अबेलिअन विविधता सीमांकन समीकरण: Difference between revisions
m (Abhishek moved page एबेलियन किस्मों को परिभाषित करने वाले समीकरण to अबेलिअन विविधता सीमांकन समीकरण without leaving a redirect) |
No edit summary |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
गणित में, | गणित में, अबेलिअन विविधता की अवधारणा [[अण्डाकार वक्र]] का उच्च-आयामी सामान्यीकरण है। [[एबेलियन किस्म|'''अबेलिअन विविधता''']] '''सीमांकन समीकरण''' अध्ययन का विषय हैं क्योंकि प्रत्येक अबेलिअन प्रकार प्रक्षेपी प्रकार है। चूँकि, आयाम ''d'' ≥ 2 में, ऐसे समीकरणों पर चर्चा करना इतना समान नहीं होता है। | ||
इस प्रश्न पर विस्तृत पुरातात्विक साहित्य है, जो सुधारित रूप में, [[जटिल बीजगणितीय ज्यामिति]] के लिए, थीटा फलन के बीच संबंधों का वर्णन करने का प्रश्न है। आधुनिक ज्यामितीय विधि अब [[ डेविड मम्फोर्ड |डेविड मम्फोर्ड]] के कुछ मूल पत्रों से संदर्भित करती है, जो 1966 से 1967 तक के हैं, जिन्होंने उस सिद्धांत को सारगर्भित बीजगणितीय ज्यामिति से संबंधित अभिव्यक्ति में पुनर्संचयित किया जाता है। | इस प्रश्न पर विस्तृत पुरातात्विक साहित्य है, जो सुधारित रूप में, [[जटिल बीजगणितीय ज्यामिति]] के लिए, थीटा फलन के बीच संबंधों का वर्णन करने का प्रश्न है। आधुनिक ज्यामितीय विधि अब [[ डेविड मम्फोर्ड |डेविड मम्फोर्ड]] के कुछ मूल पत्रों से संदर्भित करती है, जो 1966 से 1967 तक के हैं, जिन्होंने उस सिद्धांत को सारगर्भित बीजगणितीय ज्यामिति से संबंधित अभिव्यक्ति में पुनर्संचयित किया जाता है। | ||
Line 5: | Line 5: | ||
==संपूर्ण प्रतिच्छेदन == | ==संपूर्ण प्रतिच्छेदन == | ||
उन स्थितियों के लिए जब d = 1 हो, जहां अण्डाकार वक्र का रैखिक विस्तार परियोजनीय विमान या परियोजनीय 3-स्थान हो, अन्य सभी | उन स्थितियों के लिए जब d = 1 हो, जहां अण्डाकार वक्र का रैखिक विस्तार परियोजनीय विमान या परियोजनीय 3-स्थान हो, अन्य सभी सामान्य संख्या d > 1 के लिए सामान्यतः सामान्य नहीं होते हैं। समतल में, प्रत्येक अण्डाकार वक्र को घन द्वारा वक्र दिया जाता है। ''P''<sup>3</sup> में, दो चतुर्भुजों के प्रतिच्छेदन के रूप में अण्डाकार वक्र प्राप्त किया जा सकता है। | ||
सामान्यतः, | सामान्यतः, अबेलिअन प्रकारें पूर्ण प्रतिच्छेदन नहीं होती हैं। [[कंप्यूटर बीजगणित]] विधि अब d > 1 के छोटे मानों के लिए समीकरणों के प्रत्यक्ष संचालन पर कुछ प्रभाव डालने में सक्षम हैं। | ||
==कुमेर सतहें== | ==कुमेर सतहें== | ||
कुमेर सतह में उन्नीसवीं शताब्दी की ज्यामिति में रुचि आंशिक रूप से उस प्रकार से आई, जिस प्रकार से [[चतुर्थक सतह]] ने | कुमेर सतह में उन्नीसवीं शताब्दी की ज्यामिति में रुचि आंशिक रूप से उस प्रकार से आई, जिस प्रकार से [[चतुर्थक सतह]] ने अबेलिअन प्रकार पर x → −x द्वारा उत्पन्न स्वसमाकृतिकता के क्रम 2 के समूह द्वारा d = 2 के साथ अबेलिअन प्रकार के भागफल का प्रतिनिधित्व किया था। | ||
