी को पूर्ण रूप भी संग्रहीत न किया जाए, किन्तु संभावित त्रुटियों को प्रदर्शित करने और सही करने के लिए किया जाता हैं | सामान्यतः संपादन प्रक्रिया के समय इसे गतिशील रूप से निर्मित किया जाता हैं | और यह आर्कजीआईएस प्रो और क्यूजीआईएस जैसे जीआईएस सॉफ्टवेयर की विशेषता होती है।[13]

स्थानिक विश्लेषण में टोपोलॉजी

अनेक स्थानिक विश्लेषण उपकरण अंततः सुविधाओं के मध्य टोपोलॉजिकल संबंधों की खोज पर आधारित हैं:

  • स्थानिक क्वेरी, जिसमें कोई दूसरे डेटासेट की विशेषताओं के साथ वांछित टोपोलॉजिकल संबंधों के आधार पर डेटासेट में सुविधाओं की खोज कर रहा है। उदाहरण के लिए, स्कूल X की सीमाओं के अंदर छात्रों के स्थान कहाँ होता हैं?
  • स्थानिक जुड़ाव, जिसमें दो डेटासेट की विशेषता तालिकाओं को संयोजित किया जाता है, जिसमें दो डेटासेट में सुविधाओं के मध्य वांछित टोपोलॉजिकल संबंध के आधार पर पंक्तियों का मिलान किया जाता है, न कि सामान्य तालिका में संग्रहीत कुंजी का उपयोग करने के अतिरिक्त सम्बन्ध डेटाबेस में सम्मिलित होता है। उदाहरण के लिए, प्रत्येक छात्र किस स्कूल की सीमा के अंदर रहता है, उसके आधार पर स्कूल परत की विशेषताओं को छात्रों की तालिका में जोड़ना होता हैं।
  • सदिश ओवरले, जिसमें दो परतें (सामान्यतःबहुभुज) विलय हो जाती हैं, जिसमें नई सुविधाएं बनाई जाती हैं | और जहां दो इनपुट डेटासेट की विशेषताएं प्रतिच्छेद करती हैं।
  • परिवहन नेटवर्क विश्लेषण, उपकरणों का बड़ा वर्ग जिसमें ग्राफ सिद्धांत के गणित का उपयोग करके कनेक्टेड लाइनें (जैसे, सड़कें, उपयोगिता मूलभूत रुपरेखा, धाराएं) का विश्लेषण किया जाता है। और इस प्रकार इसमें सबसे साधारण उदाहरण सड़क नेटवर्क के माध्यम से दो स्थानों के मध्य मार्ग का निर्धारण करना होता है, जैसा कि अधिकांश सड़क वेब मानचित्रों में क्रियान्वित किया गया है।

ओरेकल डेटाबेस और पोस्टजीआईएस मौलिक टोपोलॉजिकल संचालन प्रदान करते हैं जो अनुप्रयोगों को ऐसे सम्बन्ध के लिए परीक्षण करने की अनुमति देते हैं जैसे कि सम्मिलित, अंदर, कवर, कवर किया गया, स्पर्श और ओवरलैपिंग सीमाओं के साथ ओवरलैप होता है।[14][15] इस प्रकार पोस्टजीआईएस दस्तावेज़ के विपरीत, ओरेकल दस्तावेज़ टोपोलॉजिकल सम्बन्ध के मध्य अंतर दिखाता है और यह "टोपोलॉजिकल सम्बन्ध जो समन्वय स्थान के विकृत होने पर स्थिर रहता है, जैसे कि घुमा या खींचकर और सम्बन्ध जो टोपोलॉजिकल नहीं होता हैं | और जिसमें इसकी लंबाई, मध्य की दूरी और क्षेत्र सम्मिलित होते हैं । इन संचालनों को अनुप्रयोगों द्वारा यह सुनिश्चित करने के लिए लाभ उठाया जाता है कि डेटा सेट को टोपोलॉजिकल रूप से सही विधि से संग्रहीत और संसाधित किया जाता है। चूँकि, टोपोलॉजिकल संचालन स्वाभाविक रूप से जटिल होते हैं और उनके कार्यान्वयन के लिए प्रयोज्यता और मानकों के अनुरूप देखभाल की आवश्यकता होती है।[16]

