सामान्य रैखिक विधियाँ: Difference between revisions

From Vigyanwiki
Line 1: Line 1:
{{distinguish|text=[[सामान्य रैखिक प्रारूप]]एस या [[सामान्यीकृत रैखिक प्रारूप]]एस}}
{{distinguish|text=[[सामान्य रैखिक प्रारूप]]एस या [[सामान्यीकृत रैखिक प्रारूप]]एस}}
'''सामान्य रैखिक विधियाँ''' ('''जीएलएम''') [[संख्यात्मक विधियों]] का एक बड़ा वर्ग है जिसका उपयोग [[साधारण अवकल समीकरणों]] के [[संख्यात्मक]] समाधान प्राप्त करने के लिए किया जाता है। उनमें बहुपद [[रनगे-कुट्टा]] विधियां सम्मिलित हैं जो मध्यवर्ती [[साहचर्य बिंदुओं]] का उपयोग करती हैं, साथ ही [[रैखिक मल्टीस्टेप विधि|रैखिक बहुपद विधियां]] जो समाधान के सीमित समय की हिस्ट्री को बचाती हैं। [[जॉन सी. बुचर]] ने मूल रूप से इन विधियों के लिए यह शब्द निर्मित <ref>{{cite journal|last=Butcher|first=John C.|title=सामान्य रैखिक विधियाँ|journal=Computers & Mathematics with Applications|date=February–March 1996|volume=31|issue=4–5|pages=105–112|doi=10.1016/0898-1221(95)00222-7|doi-access=free}}</ref>किया था, और उन्होंने इस विषय पर समीक्षा पत्रों की एक श्रृंखला, एक पुस्तक अध्याय और एक पाठ्यपुस्तक लिखी है।<ref>{{cite journal|last=Butcher|first=John|title=सामान्य रैखिक विधियाँ|journal=Acta Numerica|date=May 2006|volume=15|pages=157–256|doi=10.1017/S0962492906220014|bibcode=2006AcNum..15..157B|s2cid=125962375}}</ref><ref>{{cite journal|last=Butcher|first=John|title=साधारण अंतर समीकरणों के लिए सामान्य रैखिक विधियाँ|journal=Mathematics and Computers in Simulation|date=February 2009|volume=79|issue=6|pages=1834–1845|doi=10.1016/j.matcom.2007.02.006}}</ref><ref>{{cite book|last=Butcher|first=John|s2cid=2334002|title=साधारण विभेदक समीकरणों के लिए संख्यात्मक विधियाँ|year=2005|publisher=John Wiley & Sons, Ltd|isbn=9780470868270|pages=357–413|doi=10.1002/0470868279.ch5|chapter=General Linear Methods}}</ref><ref>{{cite book|last=Butcher|first=John|title=The numerical analysis of ordinary differential equations: Runge–Kutta and general linear methods|year=1987|publisher=Wiley-Interscience|isbn=978-0-471-91046-6|url=http://dl.acm.org/citation.cfm?id=22730}}</ref> उनके सहयोगी, ज़ेडज़िस्लाव जैकीविक्ज़ के पास भी इस विषय पर एक व्यापक पाठ्यपुस्तक है।<ref>{{cite book|last=Jackiewicz|first=Zdzislaw|title=साधारण विभेदक समीकरणों के लिए सामान्य रैखिक विधियाँ|year=2009|publisher=Wiley|isbn=978-0-470-40855-1|url=http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470408553.html}}</ref> विधियों का मूल वर्ग मूल रूप से बुचर (1965), गियर (1965) और ग्रैग और स्टेटर (1964) द्वारा प्रस्तावित किया गया था।
'''सामान्य रैखिक विधियाँ''' ('''जीएलएम''') [[संख्यात्मक विधियों]] का एक बड़ा वर्ग है जिसका उपयोग [[साधारण अवकल समीकरणों]] के [[संख्यात्मक]] समाधान प्राप्त करने के लिए किया जाता है। उनमें बहुपद [[रनगे-कुट्टा]] विधियां सम्मिलित हैं जो मध्यवर्ती [[साहचर्य बिंदुओं]] का उपयोग करती हैं, साथ ही [[रैखिक मल्टीस्टेप विधि|रैखिक बहुपद विधियां]] जो समाधान के सीमित समय के विवरण को बचाती हैं। [[जॉन सी. बुचर]] ने मूल रूप से इन विधियों के लिए यह शब्द निर्मित <ref>{{cite journal|last=Butcher|first=John C.|title=सामान्य रैखिक विधियाँ|journal=Computers & Mathematics with Applications|date=February–March 1996|volume=31|issue=4–5|pages=105–112|doi=10.1016/0898-1221(95)00222-7|doi-access=free}}</ref>किया था, और उन्होंने इस विषय पर समीक्षा पत्रों की एक श्रृंखला, एक पुस्तक अध्याय और एक पाठ्यपुस्तक लिखी है।<ref>{{cite journal|last=Butcher|first=John|title=सामान्य रैखिक विधियाँ|journal=Acta Numerica|date=May 2006|volume=15|pages=157–256|doi=10.1017/S0962492906220014|bibcode=2006AcNum..15..157B|s2cid=125962375}}</ref><ref>{{cite journal|last=Butcher|first=John|title=साधारण अंतर समीकरणों के लिए सामान्य रैखिक विधियाँ|journal=Mathematics and Computers in Simulation|date=February 2009|volume=79|issue=6|pages=1834–1845|doi=10.1016/j.matcom.2007.02.006}}</ref><ref>{{cite book|last=Butcher|first=John|s2cid=2334002|title=साधारण विभेदक समीकरणों के लिए संख्यात्मक विधियाँ|year=2005|publisher=John Wiley & Sons, Ltd|isbn=9780470868270|pages=357–413|doi=10.1002/0470868279.ch5|chapter=General Linear Methods}}</ref><ref>{{cite book|last=Butcher|first=John|title=The numerical analysis of ordinary differential equations: Runge–Kutta and general linear methods|year=1987|publisher=Wiley-Interscience|isbn=978-0-471-91046-6|url=http://dl.acm.org/citation.cfm?id=22730}}</ref> उनके सहयोगी, ज़ेडज़िस्लाव जैकीविक्ज़ के पास भी इस विषय पर एक व्यापक पाठ्यपुस्तक है।<ref>{{cite book|last=Jackiewicz|first=Zdzislaw|title=साधारण विभेदक समीकरणों के लिए सामान्य रैखिक विधियाँ|year=2009|publisher=Wiley|isbn=978-0-470-40855-1|url=http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470408553.html}}</ref> विधियों का मूल वर्ग मूल रूप से बुचर (1965), गियर (1965) और ग्रैग और स्टेटर (1964) द्वारा प्रस्तावित किया गया था।