==सामान्य स्थितियों== | ==सामान्य स्थितियों== | ||
ममफोर्ड ने | ममफोर्ड ने अबेलिअन प्रकार ''A'' पर उलटा शीफ ''L'' से संबंधित [[थीटा प्रतिनिधित्व]] को परिभाषित किया था। यह ''L'' के स्व-स्वयंसंवेदी क्रियाओं का समूह है, और [[हाइजेनबर्ग समूह]] का संख्यात्मक सदृश अभिलक्ष्य है। प्राथमिक परिणाम ''L'' के वैश्विक वर्गों पर थीटा समूह की क्रियान्वयन पर हैं। जब L [[बहुत प्रचुर]] मात्रा में होता है, तो थीटा समूह की संरचना के माध्यम से [[रैखिक प्रतिनिधित्व]] का वर्णन किया जा सकता है। वास्तव में थीटा समूह अमूर्त रूप से समान प्रकार का [[निलपोटेंट समूह|शून्य समूह]] है, A पर समत्रस्नायु समूह का केन्द्रीय विस्तार है, और विस्तार को ज्ञात होता है(यह वेल संख्यानी द्वारा दिया जाता है)।थीटा समूह के दिए गए [[केंद्रीय चरित्र]] के साथ एकविंशी रूपों के अविभाज्य रूप के निर्धारण का एकता परिणाम है, या दूसरे शब्दों में कहें तो स्टोन-वान नॉयमैन का अनुकरण है। (इसके लिए यह माना जाता है कि गुणांक के क्षेत्र की विशेषता थीटा समूह के क्रम को विभाजित नहीं करती है।) | ||
ममफोर्ड ने दिखाया कि कैसे यह अमूर्त बीजगणितीय सूत्रीकरण [[थीटा विशेषता]]ओं के साथ थीटा फलन के | ममफोर्ड ने दिखाया कि कैसे यह अमूर्त बीजगणितीय सूत्रीकरण [[थीटा विशेषता]]ओं के साथ थीटा फलन के क्लासिकल सिद्धांत के लिए उत्तरदायी हो सकता है, जैसा कि उस स्थितियों में, जहां थीटा समूह A के दो-शांखनी का विस्तार था। | ||
इस क्षेत्र में नवाचार मुकाई-फूरियर रूपांतरण का उपयोग करना है। | इस क्षेत्र में नवाचार मुकाई-फूरियर रूपांतरण का उपयोग करना है। | ||
==निर्देशांक वलय== | ==निर्देशांक वलय== | ||
इस सिद्धांत का उद्देश्य होता है परियोजित | इस सिद्धांत का उद्देश्य होता है परियोजित अबेलिअन प्रकार A की एकरूप निर्धारित सजातीय समन्वय वलय पर परिणाम सिद्ध करना है, जो कि बहुत ही पर्याप्त Lऔर उसके वैश्विक खंडों के अनुसार परियोजित समिष्ट में निर्धारित किया जाता है। यह [[श्रेणीबद्ध क्रमविनिमेय वलय]] जो वैश्विक खंडों के प्रत्यक्ष योग से उत्पन्न होता है। | ||
:<math>L^n,\ </math> | :<math>L^n,\ </math> | ||
जिसका अर्थ है कि स्वयं का n-गुना [[टेंसर उत्पाद|प्रदिश उत्पाद]], [[सजातीय आदर्श]] द्वारा [[बहुपद बीजगणित]] की [[भागफल अंगूठी]] के रूप में दर्शाया गया है। इस विभाजिका छाया के वर्गीकृत भागों का अध्ययन गहनता से होता है। | जिसका अर्थ है कि स्वयं का n-गुना [[टेंसर उत्पाद|प्रदिश उत्पाद]], [[सजातीय आदर्श]] द्वारा [[बहुपद बीजगणित]] की [[भागफल अंगूठी|क्वॉटेंट रिंग]] के रूप में दर्शाया गया है। इस विभाजिका छाया के वर्गीकृत भागों का अध्ययन गहनता से होता है। | ||