यह भी देखें

संदर्भ

  1. "Topology - GIS Wiki | The GIS Encyclopedia". wiki.gis.com. Retrieved 2021-02-02.
  2. ESRI White Paper GIS Topology "GIS Topology". ESRI. 2005. Retrieved 2011-11-25.
  3. Gentle GIS introduction "7. Topology — QGIS Documentation documentation". docs.qgis.org. Retrieved 2021-02-02.
  4. Ubeda, Thierry; Egenhofer, Max J. (1997). "Topological error correcting in GIS". स्थानिक डेटाबेस में प्रगति. Lecture Notes in Computer Science. Vol. 1262. pp. 281–297. doi:10.1007/3-540-63238-7_35. ISBN 978-3-540-63238-2.
  5. Egenhofer, M.J.; Franzosa, R.D. (1991). "बिंदु-सेट टोपोलॉजिकल स्थानिक संबंध". Int. J. GIS. 5 (2): 161–174. doi:10.1080/02693799108927841.
  6. Egenhofer, M.J.; Herring, J.R. (1990). "टोपोलॉजिकल संबंधों की परिभाषा के लिए एक गणितीय ढांचा" (PDF). Archived from the original (PDF) on 2010-06-14. {{cite journal}}: Cite journal requires |journal= (help)
  7. Clementini, Eliseo; Di Felice, Paolino; van Oosterom, Peter (1993). "A small set of formal topological relationships suitable for end-user interaction". In Abel, David; Ooi, Beng Chin (eds.). Advances in Spatial Databases: Third International Symposium, SSD '93 Singapore, June 23–25, 1993 Proceedings. Lecture Notes in Computer Science. Vol. 692/1993. Springer. pp. 277–295. doi:10.1007/3-540-56869-7_16. ISBN 978-3-540-56869-8.
  8. Clementini, Eliseo; Sharma, Jayant; Egenhofer, Max J. (1994). "Modelling topological spatial relations: Strategies for query processing". Computers & Graphics. 18 (6): 815–822. doi:10.1016/0097-8493(94)90007-8.
  9. Goodchild, Michael F. (1977). "Statistical Aspects of the Polygon Overlay Problem". In Dutton, Geoffrey (ed.). Harvard Papers in Geographic Information Systems: First International Symposium on Data Structures for Geographic Information Systems. Vol. 6: Spatial algorithms. Harvard University.
  10. Cooke, Donald F. (1998). "Topology and TIGER: The Census Bureau's Contribution". In Foresman, Timothy W. (ed.). The History of Geographic Information Systems: Perspectives from the Pioneers. Prentice Hall. pp. 47–57.
  11. Peucker, Thomas K.; Chrisman, Nicholas (1975). "कार्टोग्राफ़िक डेटा संरचनाएँ". The American Cartographer. 2 (1): 55–69. doi:10.1559/152304075784447289.
  12. "जियोडेटाबेस टोपोलॉजी". ArcGIS Pro Documentation. Retrieved 6 January 2022.
  13. "टोपोलॉजी जाँच". QGIS 3.16 documentation. OSGEO. Retrieved 6 January 2022.
  14. Oracle (2003). "टोपोलॉजी डेटा मॉडल अवलोकन". Oracle 10g Part No. B10828-01. Oracle. Retrieved 2011-11-25.
  15. "ज्यामिति संबंध कार्य". Refractions Research Inc. Retrieved 2011-11-25.
  16. Riedemann, Catharina (2004). Toppen, F.; P. Prastacos 7th (eds.). जीआईएस यूजर इंटरफेस पर प्रयोग करने योग्य टोपोलॉजिकल ऑपरेटरों की ओर (PDF). 7th AGILE Conference on Geographic Information Science. Heraklion, Greece. pp. 669–674. Retrieved 2017-01-11.