== कुछ परिभाषाएँ ==
== कुछ परिभाषाएँ ==
Line 15: Line 15:
हम अपने विवरण के लिए बुचर (2006), पृष्ठ 189-190 का अनुसरण करते हैं, हालाँकि हम ध्यान दें कि यह विधि अन्यत्र पाई जा सकती है।
हम अपने विवरण के लिए बुचर (2006), पृष्ठ 189-190 का अनुसरण करते हैं, हालाँकि हम ध्यान दें कि यह विधि अन्यत्र पाई जा सकती है।


सामान्य रैखिक विधियाँ दो पूर्णांकों का उपयोग करती हैं, <math> r </math>, इतिहास में समय बिंदुओं की संख्या और <math> s </math>, साहचर्य बिंदुओं की संख्या। <math>r=1</math> की स्थिति में, ये विधियाँ चिरप्रतिष्ठित [[रनगे-कुट्टा विधियों]] में बदल जाती हैं, और  <math>s=1</math> की स्थिति में, ये विधियाँ रैखिक बहुपद विधियों में कम हो जाती हैं।
सामान्य रैखिक विधियाँ दो पूर्णांकों का उपयोग करती हैं, <math> r </math>, विवरण में समय बिंदुओं की संख्या और <math> s </math>, साहचर्य बिंदुओं की संख्या है। <math>r=1</math> की स्थिति में, ये विधियाँ चिरप्रतिष्ठित [[रनगे-कुट्टा विधियों]] में बदल जाती हैं, और  <math>s=1</math> की स्थिति में, ये विधियाँ [[रैखिक बहुपद विधियों]] में बदल जाती हैं।


चरण मानों <math> Y_i </math> और चरण अवकलजों, <math> F_i, i=1,2,\dots s </math> की गणना समय चरण <math>n</math> पर सन्निकटनों, <math> y_i^{[n-1]}, i=1, \dots, r </math>  से की जाती है,
चरण मान <math> Y_i </math> और चरण अवकलज, <math> F_i, i=1,2,\dots s </math> की गणना समय चरण <math>n</math> पर सन्निकटनों, <math> y_i^{[n-1]}, i=1, \dots, r </math>  से की जाती है,


:<math>
:<math>
Line 66: Line 66:
\right].
\right].
</math>
</math>
चरण मान दो आव्यूहों द्वारा परिभाषित किए गए हैं, <math> A = [a_{ij} ] </math> और <math> U = [ u_{ij} ]</math>:
चरण मान दो आव्यूहों , <math> A = [a_{ij} ] </math> और <math> U = [ u_{ij} ]</math>