द्विघात संबंध [[बर्नहार्ड रीमैन]] द्वारा प्रदान किए गए थे। 'कोइज़ुमी का प्रमेय' बताता है कि विस्तृत रेखीय समूह की तृतीय घाती [[सामान्य रूप से उत्पन्न]] होती है। 'ममफोर्ड-केम्फ प्रमेय' में कहा गया है कि विस्तृत रेखीय समूह की चतुर्थ घाती को चतुर्भुज रूप से प्रस्तुत किया जाता है। [[विशेषता शून्य]] के आधार क्षेत्र के लिए, ग्यूसेप पारेस्ची ने इन्हें सम्मलित करते हुए परिणाम सिद्ध किया (जैसा कि स्थितियों ''p'' = 0, 1) जो लेज़र्सफेल्ड द्वारा अनुमान लगाया गया था: L विस्तृत रेखीय समूह हो जो | इस प्रकार द्विघात संबंध [[बर्नहार्ड रीमैन]] द्वारा प्रदान किए गए थे। 'कोइज़ुमी का प्रमेय' बताता है कि विस्तृत रेखीय समूह की तृतीय घाती [[सामान्य रूप से उत्पन्न]] होती है। 'ममफोर्ड-केम्फ प्रमेय' में कहा गया है कि विस्तृत रेखीय समूह की चतुर्थ घाती को चतुर्भुज रूप से प्रस्तुत किया जाता है। [[विशेषता शून्य]] के आधार क्षेत्र के लिए, ग्यूसेप पारेस्ची ने इन्हें सम्मलित करते हुए परिणाम सिद्ध किया (जैसा कि स्थितियों ''p'' = 0, 1) जो लेज़र्सफेल्ड द्वारा अनुमान लगाया गया था: L विस्तृत रेखीय समूह हो जो अबेलिअन प्रकार पर है। यदि ''n'' ≥ ''p'' + 3, तो Lकी ''n''-th प्रदिश शक्ति परिस्थिति ''N''<sub>p</sub> को पूरा करता है<ref>Giuseppe Pareschi, ''Syzygies of Abelian Varieties'', Journal of the American Mathematical Society, Vol. 13, No. 3 (Jul., 2000), pp. 651–664.</ref> परेस्ची और पोपा द्वारा आगे के परिणाम सिद्ध किए गए हैं, जिसमें क्षेत्र में पिछला काम भी सम्मलित है।<ref>Giuseppe Pareschi, Minhea Popa, ''Regularity on abelian varieties II: basic results on linear series and defining equations'', J. Alg. Geom. 13 (2004), 167–193; http://www.math.uic.edu/~mpopa/papers/abv2.pdf {{Webarchive|url=https://web.archive.org/web/20100712013113/http://www.math.uic.edu/~mpopa/papers/abv2.pdf |date=2010-07-12 }}</ref> | ||
==यह भी देखें== | ==यह भी देखें== | ||
* [[एबेलियन किस्मों की समयरेखा| | * [[एबेलियन किस्मों की समयरेखा|अबेलिअन प्रकारों की समयरेखा]] | ||
* हॉरोक्स-ममफोर्ड बंडल | * हॉरोक्स-ममफोर्ड बंडल | ||
Line 42: | Line 42: | ||
==अग्रिम पठन== | ==अग्रिम पठन== | ||
*[[David Mumford]], ''Selected papers on the classification of varieties and moduli spaces'', editorial comment by G. Kempf and H. Lange, pp. 293–5 | *[[David Mumford]], ''Selected papers on the classification of varieties and moduli spaces'', editorial comment by G. Kempf and H. Lange, pp. 293–5 | ||
