अनगणना: Difference between revisions
No edit summary |
No edit summary |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 2: | Line 2: | ||
[[ क्वांटम कम्प्यूटिंग |क्वांटम कम्प्यूटिंग]] एल्गोरिदम में मूलभूत चरण होता है। यह प्रभावित करने के तरीके पर निर्भर करता है कि क्या इंटरमीडिएट प्रभावों को अनकंप्यूट किया गया है या नहीं, जब हम परिणामों को मापते हैं।<ref>{{Cite journal|arxiv=quant-ph/0209060|last1=Aaronson|first1=Scott|title=पुनरावर्ती फूरियर नमूने के लिए क्वांटम लोअर बाउंड|journal=Quantum Information and Computation ():, 00|volume=3|issue=2|pages=165–174|year=2002|doi=10.26421/QIC3.2-7 |bibcode=2002quant.ph..9060A}}</ref> | [[ क्वांटम कम्प्यूटिंग |क्वांटम कम्प्यूटिंग]] एल्गोरिदम में मूलभूत चरण होता है। यह प्रभावित करने के तरीके पर निर्भर करता है कि क्या इंटरमीडिएट प्रभावों को अनकंप्यूट किया गया है या नहीं, जब हम परिणामों को मापते हैं।<ref>{{Cite journal|arxiv=quant-ph/0209060|last1=Aaronson|first1=Scott|title=पुनरावर्ती फूरियर नमूने के लिए क्वांटम लोअर बाउंड|journal=Quantum Information and Computation ():, 00|volume=3|issue=2|pages=165–174|year=2002|doi=10.26421/QIC3.2-7 |bibcode=2002quant.ph..9060A}}</ref> | ||
यह प्रक्रिया मुख्य रूप से अन्तर्निहित मापन के सिद्धांत से प्रेरित होती है।<ref>Nielsen, Michael; Chuang, Isaac. "Quantum Computation and Quantum Information"</ref> | यह प्रक्रिया मुख्य रूप से अन्तर्निहित मापन के सिद्धांत से प्रेरित होती है।<ref>Nielsen, Michael; Chuang, Isaac. "Quantum Computation and Quantum Information"</ref>इसके अनुसार, कंप्यूटेशन के समय रजिस्टर को छोड़ देना उसे मापन करने के सामान होता है। अनावश्यक रजिस्टर्स को अनकंप्यूट न करने के कारण अनहेतुवादी परिणाम हो सकते हैं। उदाहरण के रूप में, यदि हम निम्नलिखित स्थिति को मानें:<math></math> <math> | ||
\frac{1}{\sqrt 2}(|0\rangle|g_0\rangle + |1\rangle|g_1\rangle) | \frac{1}{\sqrt 2}(|0\rangle|g_0\rangle + |1\rangle|g_1\rangle) | ||
</math> यहाँ <math>g_0</math> और <math>g_1</math> अनावश्यक रजिस्टर हैं। फिर, यदि हम उन रजिस्टरों पर कोई अधिकार क्रियाएँ लागू नहीं करते हैं, तो अन्तर्निहित मापन के सिद्धांत के अनुसार, संयुक्त स्थिति का मापन हो चुका है, जिससे यहाँ से या तो <math>|0\rangle|g_0\rangle</math> या <math>|1\rangle|g_1\rangle</math> में गिर पाएगा, प्रत्येक के लिए संभावना <math>\frac{1}{2}</math>होगी। इसे अवांछनीय बनाने वाली बात यह है कि तरंग-सारणी अविकसन कार्यावधि पूर्ण होने से पहले ही तत्वसमूह अविकसन हो जाता है, और इसलिए यह प्रोग्राम समाप्त होने से पहले ही तर्क-फल नहीं देने का कारण बन सकता है। | </math> यहाँ <math>g_0</math> और <math>g_1</math> अनावश्यक रजिस्टर हैं। फिर, यदि हम उन रजिस्टरों पर कोई अधिकार क्रियाएँ लागू नहीं करते हैं, तो अन्तर्निहित मापन के सिद्धांत के अनुसार, संयुक्त स्थिति का मापन हो चुका है, जिससे यहाँ से या तो <math>|0\rangle|g_0\rangle</math> या <math>|1\rangle|g_1\rangle</math> में गिर पाएगा, प्रत्येक के लिए संभावना <math>\frac{1}{2}</math>होगी। इसे अवांछनीय बनाने वाली बात यह है कि तरंग-सारणी अविकसन कार्यावधि पूर्ण होने से पहले ही तत्वसमूह अविकसन हो जाता है, और इसलिए यह प्रोग्राम समाप्त होने से पहले ही तर्क-फल नहीं देने का कारण बन सकता है। | ||
Line 10: | Line 10: | ||
{{Quantum-stub}} | {{Quantum-stub}} | ||
[[Category:All stub articles]] | |||
[[Category: | |||
[[Category:Created On 06/07/2023]] | [[Category:Created On 06/07/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Quantum physics stubs]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:क्वांटम सूचना विज्ञान]] |
Latest revision as of 15:14, 28 July 2023
अनगणना कार्यपद्धति है, जिसका उपयोग प्रतिवर्ती कंप्यूटिंग सर्किट में एंसीला बिट पर अस्थायी प्रभावों को साफ करने के लिए किया जाता है जिससे उनका पुन: उपयोग कर सकते हैं ।[1]
क्वांटम कम्प्यूटिंग एल्गोरिदम में मूलभूत चरण होता है। यह प्रभावित करने के तरीके पर निर्भर करता है कि क्या इंटरमीडिएट प्रभावों को अनकंप्यूट किया गया है या नहीं, जब हम परिणामों को मापते हैं।[2]
यह प्रक्रिया मुख्य रूप से अन्तर्निहित मापन के सिद्धांत से प्रेरित होती है।[3]इसके अनुसार, कंप्यूटेशन के समय रजिस्टर को छोड़ देना उसे मापन करने के सामान होता है। अनावश्यक रजिस्टर्स को अनकंप्यूट न करने के कारण अनहेतुवादी परिणाम हो सकते हैं। उदाहरण के रूप में, यदि हम निम्नलिखित स्थिति को मानें:Failed to parse (⧼math_empty_tex⧽): {\displaystyle } यहाँ और अनावश्यक रजिस्टर हैं। फिर, यदि हम उन रजिस्टरों पर कोई अधिकार क्रियाएँ लागू नहीं करते हैं, तो अन्तर्निहित मापन के सिद्धांत के अनुसार, संयुक्त स्थिति का मापन हो चुका है, जिससे यहाँ से या तो या में गिर पाएगा, प्रत्येक के लिए संभावना होगी। इसे अवांछनीय बनाने वाली बात यह है कि तरंग-सारणी अविकसन कार्यावधि पूर्ण होने से पहले ही तत्वसमूह अविकसन हो जाता है, और इसलिए यह प्रोग्राम समाप्त होने से पहले ही तर्क-फल नहीं देने का कारण बन सकता है।
संदर्भ
- ↑ Aaronson, Scott; Grier, Daniel; Schaeffer, Luke (2015). "प्रतिवर्ती बिट संचालन का वर्गीकरण". arXiv:1504.05155 [quant-ph].
- ↑ Aaronson, Scott (2002). "पुनरावर्ती फूरियर नमूने के लिए क्वांटम लोअर बाउंड". Quantum Information and Computation ():, 00. 3 (2): 165–174. arXiv:quant-ph/0209060. Bibcode:2002quant.ph..9060A. doi:10.26421/QIC3.2-7.
- ↑ Nielsen, Michael; Chuang, Isaac. "Quantum Computation and Quantum Information"