:<math>
:<math>
Line 72: Line 72:
\sum_{j=1}^s a_{ij} h F_j + \sum_{j=1}^r u_{ij} y_j^{[n-1]}, \qquad i=1,2, \dots, s,
\sum_{j=1}^s a_{ij} h F_j + \sum_{j=1}^r u_{ij} y_j^{[n-1]}, \qquad i=1,2, \dots, s,
</math>
</math>
और समय <math>t^n</math> का अद्यतन दो आव्यूहों, <math> B = [b_{ij}] </math> और <math> V = [v_{ij}] </math>द्वारा परिभाषित किया गया है,
द्वारा परिभाषित किया गया है, और समय <math>t^n</math> का अद्यतन दो आव्यूहों, <math> B = [b_{ij}] </math> और <math> V = [v_{ij}] </math> द्वारा परिभाषित किया गया है,


:<math>
:<math>
y_i^{[n]} = \sum_{j=1}^s b_{ij} h F_j + \sum_{j=1}^r v_{ij} y_j^{[n-1]}, \qquad i=1, 2, \dots, r.
y_i^{[n]} = \sum_{j=1}^s b_{ij} h F_j + \sum_{j=1}^r v_{ij} y_j^{[n-1]}, \qquad i=1, 2, \dots, r.
</math>
</math>
चार आव्यूहों <math>A, U, B</math> और <math>V</math> को देखते हुए, कोई [[बुचर टैब्लो]] के अनुरूप को इस प्रकार लिख सकता है,
चार आव्यूहों <math>A, U, B</math> और <math>V</math> को देखते हुए, कोई [[बुचर टैब्लो]] के अनुरूप को संक्षिप्त रूप से लिख सकता है


:<math>
:<math>
Line 94: Line 94:
\end{matrix} \right],
\end{matrix} \right],
</math>
</math>
जहां <math>\otimes</math> का अर्थ [[प्रदिश गुणनफल]] है।
जहां <math>\otimes</math> [[प्रदिश गुणनफल]] है।


==उदाहरण==
==उदाहरण==


हम (बुचर, 1996) में वर्णित एक उदाहरण प्रस्तुत करते हैं।<ref>{{harvnb|Butcher|1996|p=107}}</ref> इस विधि में एक 'पूर्वानुमानित' चरण और 'संशोधित' चरण सम्मिलित है, जो समय इतिहास के बारे में अतिरिक्त जानकारी के साथ-साथ एक मध्यवर्ती चरण मान का उपयोग करता है।
हम (बुचर, 1996) में वर्णित एक उदाहरण प्रस्तुत करते हैं।<ref>{{harvnb|Butcher|1996|p=107}}</ref> इस विधि में एक 'पूर्वानुमानित' चरण और 'संशोधित' चरण सम्मिलित है, जो समय विवरण के बारे में अतिरिक्त जानकारी के साथ-साथ एक मध्यवर्ती चरण मान का उपयोग करता है।


एक मध्यवर्ती चरण मान को किसी ऐसी चीज़ के रूप में परिभाषित किया जाता है जो ऐसा दिखता है जैसे यह एक रैखिक बहुपद विधि से आया हो:
एक मध्यवर्ती चरण मान को किसी ऐसी चीज़ के रूप में परिभाषित किया जाता है जो ऐसा दिखता है जैसे यह एक रैखिक बहुपद विधि से आया हो:
Line 105: Line 105:
y^*_{n-1/2} = y_{n-2} + h \left( \frac9 8 f( y_{n-1} ) + \frac3 8 f( y_{n-2} ) \right).
y^*_{n-1/2} = y_{n-2} + h \left( \frac9 8 f( y_{n-1} ) + \frac3 8 f( y_{n-2} ) \right).
</math>
</math>
एक प्रारंभिक 'पूर्वानुमानित' <math> y^*_n </math> समय इतिहास के दो भागों के साथ  <math>y^*_{n-1/2}</math> का उपयोग करता है,
एक प्रारंभिक 'पूर्वानुमानित' <math> y^*_n </math> समय विवरण के दो भागों के साथ  <math>y^*_{n-1/2}</math> का उपयोग करता है,