[[Category:Created On 10/07/2023]] | [[Category:Created On 10/07/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Webarchive template wayback links]] | |||
[[Category:एबेलियन किस्में]] |
Latest revision as of 15:35, 28 July 2023
गणित में, अबेलिअन विविधता की अवधारणा अण्डाकार वक्र का उच्च-आयामी सामान्यीकरण है। अबेलिअन विविधता सीमांकन समीकरण अध्ययन का विषय हैं क्योंकि प्रत्येक अबेलिअन प्रकार प्रक्षेपी प्रकार है। चूँकि, आयाम d ≥ 2 में, ऐसे समीकरणों पर चर्चा करना इतना समान नहीं होता है।
इस प्रश्न पर विस्तृत पुरातात्विक साहित्य है, जो सुधारित रूप में, जटिल बीजगणितीय ज्यामिति के लिए, थीटा फलन के बीच संबंधों का वर्णन करने का प्रश्न है। आधुनिक ज्यामितीय विधि अब डेविड मम्फोर्ड के कुछ मूल पत्रों से संदर्भित करती है, जो 1966 से 1967 तक के हैं, जिन्होंने उस सिद्धांत को सारगर्भित बीजगणितीय ज्यामिति से संबंधित अभिव्यक्ति में पुनर्संचयित किया जाता है।
संपूर्ण प्रतिच्छेदन
उन स्थितियों के लिए जब d = 1 हो, जहां अण्डाकार वक्र का रैखिक विस्तार परियोजनीय विमान या परियोजनीय 3-स्थान हो, अन्य सभी सामान्य संख्या d > 1 के लिए सामान्यतः सामान्य नहीं होते हैं। समतल में, प्रत्येक अण्डाकार वक्र को घन द्वारा वक्र दिया जाता है। P3 में, दो चतुर्भुजों के प्रतिच्छेदन के रूप में अण्डाकार वक्र प्राप्त किया जा सकता है।
सामान्यतः, अबेलिअन प्रकारें पूर्ण प्रतिच्छेदन नहीं होती हैं। कंप्यूटर बीजगणित विधि अब d > 1 के छोटे मानों के लिए समीकरणों के प्रत्यक्ष संचालन पर कुछ प्रभाव डालने में सक्षम हैं।
कुमेर सतहें
कुमेर सतह में उन्नीसवीं शताब्दी की ज्यामिति में रुचि आंशिक रूप से उस प्रकार से आई, जिस प्रकार से चतुर्थक सतह ने अबेलिअन प्रकार पर x → −x द्वारा उत्पन्न स्वसमाकृतिकता के क्रम 2 के समूह द्वारा d = 2 के साथ अबेलिअन प्रकार के भागफल का प्रतिनिधित्व किया था।
सामान्य स्थितियों
ममफोर्ड ने अबेलिअन प्रकार A पर उलटा शीफ L से संबंधित थीटा प्रतिनिधित्व को परिभाषित किया था। यह L के स्व-स्वयंसंवेदी क्रियाओं का समूह है, और हाइजेनबर्ग समूह का संख्यात्मक सदृश अभिलक्ष्य है। प्राथमिक परिणाम L के वैश्विक वर्गों पर थीटा समूह की क्रियान्वयन पर हैं। जब L बहुत प्रचुर मात्रा में होता है, तो थीटा समूह की संरचना के माध्यम से रैखिक प्रतिनिधित्व का वर्णन किया जा सकता है। वास्तव में थीटा समूह अमूर्त रूप से समान प्रकार का शून्य समूह है, A पर समत्रस्नायु समूह का केन्द्रीय विस्तार है, और विस्तार को ज्ञात होता है(यह वेल संख्यानी द्वारा दिया जाता है)।थीटा समूह के दिए गए केंद्रीय चरित्र के साथ एकविंशी रूपों के अविभाज्य रूप के निर्धारण का एकता परिणाम है, या दूसरे शब्दों में कहें तो स्टोन-वान नॉयमैन का अनुकरण है। (इसके लिए यह माना जाता है कि गुणांक के क्षेत्र की विशेषता थीटा समूह के क्रम को विभाजित नहीं करती है।)
ममफोर्ड ने दिखाया कि कैसे यह अमूर्त बीजगणितीय सूत्रीकरण थीटा विशेषताओं के साथ थीटा फलन के क्लासिकल सिद्धांत के लिए उत्तरदायी हो सकता है, जैसा कि उस स्थितियों में, जहां थीटा समूह A के दो-शांखनी का विस्तार था।
इस क्षेत्र में नवाचार मुकाई-फूरियर रूपांतरण का उपयोग करना है।
निर्देशांक वलय
इस सिद्धांत का उद्देश्य होता है परियोजित अबेलिअन प्रकार A की एकरूप निर्धारित सजातीय समन्वय वलय पर परिणाम सिद्ध करना है, जो कि बहुत ही पर्याप्त Lऔर उसके वैश्विक खंडों के अनुसार परियोजित समिष्ट में निर्धारित किया जाता है। यह श्रेणीबद्ध क्रमविनिमेय वलय जो वैश्विक खंडों के प्रत्यक्ष योग से उत्पन्न होता है।
जिसका अर्थ है कि स्वयं का n-गुना प्रदिश उत्पाद, सजातीय आदर्श द्वारा बहुपद बीजगणित की क्वॉटेंट रिंग के रूप में दर्शाया गया है। इस विभाजिका छाया के वर्गीकृत भागों का अध्ययन गहनता से होता है।
इस प्रकार द्विघात संबंध बर्नहार्ड रीमैन द्वारा प्रदान किए गए थे। 'कोइज़ुमी का प्रमेय' बताता है कि विस्तृत रेखीय समूह की तृतीय घाती सामान्य रूप से उत्पन्न होती है। 'ममफोर्ड-केम्फ प्रमेय' में कहा गया है कि विस्तृत रेखीय समूह की चतुर्थ घाती को चतुर्भुज रूप से प्रस्तुत किया जाता है। विशेषता शून्य के आधार क्षेत्र के लिए, ग्यूसेप पारेस्ची ने इन्हें सम्मलित करते हुए परिणाम सिद्ध किया (जैसा कि स्थितियों p = 0, 1) जो लेज़र्सफेल्ड द्वारा अनुमान लगाया गया था: L विस्तृत रेखीय समूह हो जो अबेलिअन प्रकार पर है। यदि n ≥ p + 3, तो Lकी n-th प्रदिश शक्ति परिस्थिति Np को पूरा करता है[1] परेस्ची और पोपा द्वारा आगे के परिणाम सिद्ध किए गए हैं, जिसमें क्षेत्र में पिछला काम भी सम्मलित है।[2]
यह भी देखें
- अबेलिअन प्रकारों की समयरेखा
- हॉरोक्स-ममफोर्ड बंडल
संदर्भ
- David Mumford, On the equations defining abelian varieties I Invent. Math., 1 (1966) pp. 287–354
- ____, On the equations defining abelian varieties II–III Invent. Math., 3 (1967) pp. 71–135; 215–244
- ____, Abelian varieties (1974)
- Jun-ichi Igusa, Theta functions (1972)
- ↑ Giuseppe Pareschi, Syzygies of Abelian Varieties, Journal of the American Mathematical Society, Vol. 13, No. 3 (Jul., 2000), pp. 651–664.
- ↑ Giuseppe Pareschi, Minhea Popa, Regularity on abelian varieties II: basic results on linear series and defining equations, J. Alg. Geom. 13 (2004), 167–193; http://www.math.uic.edu/~mpopa/papers/abv2.pdf Archived 2010-07-12 at the Wayback Machine
अग्रिम पठन
- David Mumford, Selected papers on the classification of varieties and moduli spaces, editorial comment by G. Kempf and H. Lange, pp. 293–5