:<math>
:<math>

Revision as of 09:00, 26 July 2023

सामान्य रैखिक विधियाँ (जीएलएम) संख्यात्मक विधियों का एक बड़ा वर्ग है जिसका उपयोग साधारण अवकल समीकरणों के संख्यात्मक समाधान प्राप्त करने के लिए किया जाता है। उनमें बहुपद रनगे-कुट्टा विधियां सम्मिलित हैं जो मध्यवर्ती साहचर्य बिंदुओं का उपयोग करती हैं, साथ ही रैखिक बहुपद विधियां जो समाधान के सीमित समय के विवरण को बचाती हैं। जॉन सी. बुचर ने मूल रूप से इन विधियों के लिए यह शब्द निर्मित [1]किया था, और उन्होंने इस विषय पर समीक्षा पत्रों की एक श्रृंखला, एक पुस्तक अध्याय और एक पाठ्यपुस्तक लिखी है।[2][3][4][5] उनके सहयोगी, ज़ेडज़िस्लाव जैकीविक्ज़ के पास भी इस विषय पर एक व्यापक पाठ्यपुस्तक है।[6] विधियों का मूल वर्ग मूल रूप से बुचर (1965), गियर (1965) और ग्रैग और स्टेटर (1964) द्वारा प्रस्तावित किया गया था।

कुछ परिभाषाएँ

प्रथम-क्रम सामान्य अवकल समीकरणों के लिए संख्यात्मक विधिया रूप

की प्रारंभिक मूल्य समस्याओं के अनुमानित समाधान को देती है। परिणाम अलग-अलग समय पर के मान का सन्निकटन है,

जहां h काल चरण है (कभी-कभी इसे भी कहा जाता है)|

विधि का विवरण

हम अपने विवरण के लिए बुचर (2006), पृष्ठ 189-190 का अनुसरण करते हैं, हालाँकि हम ध्यान दें कि यह विधि अन्यत्र पाई जा सकती है।

सामान्य रैखिक विधियाँ दो पूर्णांकों का उपयोग करती हैं, , विवरण में समय बिंदुओं की संख्या और , साहचर्य बिंदुओं की संख्या है। की स्थिति में, ये विधियाँ चिरप्रतिष्ठित रनगे-कुट्टा विधियों में बदल जाती हैं, और की स्थिति में, ये विधियाँ रैखिक बहुपद विधियों में बदल जाती हैं।

चरण मान और चरण अवकलज, की गणना समय चरण पर सन्निकटनों, से की जाती है,

चरण मान दो आव्यूहों , और

द्वारा परिभाषित किया गया है, और समय का अद्यतन दो आव्यूहों, और द्वारा परिभाषित किया गया है,

चार आव्यूहों और को देखते हुए, कोई बुचर टैब्लो के अनुरूप को संक्षिप्त रूप से लिख सकता है

जहां प्रदिश गुणनफल है।

उदाहरण

हम (बुचर, 1996) में वर्णित एक उदाहरण प्रस्तुत करते हैं।[7] इस विधि में एक 'पूर्वानुमानित' चरण और 'संशोधित' चरण सम्मिलित है, जो समय विवरण के बारे में अतिरिक्त जानकारी के साथ-साथ एक मध्यवर्ती चरण मान का उपयोग करता है।

एक मध्यवर्ती चरण मान को किसी ऐसी चीज़ के रूप में परिभाषित किया जाता है जो ऐसा दिखता है जैसे यह एक रैखिक बहुपद विधि से आया हो:

एक प्रारंभिक 'पूर्वानुमानित' समय विवरण के दो भागों के साथ का उपयोग करता है,

और अंतिम अद्यतन इसके द्वारा दिया गया है,

इस विधि के लिए संक्षिप्त तालिका निरूपण इस प्रकार दिया गया है:

यह भी देखें

टिप्पणियाँ

  1. Butcher, John C. (February–March 1996). "सामान्य रैखिक विधियाँ". Computers & Mathematics with Applications. 31 (4–5): 105–112. doi:10.1016/0898-1221(95)00222-7.
  2. Butcher, John (May 2006). "सामान्य रैखिक विधियाँ". Acta Numerica. 15: 157–256. Bibcode:2006AcNum..15..157B. doi:10.1017/S0962492906220014. S2CID 125962375.
  3. Butcher, John (February 2009). "साधारण अंतर समीकरणों के लिए सामान्य रैखिक विधियाँ". Mathematics and Computers in Simulation. 79 (6): 1834–1845. doi:10.1016/j.matcom.2007.02.006.
  4. Butcher, John (2005). "General Linear Methods". साधारण विभेदक समीकरणों के लिए संख्यात्मक विधियाँ. John Wiley & Sons, Ltd. pp. 357–413. doi:10.1002/0470868279.ch5. ISBN 9780470868270. S2CID 2334002.
  5. Butcher, John (1987). The numerical analysis of ordinary differential equations: Runge–Kutta and general linear methods. Wiley-Interscience. ISBN 978-0-471-91046-6.
  6. Jackiewicz, Zdzislaw (2009). साधारण विभेदक समीकरणों के लिए सामान्य रैखिक विधियाँ. Wiley. ISBN 978-0-470-40855-1.
  7. Butcher 1996, p. 107


संदर्भ


बाहरी संबंध